A quick introduction to plyr

Sean Anderson

November 7, 2012

plyr is an R package that makes it simple to split data apart, do stuff to it, and
mash it back together. This is a common data-manipulation step. Importantly,
plyr makes it easy to control the input and output data format from a syntactically
consistent set of functions.

Or, from the documentation:

“plyr is a set of tools that solves a common set of problems: you need to break a
big problem down into manageable pieces, operate on each pieces and then put all
the pieces back together. It’s already possible to do this with split and the apply
functions, but plyr just makes it all a bit easier...”

This is a very quick introduction to plyr. For more details see Hadley Wickham’s
introductory guide The split-apply-combine strategy for data analysis (2011, Journal
of Statistical Software, Vol 40). There’s quite a bit of discussion online in general,
and especially on stackoverflow.com.

1 Why use apply functions instead of for loops?

1. The code is cleaner (once you're familiar with the concept). The code can be
easier to code and read, and less error prone because:

(a) you don’t have to deal with subsetting

(b) you don’t have to deal with saving your results

2. Apply functions can be faster than for loops, sometimes dramatically.

http://www.jstatsoft.org/v40/i01
http://stackoverflow.com/questions/tagged/plyr

2 Why use plyr over base apply functions?

1. plyr has a common syntax — easier to remember
2. plyr requires less code since it takes care of the input and output format

3. plyr can easily be run in parallel — faster

3 plyr basics

plyr builds on the built-in apply functions by giving you control over the input and
output formats and keeping the syntax consistent across all variations. It also adds
some niceties like error processing, parallel processing, and progress bars.

The basic format is 2 letters followed by ply(). The first letter refers to the format
in and the second to the format out.

The 3 main letters are:

1. d = data frame
2. a = array (includes matrices)

3. 1 =list

So, ddply means: take a data frame, split it up, do something to it, and return a
data frame. I find I use this the majority of the time since I often work with data
frames.

1dply means: take a list, split it up, do something to it, and return a data frame.
This extends to all combinations. The columns are the input formats and the rows
are the output format:

data frame list array
data frame ddply ldply adply
list dlply 1llply alply
array daply laply aaply

I've ignored some less common format options:

1. m = multi-argument function input
2. r = replicate a function n times.

3. _ = throw away the output

For plotting, you might find the underscore (_) option useful. It will do something
with the data (say add line segments to a plot) and then throw away the output

(e.g., d_ply Q).

4 Base R apply functions and plyr

plyr provides a consistent and easy-to-work-with format for apply functions with
control over the input and output formats. Some of the functionality can be dupli-
cated with base R functions (but with less consistent syntax). Also, few R apply
functions work directly with data frames as input and output and data frames are a
common object class to work with.

Base R apply functions (from a presentation given by Hadley):

array data frame list nothing
array apply .
data frame . aggregate by
list sapply . lapply
n replicates replicate . replicate
function arguments mapply . mapply

5 A general example with plyr

Let’s take a simple example. Take a data frame, split it up (by year), calculate
the coefficient of variation of the count, and return a data frame. This could easily
be done on one line, but I'm expanding it here to show the format a more complex
function could take.

> set.seed(1)
> d <- data.frame(year = rep(2000:2002, each = 3),

3

+ count = round(runif(9, 0, 20)))
> print(d)

year count

1 2000 5

2 2000 7

3 2000 11

4 2001 18

5 2001 4

6 2001 18

7 2002 19

8 2002 13

9 2002 13

> library(plyr)

> ddply(d, "year", function(x) {
+ mean.count <- mean(x$count)
+ sd.count <- sd(x$count)

+ cv <- sd.count/mean.count
+ data.frame(cv.count = cv)

+ })

year cv.count
1 2000 0.3984848
2 2001 0.6062178
3 2002 0.2309401

6 transform and summarise

It is often convenient to use these functions within plyr. transform acts as it would
normally as the base R function and modifies an existing data frame. summarise
creates a new (usually) condensed data frame.

> ddply(d, "year", summarise, mean.count = mean(count))

year mean.count
1 2000 7.666667
2 2001 13.333333
3 2002 15.000000

> ddply(d, "year", transform, total.count = sum(count))

year count total.count

1 2000 5 23
2 2000 7 23
3 2000 11 23
4 2001 18 40
5 2001 4 40
6 2001 18 40
7 2002 19 45
8 2002 13 45
9 2002 13 45

Bonus function: mutate. mutate works like transform but lets you build on columns
you build.

v

ddply(d, "year", mutate, mu = mean(count), sigma = sd(count),
cv = sigma/mu)

+

year count mu sigma cv
1 2000 5 7.666667 3.055050 0.3984848
2 2000 7 T7.666667 3.055050 0.3984848
3 2000 11 7.666667 3.055050 0.3984848
4 2001 18 13.333333 8.082904 0.6062178
5 2001 4 13.333333 8.082904 0.6062178
6 2001 18 13.333333 8.082904 0.6062178
7 2002 19 15.000000 3.464102 0.2309401
8 2002 13 15.000000 3.464102 0.2309401
9 2002 13 15.000000 3.464102 0.2309401

7 Plotting with plyr

You can use plyr to plot data by throwing away the output with an underscore (_).
This is a bit cleaner than a for loop since you don’t have to subset the data manually.

> par(mfrow = c(1, 3), mar = c(2, 2, 1, 1), oma = c(3, 3, 0, 0))

> d_ply(d, "year", transform, plot(count, main = unique(year), type = "o"))
> mtext("count", side = 1, outer = TRUE, line = 1)

> mtext ("frequency", side = 2, outer = TRUE, line = 1)

2000 2001 o 2002
_ _ @ 4
S < .
3 o -) N
c N -
(] o - -
g _
3 " ® “
= © — -
0 — < - ™ _]
T T T T T T T T T T - T T T T T
1.0 15 2.0 25 3.0 1.0 15 20 25 3.0 1.0 15 2.0 25 3.0
count

8 Nested chunking of the data

The basic syntax can be easily extended to break apart the data based on multiple
columns:

> baseball.dat <- subset(baseball, year > 2000) # data from the plyr package
> x <- ddply(baseball.dat, c("year", "team"), summarize,

+ homeruns = sum(hr))
> head(x)

year team homeruns

1 2001 ANA 4
2 2001 ARI 155
3 2001 ATL 63

4 2001 BAL 58
5 2001 BOS 7
6 2001 CHA 63

9 Other useful options

9.1 Dealing with errors

You can use the failwith function to control how errors are dealt with.

> f <- function(x) if (x == 1) stop("Error!") else 1
> safe.f <- failwith(NA, f, quiet = TRUE)

> #11ply(1:2, f)

> 11ply(1:2, safe.f)

[[1]1]
[1] NA

[[2]]
(1] 1

9.2 Parallel processing

In conjunction with doMC (or doSMP on Windows) you can run your function sepa-
rately on each core of your computer. On a dual core machine this could double your
speed in some situations. Set .parallel = TRUE.

> x <- c(1:10)
> wait <- function(i) Sys.sleep(0.1)

> system.time(1llply(x, wait))

user system elapsed
0.001 0.000 1.007

> system.time(sapply(x, wait))

user system elapsed
0.001 0.000 1.010

> library(doMC)
> registerDoMC(2)
> system.time(1lply(x, wait, .parallel = TRUE))

user system elapsed
0.021 0.006 0.533

10 So, why would I not want to use plyr?

plyr can be slow — particularly if you are working with very large datasets that
involve a lot of subsetting. Hadley is working on this and recent development versions
of plyr run much faster.

It’s important to remember that typically the speed that you can write code and
understand it later is the rate-limiting step.

Three faster options:

(1) Use a base R apply function:
> system.time(ddply(baseball, "id", summarize, length(year)))

user system elapsed
1.169 0.013 1.188

> system.time(tapply(baseball$year, baseball$id, function(x) length(x)))

user system elapsed
0.019 0.000 0.020

(2) Use an immutable data frame. An immutable data frame (idata.frame) returns
pointers to the original object when subset instead of creating a copy of itself each
time. This is often the rate-limiting step in an apply function.

> system.time(ddply(idata.frame(baseball), "id", summarize, length(year)))

user system elapsed
0.956 0.003 0.960

(3) Use the data.table package:

> library(data.table)
> dt <- data.table(baseball, key="id")
> system.time(dt[, length(year), by=1list(id)])

user system elapsed
0.005 0.000 0.005

The next version of plyr lets you work with objects of class data.table:

https://gist.github.com/4007552

https://gist.github.com/4007552

	Why use apply functions instead of for loops?
	Why use plyr over base apply functions?
	plyr basics
	Base R apply functions and plyr
	A general example with plyr
	transform and summarise
	Plotting with plyr
	Nested chunking of the data
	Other useful options
	Dealing with errors
	Parallel processing

	So, why would I not want to use plyr?

