

Designing Software Synthesizer Plugins in C++

Designing Software Synthesizer Plugins in C++ provides everything you need to know to start
designing and writing your own synthesizer plugins, including theory and practical examples for
all of the major synthesizer building blocks, from LFOs and EGs to PCM samples and morphing
wavetables, along with complete synthesizer example projects.

The book and accompanying SynthLab projects include scores of C++ objects and functions
that implement the synthesizer building blocks as well as six synthesizer projects, ranging from
virtual analog and physical modelling to wavetable morphing and wave-sequencing that demon-
strate their use. You can start using the book immediately with the SynthLab-DM product, which
allows you to compile and load mini-modules that resemble modular synth components without
needing to maintain the complete synth project code. The C++ objects all run in a stand-alone
mode, so you can incorporate them into your current projects or whip up a quick experiment. All
six synth projects are fully documented, from the tiny SynthClock to the SynthEngine objects, al-
lowing you to get the most from the book while working at a level that you feel comfortable with.

This book is intended for music technology and engineering students, along with DIY audio
programmers and anyone wanting to understand how synthesizers may be implemented in C++.

Will C. Pirkle is a Staff Scientist at Audio Media Research, Inc. and Music Engineering Technol-
ogy program director at the University of Miami Frost School of Music. He teaches a range of
classes, from audio electronics to digital signal processing and audio programming. In addition to
16 years of teaching, Will has 20+ years of experience in the audio industry, working and consult-
ing for such names as Korg Research and Development, XM Radio, and National Semiconductor
Corporation. An avid guitarist and studio owner, Will enjoys projects that combine his skills.

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

https://taylorandfrancis.com

Designing Software Synthesizer
Plugins in C++
With Audio DSP

2nd Edition

Will C. Pirkle

First published 2021
by Routledge
605 Third Avenue, New York, NY 10158

and by Routledge
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2021 Will C. Pirkle

The right of Will C. Pirkle to be identified as author of this work has been asserted by him in
accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form
or by any electronic, mechanical, or other means, now known or hereafter invented, including
photocopying and recording, or in any information storage or retrieval system, without
permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
A catalog record for this title has been requested

ISBN: 978-0-367-51048-0 (hbk)
ISBN: 978-0-367-51046-6 (pbk)
ISBN: 978-1-003-05220-3 (ebk)

Typeset in Times New Roman
by codeMantra

James Robert Pirkle

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

https://taylorandfrancis.com

List of Figures xiii
List of Tables xxiii
Preface xxv

1 SynthLab Introduction 1
1.1 What You Need to Know to Use SynthLab Objects and Projects 2
1.2 SynthLab Synth Projects 2
1.3 Synth Components 3
1.4 Basic Software Synth Architecture 4
1.5 SynthLab Voice Architecture 4
1.6 SynthLab C++ Implementation 5
1.7 Why SynthLab Uses This Architecture 8
1.8 SynthLab Object Operational Phases 9
Bibliography 11

2 The Synth Engine 12
2.1 Engine Behavior 12
2.2 Engine Architecture 12
2.3 Shared Data 13
2.4 SynthEngine Constructor 18
2.5 Audio and MIDI Block Rendering 18
2.6 SynthEngine Operational Phases 20
Bibliography 26

3 Synth Voices, Synth Modules, and Module Cores 27
3.1 Voice Behavior 27
3.2 SynthVoice Modules 27
3.3 SynthVoice Parameters 28
3.4 SynthModule Members 29
3.5 SynthVoice Construction 30

Contents

viii Contents

3.6 SynthVoice Operational Phases 31
3.7 SynthModules and ModuleCores 35
3.8 Module Cores 37
3.9 SynthModule/ModuleCore Relationship 37
3.10 Review 41
Bibliography 41

4 Synth Operational Modes: Polyphony and Voice-Stealing 42
4.1 The Note-Event Lifecycle 43
4.2 SynthEngine MIDI Processing 44
4.3 SynthEngine Unison Detuning 46
4.4 Voice State and MIDI Event Storage 47
4.5 Voice-Stealing 47
4.6 Polyphony and Voice Timestamps 50
4.7 Review 53
Bibliography 53

5 Learning and Using the SynthLab Objects & Projects 54
5.1 Designing Modules with the SynthLab-DM Projects 54
5.2 SynthLab-DM Modules Are Dynamic Linked Libraries 54
5.3 Using SynthModules in Your Projects 58
5.4 Using SynthEngines in Your Projects 63
5.5 SynthEngine GUI Design and Parameter Update 66
5.6 Programming the Modulation Matrix 69
5.7 Getting WaveSequencer Status Meter Updates 69
Bibliography 69

6 Modulation: Theory and Calculations 70
6.1 SynthLab Mod Knob Mapping 70
6.2 MMA Transforms & Calculations 71
6.3 Sequential Circuits Vector Joystick Envelope Modulation 74
6.4 Linear Frequency Modulation with LFO or EG 75
6.5 BPM Sync 76
6.6 Quantizing 77
6.7 Ramp Modulation: Fade-in and Fade-out 77
6.8 Pitch Calculation 79
6.9 Pulse-Width Modulation (PWM) 81
6.10 Phase Distortion 81
6.11 Hard Sync 83
6.12 Filter Key Track Modulation 85
Bibliography 86

Contents ix

7 Envelope Generators and DCA 87
7.1 Envelope Generator Fundamentals 87
7.2 EG Implementation: Finite State Machine 92
7.3 Digital EG Implementation: Rendering the Output 95
7.4 Biased EG Output 96
7.5 Analog EG Emulation 97
7.6 Synth Module: EnvelopeGenerator 100
7.7 EG Retrigger Modulation 101
7.8 EG Core Programming Notes 102
7.9 The Digitally Controlled Amplifier (DCA) 106
7.10 Exercises 108
Bibliography 109

8 Low Frequency Oscillators 110
8.1 Noise Oscillators and Generators 110
8.2 Oscillator Clocking 111
8.3 LFO Waveforms and Rendering Equations 112
8.4 Render Modes 116
8.5 Waveform Shaping 117
8.6 Delay and Fade-in Times 117
8.7 Starting Phase 117
8.8 DC Offset 117
8.9 SynthLFO and Cores 118
8.10 LFO Core Programming Notes 119
8.11 Exercises 121
Bibliography 123

9 Wavetable Oscillators 124
9.1 Wavetable Fundamentals: Table Lookup 124
9.2 Wavetable Objects and Database 130
9.3 Wavetable Sources and Database 131
9.4 WTOscillator and Cores 134
9.5 Wavetable Core Programming Notes 135
9.6 Exercises 139
Bibliography 140

10 Virtual Analog Oscillators 141
10.1 VA Oscillator Fundamentals 141
10.2 Band Limited Impulse Train (BLIT) 142
10.3 Band Limited Step (BLEP) 143

x Contents

10.4 Polynomial BLEP Approximation 147
10.5 Choosing the BLEP sinc Source 148
10.6 Other VA Algorithms 149
10.7 BLEP Square Wave 149
10.8 VAOscillator and Core 150
10.9 VA Core Programming Notes 150
10.10 Exercises 155
Bibliography 156

11 PCM Sample Playback Oscillators 157
11.1 PCM Sample Playback Modes 157
11.2 PCM Sample Storage 159
11.3 Loading PCM Samples 160
11.4 PCM Sources and Database 163
11.5 PCMOscillator and Cores 166
11.6 PCM Core Programming Notes 168
11.7 Exercises 170
Bibliography 171

12 Synthesizer Filters 172
12.1 Design Summary 172
12.2 Q and Self-Oscillation 173
12.3 Analog Magnitude Matching at Nyquist 173
12.4 Zavalishin’s Virtual Analog Filters 173
12.5 Resolving Delay-Free Loops in VA Structures 175
12.6 VA Filters from Primitive Analog Block Diagrams 180
12.7 VA Filters from Signal Flow Graphs 183
12.8 VA Filters from Conceptual Signal Flow Graphs 191
12.9 Nonlinear Processing and Self-Oscillation Control 191
12.10 Synth Filter Objects 193
12.11 Input Drive and Output Peak Limiter 197
12.12 SynthFilter and Cores 198
12.13 Synth Filter Core Programming Notes 199
12.14 Exercises 204
Bibliography 205

13 Karplus-Strong Plucked String Model 207
13.1 The Exciter-Resonator 207
13.2 The Plucked String 208
13.3 The Karplus-Strong Model 208
13.4 Pluck Position 212

Contents xi

13.5 Karplus-Strong Algorithm Equations 213
13.6 Karplus-Strong C++ Objects 214
13.7 KSOscillator and KSOCore 218
13.8 KSOCore Member Objects 219
13.9 Core Programming Notes 219
13.10 Extensions to the KS Algorithm 222
13.11 Exercises 223
Bibliography 224

14 The Modulation Matrix 225
14.1 Modulation Inputs and Outputs 225
14.2 Modulation Routings 225
14.3 Mod Matrix Channel Routing 228
14.4 ModSource and ModDestination for GUI Controls 228
14.5 ModMatrixParameters 229
14.6 The ModMatrix Object 230
14.7 Initializing the ModMatrix 231
14.8 Programming the ModMatrix 232
14.9 Mod Matrix Transforms 232
14.10 Running the ModMatrix 233
Bibliography 233

15 Wave Morphing and Wave Sequencing 234
15.1 Wave Banks 234
15.2 Wave Morphing 235
15.3 The MorphWTCore 236
15.4 MorphWTCore Programming Notes 237
15.5 Wave Sequencing 1.0 240
15.6 SynthLab WaveSequencer 243
15.7 The WSOscillator Object 248
15.8 WSOscillator Programming Notes 251
15.9 Exercises 255
Bibliography 256

16 The SynthLab Synth Projects 257
16.1 SynthLab Modulation Matrix 257
16.2 SynthLab Render Phase: Modulators 259
16.3 SynthLab Render Phase: Quad Oscillator Mixing 260
16.4 SynthLab Render Phase: Filtering 261
16.5 SynthLab Render Phase: Global Volume and Delay FX 262
16.6 SynthLab-DX: the FM Synthesizer 263

xii Contents

16.7 FM/PM Rules 267
16.8 FM Operator 268
16.9 SynthLab-DX Voice Render Phase 271
Bibliography 272

Index 273

Figures

 1.1 The MMA representation of a software synth includes control logic,
articulation, and an audio engine that renders the synthesized signal 5

 1.2 SynthLab voice architecture includes two filters that may be processed in series
or parallel, or individually bypassed; the SynthLab-WS project also includes a
wave sequencer object 6

 1.3 (a) SynthLab C++ objects include the engine, voice, modules, cores, and their
associated string lists; (b) typical GUI layout for the wavetable oscillator 8

 2.1 The SynthEngine object architecture; the dotted boxes show the interface points
to your plugin framework’s processor object 14

 2.2 Hierarchy of SynthLab objects responding to function calls from the host plugin
framework processor object 14

 2.3 (a) The engine owns a stack of voice objects (four in this example but 16 in the
SynthLab projects), each of which includes an identical set of LFO, filter, EG,
oscillator, and DCA objects; (b) the engine owns a voice parameter structure
that is shared across these voices; and (c) the shared voice parameters structure
consists of a set of shared module parameter structures 16

 2.4 SynthEngine operation consists of three phases: (a) initialization, (b) GUI
updates, and (c) audio rendering 22

 2.5 SynthEngine MIDI processing 23
 3.1 Flow of function calls from host plugin framework processing object to the

SynthEngine, then to the voices, modules, and their cores 28
 3.2 SynthLab modules each implement one synth building block; all are subclassed

from SynthModule; note that the normal and morphing wavetable oscillators are
combined (dotted box) and may be mixed freely 28

 3.3 (a) Module diagrams show attributes and connections in the module and its
core, along with module and mod knob strings for each core; notice that the
moduleStrings show up in the GUI as a selection list and (b) the SynthModule
block diagram 36

 3.4 (a) The PCM oscillator includes three pre-written cores and one empty (user)
core that allow the PCM oscillator to implement banks of waveforms; (b) the
relationship between voice, module, and core is tight 38

 4.1 The four states of the note-event lifecycle: (a) the note-on message resets objects
and places the amp EG into the attack state; (b) the note-off message places
the amp EG into the release state; (c) the voice waits for the amp EG to finish,
rendering output the entire time; and (d) the note-event is finished when the amp
EG reaches the off state 43

xiv Figures

 4.2 The engine decodes the incoming MIDI messages; for note-on and note-off, the
engine first finds a target voice, then forwards the MIDI processing function call 44

 4.3 An engine with four voices: (a) prior to any notes triggered (b) when the first
note is triggered, voice 0 is selected then (c) second note and (d) third note and
(e) fourth notes are triggered with timestamps incremented each time and (f)
after the oldest voice is stolen, it becomes the youngest and so on 52

 5.1 You can create internal modules for the SynthLab-DM synths without needing
to recompile the entire project; this shows a module named Drum WT DLL that
exposes a set of waveform and mod knob strings for the user to see 55

 5.2 GUI controls and their relationship to the custom parameter structure; the
controls in grey include the dynamic strings and are different for each kind of
module and core 68

 6.1 (a) MMA concave and (b) MMA convex transforms; (c) MMA velocity to
attenuation in dB and (d) square law converted velocity to normalized gain graphs 72

 6.2 (a) Constant power curves for panning and crossfading with solid line for
trigonometric and dotted line for square law transforms, and (b) the XFader
C++ object crossfades between two signals, A and B, using linear, trig, or square
law crossfading 73

 6.3 (a) The original Sequential/Korg vector joystick; (b) the rotated version is
simpler for GUIs (the dotted lines show the actual x- and y-axes); and (c)
visualization of the four envelopes that are generated as the stick moves from
points 1 to 3, where it stays during the sustain period, and note-off moves the
joystick to its final position 4 75

 6.4 (a) The modulo counter with x-axis as period and y-axis as phase with a slope
of 1.0, (b) a normal sinusoid lookup, (c) and (d) relocation of the breakpoint
produces two slopes m1 and m2 while (e)–(f) show the distortion on a sinusoid
and (i)–(l) show a ramp modified with phase distortion 82

 6.5 Hard sync with (a) ramp/sawtooth and (b) square-wave main oscillators, while
(c) and (d) show the effect of moving the reset point for ramp and triangle waves;
notice that the reset oscillator’s waveform is not used other than as a
resetting device 84

 6.6 Crossfading to smear over a hard-sync discontinuity for (a) the normal reset and
(b) reset to a non-zero starting phase 84

 7.1 (a) ADSR envelope generator with linear (dashed) and exponential segments (b)
specifying the EG using levels (L) and rates (R), and (c) the decay and release
times are actually calculated from the full-scale value to zero and (d) changing
the sustain level with all else constant changes the perceived decay and
release times 88

 7.2 More EG contours including (a) AR, (b) AHR, (c) DAHR, (d) the SynthLab
DXEG with linear slope segment (SL), and (e) the VCS3 re-triggering
“trapezoidal” EG 89

 7.3 Early analog EGs with (a) trigger and gate signals, and (b) EG with s-trigger
signal, (c) the EG restarts with each note on event from the previous output
value and (d) the EG is reset back to the starting point with each note on event;
the logic is shown as active-high but may be implemented as active-low as well 90

 7.4 Legato playing with (a) a trigger/gate EG and (b) an s-trigger EG 90

Figures xv

 7.5 (a) The note-off event occurs before the EG reaches full amplitude and results in
(b) a truncated version while (c) shows the unconditional release mode 91

 7.6 The circles show the state transition triggers for the (a) ADSR and (b) DXEG
with added slope state; this EG may also have the decay level LDCY set above the
sustain level, and the transition trigger logic is inverted 92

 7.7 The FSM diagram for the ADSR EG with shutdown; this does not show the
monosynth legato or reset-to-zero options to simplify the diagram 94

 7.8 (a) Linear EG with constant step sizes within each state and (b) approximating
an exponential EG with variable step sizes; the axes are unlabeled to show that
the numerical limits of min and max are variable 95

 7.9 (a) The concave and (b) convex transforms are used to give contour to the linear
segments, and (c) shows the overall concept; note that the slope segment is
kept linear 97

 7.10 (a) When using the EG to modulate pitch, all of the portion above 0.0 is sharp,
including the sustain segment, and (b) the biased EG pulls the sustain back in
tune but causes the start and end of the note-event to be flat; adjustment of the
start and end values mitigates this 97

 7.11 (a) SW1 closes for the note-on event, and the voltage source charges capacitor C
through RATT, then (b) SW1 opens, and SW2 closes for the note-off event, which
discharges the capacitor through RREL; (c) shows the resulting event; note that
V is the asymptotic charge voltage, and 0.77V is 77% of this value, used for the
analog emulation 98

 7.12 Attempting to generate a normalized exponential decay over the range of
x = [0, 1] using (a) the first order feedback structure, we observe that the output
does not decay to 0.0 and takes on a non-zero value at x = 1.0, while through
(b) the addition of a negative bias signal and adjustment to the b coefficient (b’),
we can achieve the proper decay curve and hit, then cross over the 0.0 value 99

 7.13 The EnvelopeGenerator module and the three included cores: DX-EG, analog
EG, and linear EG; the module is shown with the DXEGCore selected 101

 7.14 Conceptual block diagram of the DXEG with the curvature control; the concave
and convex transforms are applied to the appropriate segments 102

 7.15 The decay and release portions of the EG curve need to be mapped to the
correction sections of the normalized concave transform 105

 7.16 (a) The EG intensity acts as a simple gain control when positive, but (b) when
negative, it inverts the unipolar signal 106

 7.17 Two more EG contours for the (a) Yamaha EX and (b) Casio CZ series synths;
the contours are shown as linear here for simplicity; most segments are curved 109

 8.1 The frequency spectra of (a) white and (b) pink noise; FFT length is
131,072 points 111

 8.2 (a) The modulo counter steps upward by the phaseInc on each sample period
until the counter crosses 1.0 and wraps to the same offset, and (b) the block
diagram form of the SynthClock object 112

 8.3 Triangle and ramp waveforms and their algorithms; the ID values correspond to
the waveform selector in SynthLab 113

 8.4 Exponential, sinusoidal, square, random, and pluck waveforms and their
algorithms 114

xvi Figures

 8.5 Frequency spectra and equations for three popular sinusoidal approximations:
quadratic, Bhaskara I, and parabolic, with fo = 100 Hz 115

 8.6 Random sample and hold LFOs with (a) random amplitude and constant hold
time, and (b) random amplitude and random hold times 115

 8.7 Stepped LFO waveform examples: (a) three-step sine, (b) six-step triangle, and
shaped LFO waveforms (c) triangle and (d) ramp up with shape control = (0.0, 0.5, 1.0) 116

 8.8 The SynthLFO and its two cores block diagrams, module strings, and mod knobs 118
 8.9 Additional LFO waveforms for your custom object 122
 9.1 Reading an N = 8 point wavetable with (a) integer lookup and (b) floating point

lookup with (c) linear interpolation and (d) the read index wraps around to the
start of the table when the added phase increment pushes the lookup point past
the table’s ending index 124

 9.2 The 88-note piano keyboard starts at A0 (MIDI note 21), with 801 harmonics,
and ends at C8 (MIDI note 108), with 5 harmonics; fs = 44.1 kHz and A0, A4,
and A7 are shown 126

 9.3 (a) Waveform and (b) spectrum of a sawtooth synthesized with 14 harmonics
plus the fundamental and (c) the Lanczos corrected waveform and (d) resulting
spectrum; the harmonic envelope is shown with a dotted line 127

 9.4 (a) Wavetable spacing in the Prophet VS and (b) modern wavetable synth using
54 high-resolution tables such that every note has every harmonic up to Nyquist 129

 9.5 Flowchart of a system to generate band limited wavetables from a seed table; the
process is repeated as many times as you need 129

 9.6 (a) The sine and drum sources only store and read a single wavetable, while (b)
the static and dynamic sources each store an array of wavetables, one per MIDI
note, while (c) the WavetableDatabase contains a dictionary of IWavetableSource
pointers whose keys are unique strings that name the waveforms; (d) a wavetable
bank is a name given to a set of wavetables used for wavetable morphing 132

 9.7 The WTOscillator and the three included cores: classic, morphing, and drums;
two special bonus cores are also included for Fourier synthesis and sound effects 135

 9.8 Wave scanning may be used with simple waveforms (a) or more complex one-
shot drum tables (b) to produce new sounds 140

 10.1 A trivial sawtooth waveform spectrum with (a) −60 dB and (b) −96 dB lower
limits, and a VA oscillator spectrum with (c) −60 dB and (d) −96 dB lower limits 142

 10.2 (a) A smooth continuous function, (b) a ramp discontinuity, and (c) square
discontinuity both have similar mathematical traits – identical slopes on each
side of the edge, while the triangle in (d) has two different slopes on each side of
the discontinuity 142

 10.3 (a) Unipolar and (b) bipolar BLIT signals, and (c) algorithms for converting
them into traditional waveforms 143

 10.4 (a) A sinc function and (b) its integration produces a wavy step; (c) to use the
BLEP, superimpose it on top of the discontinuity; notice that only a small
section of the BLEP waveform is used 144

 10.5 Two sets of windowed BLEP waveforms, where (a) the central pulse is truncated
and windowed and (b) the central pulse is combined with the next pair of zero-
crossings to form a wider windowed function; the integrated windowed signals,
and the rising and falling residuals are shown for each case 145

Figures xvii

 10.6 (a) A rising discontinuous edge showing the two samples on each side
(b) superimposing the residual over the discontinuous edge (c) adjusting these
four points based on the residual and (d) the BLEP corrected discontinuity 145

 10.7 (a) Geometrically determining the distance from the discontinuity to points
on either side of the edge; (b) a triangle pulse integrates to a smooth sigmoid,
similar to that of Figure 10.5(a); and (c) the BLEP rising edge residual is
approximated with two second order polynomials, one for each side of the edge 147

 10.8 Sawtooth waveforms using 8-point BLEP correction with (a) rectangular
(b) triangular (c) Hamming and (d) Blackman-Harris windowed sinc BLEP
residuals; the dotted line represents the harmonic envelope of a perfect sawtooth
waveform; note the location of the −60dB level 148

 10.9 (a) Two sawtooth waveforms are combined to generate a square wave (b) shows
how the ramps add or subtract to produce values of −1.0 or +1.0 150

10.10 The VAOscillator (a) internal block diagram and (b) SynthLab diagram; there is
only one core, which is also available for download as a SynthLab-DM project 151

 11.1 The four common modes of PCM sample playback include (a) one-shot;
(b) loop; (c) transient plus loop; and (d) transient, loop, and release 158

 11.2 The Mellotron core directory contains subdirectories for each patch, which, in
turn, contains a set of wave files; each of these is extracted into a PCMSample
object and stored in an array of pointers in an IPCMSampleSource object 164

 11.3 (a) The sample sources are arranged in a database and accessed via a unique
name string; (b) the shaded keys show the included wave files for the Mellotron,
sampled on every note from G2 through F5, while the (c) legacy files include
samples on minor third boundaries from A1 through C4 165

 11.4 The PCMOscillator block diagram and module strings; none of the mod knobs
are assigned in these cores 167

 12.1 (a) A simple RC lowpass filter and (b) the analog block diagram 174
 12.2 (a) The bilinear (trapezoidal) approximation of the area under a curve, showing

the error portion between the dotted line and the curve, and (b) transposed
canonical form of the bilinear integrator 175

 12.3 (a) The analog integrator is replaced with a digital bilinear integrator (b) a
shorthand version after combining the two input multipliers into one, and
ignoring the exact details of the bilinear structure and (c) simplified notation
showing a block with input, output, g, and s ports 176

 12.4 (a) The delay-free loops structure with v(n) labeled and (b) the resolved loop
done by examination of Equation (12.7) 177

 12.5 The first three steps in the MH method for resolving delay-free loops produce
the values uo(n), yo(n), and loop gain X 178

 12.6 (a) The final structure after loop resolution and (b) combining the series loop
coefficients into a single value α 179

 12.7 Primitive analog block diagrams and their resulting VA filter structures for
(a) first order lowpass filter, (b) first order high-pass filter, and (c) first order
all-pass filter (d) the normal first order BZT LPF frequency response with zero
gain at Nyquist (e) analog FGN LPF frequency response (f) first order HPF
frequency response and (g) first order APF phase response; all plots are shown
with fc = 100 Hz, 1 kHz, 5 kHz, and 10 kHz 181

xviii Figures

 12.8 (a) The SVF analog block diagram (b) the VA realization including the analog
matched LPF output yLPM(n) (c) normal SVF LPF frequency response and
(d) LPF frequency response with analog matching at Nyquist (e) SVF HPF
frequency response with fc = 100 Hz, 1 kHz, 5 kHz, 10 kHz and 15 kHz and Q = 25
and (f) SVF BPF frequency response with fc = 2.5 kHz and Q = 0.5, 10 and 25 183

 12.9 The signal flow graph and VA realizations for (a) Korg35 LPF, (b) Korg35 HPF
and (c) the combined structure that is used for each of the Korg35 sub-filters (d)
the LPF and HPF frequency responses show differences in the roll-off slopes
with LPF fc = 500 Hz and HPF fc = 5 kHz and (e) the Korg35 LPF frequency
response with analog Nyquist matching and fc = 100 Hz, 1 kHz, 5 kHz and 15
kHz with K = 1.9 185

 12.10 The Moog ladder filter (a) signal flow block diagram (b) notice how the bass
response is reduced as the Q is increased shown with fc = 100 Hz, 1 kHz, 5 kHz
and 15 kHz each with increasing Q (K) value; the BZT and analog FGN curves
are shown for K = 3, and for K = 3.9 the analog FGN response is indicated (c)
the modified additional outputs generate three more filter types including a
resonant first order variety 186

 12.11 The Moog ladder filter (a) VA realization with optional input scaling and output
branches, and (b) the analog FGN version; note that the β coefficients are
contained in each sub-filter but shown externally here to convey their operation
in the feedback loop 188

 12.12 The diode ladder filter’s (a) signal flow block diagram, and (b) notice how the
bass response is reduced as the Q is increased shown with fc = 500 Hz, 1 kHz,
5 kHz and 15 kHz each with increasing Q (K) value and (c) the experimental
analog FGN output at fc = 2.5 kHz, 5 kHz, 10 kHz and 15 kHz; the error in the
resonant peak frequency is normal and correct for this filter 189

 12.13 (a) The modified first order VA LPF (named mLPF) and (b) its shorthand block
diagram with arrows showing the signal flow directions (c) the diode ladder
filter realization and (d) the experimental analog FGN version with added α1
coefficient at the output; note that the β coefficients are calculated within each
sub-filter but are shown externally here to convey their operation in the
feedback loop 190

 12.14 Novel VA filters contrived from conceptual signal flow graphs, including
(a) second order LPF with fr = 500 Hz and fc = 1 kHz, (b) resonant first order
high shelving filter with fc = fr = 2 kHz and a doubly-resonant LPF with
fc = 500 Hz, (c) fr = 1 kHz, and (d) fr = 3 kHz 192

 12.15 Nonlinear blocks in the VA structures shown inside (a) the saturating integrator,
(b) the Korg35, and (c) Moog signal flow block diagrams, while (d) shows the
location of the peak limiter on the filter output, always outside of any
feedback loop 193

 12.16 The SynthFilter and core block diagram, filter types, and mod knob labels 198
 12.17 The Oberheim variations on the Moog ladder signal flow block diagram and

table of coefficient values 205
 13.1 (a) The most basic exciter-resonator system, and (b) a more complex model

that includes coupling from the resonator back to the exciter and an output
impedance coupler 207

Figures xix

 13.2 (a) An acoustic guitar with nut, bridge, and body; (b) plucking the string
deforms it and (c) sets up a transverse wave that moves down the string, and
(d) bounces off the nut and moves back toward the bridge 209

 13.3 (a) Basic model of a plucked string with dual delay lines for transverse wave
oscillation and (b) a simplified version that combines like components and adds
the fractional delay APF 209

 13.4 (a) A first order structure for an APF with only one coefficient a to calculate
and (b) the group delay versus frequency for the APF; each curve represents a
different APF fc 210

 13.5 (a) The simple first order feed-forward LPF and (b) its frequency response
showing a zero at Nyquist 210

 13.6 (a) Rectangular windowed noise burst; (b) Hann windowed noise burst; (c) sonic
grains from re-triggered windowed exciter; (d) attack-release; and (e) attack-
hold-release envelope noise bursts 211

 13.7 (a) The pluck position filter is a simple feed forward comb filter that is combined
with the bridge integrator in the delay branch, (b) shows the comb filter response
for a pluck position of ¼ the total length (M = 4), (c) the bridge filter’s lowpass-
integrator response and (d) the combined integrator and comb filter responses 213

 13.8 Spectra of the KS model of the note A-2 (110 Hz), showing output of (a) bridge
filter only and (b) bridge filter and pluck position with pluck at ½ the length of
the string 213

 13.9 The block diagram of the KS algorithm packaged as the KSOCore includes the
exciter, pluck, pickup, and bridge filters, and the resonator and body filter; the
inset shows the very simple guitar preamp simulator, consisting of eight stages
of waveshaping followed by a second order LPF 215

13.10 The KSOscillator and KSOCore block diagrams, module strings, mod inputs,
and GUI controls 219

 14.1 (a) The modulation input array is indexed the same way for all SynthModules
using constant declarations for kEGMod, kBiasedEGMod, etc… (b) the LFO
Core exposes a modulation input and a modulation output (c) the modulation
output array is indexed specifically for the LFO using constant declarations
while (d) shows the indexing for the EG‘s modulation output array for comparison 226

 14.2 A modulation routing that connects LFO1’s normal output to OSC2’s bipolar
modulation input, which modulates the oscillator’s frequency 226

 14.3 Modulation matrix designs include (a) pin/button programmable with global
source and destination intensity controls, and (b) a limited choice matrix with
individual channel routing intensity controls 227

 14.4 (a) The ModMatrix configuration for a single routing shows the multiple
intensity controls and enable-switches; in this example, the hardwire enable
switch is overriding the channel branch while (b) and (c) demonstrate the routing
configurations that match Figures 14.3 (a) and (b), respectively 228

 15.1 Three sets of tables for morphing, including (a) dissimilar waveforms, (b) one
waveform whose parameters are adjusted for each slice, and (c) a complex
waveform that has undergone multiple passes of filtering or other processing 235

 15.2 (a) An LFO modulates the wave-morphing index, producing a smoothly
interpolated succession of waveforms back and forth along the range, while

xx Figures

(b) the EG also morphs the waveforms but stops during the sustain portion,
holding the current waveform constant prior to release 236

 15.3 The MorphWTCore snaps into the WTOscillator object and exposes its mod
knobs, which are slightly different and include morph start index and morph
mod intensity; notice that the module strings point to a bank of wavetables 237

 15.4 Korg’s wave sequencer from the Wavestation featured the ability to hold
and crossfading waveforms while also modulating each segment’s pitch and
amplitude; the waveforms actually blend together during the crossfades and are
shown separated for easier viewing; the amplitudes were not displayed in dB in
the Wavestation 240

 15.5 (a) The Wavestate’s wave sequencer splits out each lane with its own start, stop,
loop start, and loop end points (b) a possible combination of lanes showing the
lane steps marked (1) and (2); the timing lane is used to synchronize the other
lane step durations and crossfade timing 242

 15.6 SynthLab’s wave sequencer interface includes individual settings for all steps
and a global control over the lanes 243

 15.7 (a) The WaveSequencer and its member objects; (b) the XHoldFader can hold
and crossfade signals or values, and (c) it can output the crossfade gain values in
the XFadeData structure and operate in both modes at once, if needed 244

 15.8 (a) A set of timing and waves to be sequenced shows the hold-then-crossfade
pattern where you (b) hold wave A and crossfade to B on first step then (c) wave
B is labeled as the new wave A and the next segment is loaded as wave B (d) the
hold-then-crossfade process repeats with each new segment 246

 15.9 (a) A Lane structure maintains an array of LaneStep structures that are
sequenced according to a jump table; the current step/next step pairs are shown
in white and grey boxes (b) after the timing lane’s first crossfade, the current
step/next step pair advances according to the loop direction (to the right in this
example) (c) without randomization, the segments will loop in the same order
after the loop end point is hit (d) with randomization, the jump table is shuffled
after each loop restarts which then shuffles the lane steps accordingly 248

15.10 The four WSOscillators are used in a round-robin manner starting with (a) the
oscillator pair (0, 1); after the first crossfade is completed, (b) the sequence shifts
to oscillator pair (1, 2) then (c) to pair (2, 3) then (d) wrapping around to pair (3,
0), and so on 249

 16.1 SynthLab voice architecture; the quad oscillator bank is different for each
project, and the WaveSequencer is only in SynthLab-WS 258

 16.2 The SynthLab modulation matrix uses a pin-programmer style interface and
source and destination intensity controls 259

 16.3 (a) FM and (b) PM time and frequency domain output signals; the spectral
amplitudes shown are for visual reference; the actual amplitudes follow Bessel
functions and are more complex 265

 16.4 (a) A modulation index control modifies the output spectrum; (b) replacing the
control with an EG allows the spectrum to morph as the note-event progresses 266

Figures xxi

 16.5 (a) An FM operator consists of a sinusoidal oscillator and EG that adjusts
its output amplitude along with Chowning’s FM operator notation (b) a two-
operator patch that includes self- modulation; notice that Operator 1’s output EG
acts as the amp EG since it is the very last in the chain and Chowning’s notation
that indicates self-modulation 266

 16.6 The eight DX-100 FM algorithms 267
 16.7 (a) The block diagram for the FMOperator object includes a self-modulation

routing path and FM intensity control, and (b) the SynthLab implementation
block diagram 269

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

https://taylorandfrancis.com

Tables

 1.1 Synthesizer components, my abbreviations, and descriptions, as used in SynthLab 3
 3.1 SynthVoice modules that are identical across all synth projects 29
 3.2 SynthModule virtual functions that all modules must override and descriptions 37
 4.1 Voice detuning, panning, and starting phase offsets for unison mode 47
 5.1 SynthLab’s module types, their container objects, and the downloadable examples 57
 7.1 EnvelopeGenerator custom parameter structure and cores 100
 8.1 LFO cores and their special modulation capabilities (*) downloadable dynamic

module projects 118
 8.2 LFOCore member objects 119
 9.1 The built-in IWavetableSource C++ objects and descriptions 131
 9.2 The IWavetableSource interface 133
 9.3 WTOscillator custom parameter structure and cores: (*) downloadable

SynthLab-DM core project (*) downloadable dynamic module projects 134
 9.4 Module controls shared across cores 135
 9.5 Wavetable cores and their special modulation capabilities 135
 10.1 Number of BLEP correction points per side versus oscillator frequency 147
 10.2 VAOscillator custom parameter structure and cores: (*) downloadable

SynthLab-DM core project 151
 10.3 VAOscillator module controls 151
 11.1 The PCMSample object’s functions 163
 11.2 The IPCMSampleSource interface 165
 11.3 PCMOscillator custom parameter structure and cores: (*) downloadable

SynthLab-DM core project 167
 11.4 Module controls shared across cores 168
 12.1 High order VA filters and their sub-filter types and arrays 194
 12.2 Synth filter models and their output types, along with notes on implementation 197
 12.3 SynthFilter custom parameter structure and cores: (*) downloadable

SynthLab-DM core project 199
 12.4 The SynthFilter core GUI controls 199
 13.1 Some common instruments and their physical modeling components 208
 13.2 List of lightweight objects specifically for KS algorithms 215
 13.3 The Exciter members and brief description 216
 13.4 The Resonator members and brief description 217
 13.5 The PluckPosFilter members and brief description 218

xxiv Tables

 13.6 KSOCore member objects/variables 220
 15.1 WaveSequencer C++ objects and structures 247
 15.2 The WaveSequencer’s SynthModule overrides and descriptions 249
 15.3 The WSOscillator members and descriptions 250
 15.4 The WSOscillator’s SynthModule overrides and descriptions 250
 16.1 SynthLab projects and oscillators 258
 16.2 SynthLab oscillators and their special modulation destinations 259

This book is the complete opposite of the first edition. A main influence for this change is a docu-
mentary I watched a few years ago that involved a Canadian rock power trio and the soul search-
ing they did regarding their fourth album and its content. I followed their design pattern for my
fourth offering, in more ways than one.

In early May 2020, I sat on my couch, enjoying my Saturday morning ritual of Bugs Bunny,
coffee, and guitar practice (it was Bach’s cello suites), glad that the COVID-semester was finally
over and thinking about how I was going to change the way the synth projects would be presented
for the new book, including distribution from my website. The first edition was overblown, and
both my writing and coding styles had changed dramatically, so I wanted a different approach.
I had already assembled the bulk of the code during that spring semester. It had been through
layers of kaizen-ing over the last few years, but I had also added some newer components, like
morphing wavetables, and I had moved part of my synth class at the University of Miami into
note- sequencing rather than just the synth signal processing. A short consulting gig the previous
winter had provided me with some advance notice on a killer new synth that would make its de-
but at the 2020 National Association of Music Merchants (NAMM) show shortly thereafter, and
I had since combed through the well-written manual repeatedly, deciding to redo my LFOs to
mimic some of that synth’s features. And I simply had to create my own version of its brilliantly
imagined, independent loop, multi-lane sequencer for the book. But, as I listened to Stalling’s
“Powerhouse Theme” – of which I will never tire – and watched Bugs torment a construction
worker who was trying to exterminate him, I kept thinking that I was only making things more
complicated and difficult with my new trick LFOs and wacky looping sequencer that would also
work with morphing wavetables and fixed tables or samples. This new book needed simplicity, not
more overblown complexities; it needed to be the opposite of the first edition.

I had received an advance copy of Gabrielli’s Developing Virtual Synthesizers with VCV Rack
from my editor to use as a reference and to ensure that my book would not overlap with much of
its content (it doesn’t), and it was sitting on my coffee table. I had read the text and found myself
very jealous. Designing a synth module – a tiny part of a much larger synth structure – was much
different than designing a semi-modular software synth. I sat in my Saturday morning daydream
bliss, thinking about how cool it would be to just write modules rather than dealing with voice-
stealing, MIDI decoding, synth engines, modulation matrixes, and voice architectures. And, hav-
ing watched students struggling with large synth projects with complicated compiler setups, I
thought of how refreshingly nice it would be to work on a tiny plugin component requiring only
a handful of files that would compile almost instantly and could be immediately tested within the

Preface

xxvi Preface

context of a full synth product on Windows and MacOS alike. But I also knew from experience
that a book formatted with projects like that would be met with ire from the many engineers; po-
tential readers; and, of course, the numerous forum post authors who would disagree vehemently,
wanting to see the design of completed synths, polyphony, voice-stealing, and all the gory details.

As Bugs wrapped up his final gag, involving dynamite, blasting caps, and concrete, I had one of
those Saturday morning ideas that makes you cock your head and smile. I imagined a synth plugin
that allowed users to compile and load their own relatively tiny synth modules into it at runtime,
but not in the modular fashion, with patch cables and flashing lights. Modules for LFOs, EGs, os-
cillators, and filters, or other kinds of components and processors, could be loaded and attached
to the existing GUI controls – after all, every LFO has a frequency knob, every EG has an attack
control, and oscillators are just begging to be detuned. What if there were four assignable controls
that could map to anything the programmer desired, whose labels could be changed during the
module loading operation? And how about incorporating a dynamically filled string control that
would allow the programmer to display a set of waveform names, filter types, or other parameters
for the user? That modular option would provide readers of all levels a path to understanding
each module’s functionality, which roughly corresponds to each book chapter. You could start out
testing, modifying, and designing these small modules with only a few source files, and if you were
interested in building modules for VCV Rack® or Cherry Audio’s Voltage Modular®, you could
lift most of that code directly.

For readers who want to incorporate the synth objects into their own plugins external to any
other product, the objects need to have a stand-alone mode of operation and should not need the
rest of the synth components, or the container synth plugin that manages the small modules, to
function. And, for readers that want the whole shebang, each entire synth needs to be packaged
in a single C++ object for easy integration with the user’s chosen plugin framework. Finally, the
C++ objects and synth modules need to be framework and plugin-API agnostic, not requiring any
third-party code. Thus, I would need to write a tiny API to use for the synth modules, which would
need to be as lean and thin as possible, and, likewise, could not be platform dependent. This would
become a kind of open-architecture synth platform, and groups of programmers could convert the
skeleton synth into any kind of synth they wanted while allowing the underlying engine and voice
objects to handle the MIDI and other chores.

SynthLab™ was born that morning, and the module core API was completed by lunchtime. It
was so lean and light, the test modules compiled in a matter of seconds. And having written numer-
ous custom plugin APIs, I already knew the pitfalls to avoid, involving crossing the thunk barrier
– an imaginary line that separates a process and the DLL it loads, and over which function calls
pass their arguments. The test AU and VST plugins worked flawlessly; I now had a simple platform
to use for teaching, and users would have an open-architecture platform for experimenting with
new ideas. The book could certainly detail and expose all of the operations of the lower-level en-
gine and voice objects, and users could implement them in their own products. But the individual
chapters could focus just on these “cores” – the mini-plugins you load into SynthLab that are the
modular building blocks of all synths. There are six complete synth projects in the book and avail-
able for download. All of them have precompiled AU and VST plugins for Windows and MacOS
that you can demo and, of course, modify with your own individual module cores of all flavors.

Thanks to Hannah Rowe, my Focal Press editor, who encouraged me and helped in the premise
for the 2nd edition. In addition, I need to say thanks to all those at the University of Miami’s Frost
School of Music, who’ve both supported and entrusted me with the Music Engineering Technol-
ogy program. They include Dean Shelly Berg, Rey Sanchez, and Serona Elton, along with my

Preface xxvii

faculty colleagues Joe Abbati; Chris Bennett; Dana Salminen; and, of course, my old boss, Ken
Pohlmann. I must include gracious thanks to my colleagues at Audio Media Research, Scott Mire,
Michael Ljunggren, and José Paiz, for their encouragement and patience during the writing pro-
cess, and their thoughts on the SynthLab paradigm and what it may bring to the future of music
technology education.

As with all my books, I look forward to hearing what you’ve cooked up in SynthLab. You can
always find me at www.willpirkle.com!

Will Pirkle
October 15, 2020

http://www.willpirkle.com!

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

https://taylorandfrancis.com

SynthLab™ is the name of a set of C++ objects, structures, and functions designed to encapsulate
and implement each of the functional blocks in a software synth, or soft-synth. There are scores of
objects and structures, including abstract base classes, abstract interfaces, and all of the derived
classes that implement the SynthLab synth projects. There are multiple projects for different types
of synths, and you have access to all of the code for all of the objects and synth projects. But I’ve
gone a step further to get you playing with the code and learning SynthLab without needing to
integrate the objects into your plugin framework and then compile, debug, and test the complete
synth projects, which are more complex than the audio effect plugins in my Designing Audio Effect
Plugins in C++, 2nd ed. (I refer to this as “my FX plugin book” in this text).

The base classes and interfaces, like all of the smaller helper objects and functions, may be
accessed with just two includes: synthbase.h and synthfunctions.h, and their.cpp implementa-
tion files. You can find the C++ code and projects at www.willpirkle.com or https://github.com/
willpirkleaudio/synthlab.

In addition to the C++ code and objects that you may compile and integrate into your own
projects, you may also download the pre-compiled versions of each of the six different synths
for VST3 (Windows® and MacOS®) and AU (MacOS). These are called the SynthLab Dy-
namic Module (SynthLab-DM) projects. I designed SynthLab in a highly modular format
to include the use of “module cores” that are small, complete synth objects which implement
the soft synth building blocks. You may design, compile, and then dynamically load your own
modules into the host DM synths. This will allow you to study and learn each synth compo-
nent, modify the code, or invent your own designs, then load those modules into the synth
at runtime to debug, test, and voice. If you are interested in designing modular components
for systems like VCVRack, then these tiny synth modules represent each of those modular
building blocks – oscillators, filters, envelope generators, and the like.

In addition, all of the underlying building block objects feature a “stand-alone mode” of
operation, so you can integrate them into existing projects right away without needing to
manage entire synth projects.

1 SynthLab Introduction

http://www.willpirkle.com
https://github.com
https://github.com

2 SynthLab Introduction

1.1 What You Need to Know to Use SynthLab Objects and Projects

You will notice that there is no mention of plugin APIs in this book – AAX, AU and VST are
absent as they are covered in detail in my FX book. There is no discussion about specific plugin
frameworks – ASPiK, JUCE, IPlug2, etc. Likewise, there are no analog or DSP theory chapters,
so you will need to bring your own knowledge to the table or be willing to study it alongside this
book. There is also no “intro to MIDI” chapter. You need to know how MIDI messages work,
what a MIDI “CC” means, and the like. There are numerous books and sources available on all of
these topics. These are prerequisites for getting the most out of this text.

This book is not designed to feature any particular framework or API but rather shows how I
create software synthesizers in C++ using DSP theory and coding implementations. Most chapters
begin with theory of operation, then show the C++ objects I use to implement that theory. You will
need to download the code and study it side-by-side with the text as the book only includes very
specific C++ code: stuff that is non-intuitive or very specific to audio or synthesis. Since all of the
synth components use the same module-core paradigm and ten-control GUI implementations, the
book figures and specifications are cleaner and easier to understand. This is in stark contrast to
the book’s first edition, in which each project was vastly different in architecture and components.

If you intend to build the complete synth projects in this book, you need to have a solid grasp on
your chosen plugin framework, and you especially need to understand how to generate your own
GUIs within that framework; you will also need to understand some advanced GUI design top-
ics, such as dynamic loading of string lists (remember that you are free to pick and use individual
C++ objects and code as you like for your own synth projects). You will find that adding the synth
objects to your framework’s processing object is very straightforward, but the GUI details may
be challenging. Chapter 5 covers the details on using the module cores, designing with objects in
stand-alone-mode, and connecting the synth engines to your framework, and you can always get
more help and information from www.willpirkle.com/forum.

1.2 SynthLab Synth Projects

To demonstrate how to use and combine these objects, and how they work together, I have created
a set of synth projects based on the same fundamental architecture which only differ in their os-
cillators and waveform rendering. All synths feature monophonic, unison, and polyphonic opera-
tional modes. These projects include:

SynthLab-WT: four-oscillator wavetable synth that includes ordinary wavetable, morphing wavet-
able, and one-shot drum and sound effect (SFX) wavetable implementations; the various os-
cillators may be used in any combination

SynthLab-PCM: PCM sample playback synth with four separate PCM oscillators; this synth uses.
wav files for its PCM sample storage and retrieval

SynthLab-VA: four-oscillator virtual analog synth using virtual analog oscillators and filters
SynthLab-KS: physical modeling synth that uses the Karplus-Strong plucked string algorithm to

generate realistic acoustic and electric guitar and bass sounds
SynthLab-DX: four-operator FM synth that produces the classic Yamaha DX synth sounds
SynthLab-WS: wave sequencing synth based on the Korg Wavestate’s ® multi-lane, independent

looping wave sequencer that allows use of both normal and morphing wavetable oscillators
during the sequencing operation; the wave sequencing oscillator demonstrates how to create
an amalgam of modules encapsulated in a single object

http://www.willpirkle.com

SynthLab Introduction 3

In addition, each of these has a precompiled dynamic module (DM) version which you can
download from www.willpirkle.com/synthlab using the DM subscript/prefix: for example,
SynthLab-WSDM is the dynamic module version of the wave sequencing synth, and the dynamic
module synths are collectively referred as SynthLab-DM.

1.2.1 SynthLab Documentation

SynthLab is fully documented with the Doxygen® tool and is available to download at www.will-
pirkle.com/synthlab-docs/. This includes every C++ object, interface, structure, and function,
with every member variable and member function. You should bookmark this page and refer to it
often. Synth projects are considerably complex, and there is not enough room in the book to doc-
ument every object.

1.3 Synth Components

Most hardware and software synthesizers are designed from the same set of basic building blocks
that will be used throughout this book. Table 1.1 lists these components, their abbreviations, and
their descriptions, as applied to the SynthLab projects.

The C++ listings in this book represent the interesting, difficult, or highly synth-oriented
code that connects to the theory portions of each chapter. You will need to use the documen-
tation and review the sample project code to get the most out of this book and understand
how to select and use whichever C++ objects you like in your own plugin projects.

Table 1.1 S ynthesizer components, my abbreviations, and descriptions, as used in SynthLab

Component Abbreviation Description

Synth engine Engine The entire synth, in one object that manages a set of voices
Synth voice Voice This term is not always used the same way, but for SynthLab, it

is the object that renders each note-event; a voice contains a
collection of one or more of the components below (LFO,
EG, etc.)

Low frequency
oscillator

LFO An oscillator with frequency fo on the range of about 0.02 to 20.0
Hz, though numerous variations on these limits are allowable

Envelope generator EG Produces a unipolar control signal used to modulate other
components; it is most closely associated with the output
amplifier, where it sets the time-domain contour of the rendered
signal

Digitally
controlled amp

DCA A variable gain and panning amplifier used on the output of each
voice

Virtual analog
filter

VAFilter A synth filter designed using digital integrator replacement in
analog block diagrams

Biquad filter BQFilter A synth filter designed using the bilinear z-transform (see my FX
plugin book)

Wavetable
oscillator

WTOsc A pitched oscillator that reads data from a table or array

(Continued)

http://www.willpirkle.com
http://www.will-pirkle.com
http://www.will-pirkle.com

4 SynthLab Introduction

1.4 Basic Software Synth Architecture

In the early 1990s, the MIDI Manufacturers Association (MMA) produced a specification for a
software synth called the Down Loadable Sound (DLS) synth. You can get a copy of the Level
I (L1) specification from www.midi.org/specifications-old/item/dls-level-1-specification. This file
and the DLS Level II version are excellent sources as they define the synth architectures, GUI
controls and their limits, and the transform functions that are used to manipulate GUI and MIDI
control signals. I use some of these transforms and functions in SynthLab, so this is an excellent
and perhaps mandatory resource for you to acquire. Figure 1.1 shows how the MMA diagrams a
software synth. The LFOs and EGs are articulators that control parameters of the audio engine,
and the control logic ties everything together.

The block diagram in Figure 1.1 will render a single note, so a polyphonic synth would include
multiple sets of these blocks, one for each note that is rendered. In SynthLab, Figure 1.1 is called a
“synth voice” block diagram, and the “synth engine” is a set of these voice blocks. This is detailed
in Chapters 2 and 3, but you need to know the lingo now.

1.5 SynthLab Voice Architecture

All SynthLab projects use the same basic voice architecture, shown in Figure 1.2. Each synth has
a different quad oscillator bank, and SynthLab-WS includes the additional wave sequencer object,
but the projects are otherwise the same. Take note of the names of the components – ampEG, fil-
ter1, wtOsc3, etc. – as these are used throughout the text; being C++ member variable names, they
will be italicized. All SynthLab synth projects include the following in their voice architectures:

• Four pitched oscillators – these are named according to the oscillator type, e.g. wtOsc1 (wavet-
able oscillator 1) or fmOp1 (FM operator 1)

Component Abbreviation Description

FM operator FMOp A combination of a sinusoidal wavetable oscillator and an EG that
controls its output amplitude; FM operators are combined to
modulate each other

PCM oscillator PCMOsc A pitched oscillator that reads pre-recorded PCM data from a
table, array, or audio file

Virtual analog
oscillator

VAOsc An algorithmic oscillator that simulates the output of analog
oscillators

Karplus strong
oscillator

KSOsc Contains an exciter and one or more resonators to simulate the
behavior of plucked strings; may be modified to produce bowed
string sounds – technically not an oscillator but behaves like one
in the synth implementation

Wave sequence
oscillator

WSOsc An amalgam of four inner oscillators that generates the wave
sequences from the Korg Wavestation® and Wavestate® synths;
works in conjunction with the WaveSequencer object

Modulation matrix ModMatrix A component that connects modulation sources (LFOs and EGs)
to modulation destinations, such as filter cutoff frequency or
oscillator amplitude

Wave sequencer WS A modulation source that generates a sequence of modulation
values used to create both melodic and evolutionary sounds; may
be extended to use as a traditional step sequencer – this is based
heavily on the Korg Wavestate’s wave sequencer

http://www.midi.org

SynthLab Introduction 5

• Two LFOs (lfo1 and lfo2)
• Three EGs (ampEG, filterEG, and auxEG)
• Two virtual analog filters that may be placed in series or parallel (filter1 and filter2)
• One modulation matrix with multiple sources and destinations (modMatrix)
• One output DCA with EG control and panning function (dca)
• One ping-pong delay FX on the output
• One wave sequencer object (SynthLab-WS only)

Note that SynthLab’s audio path is fully stereo – all oscillators feature stereo outputs and the fil-
ters, DCA and delay FX process stereo signals. Each note-event is rendered through its own voice
object, so for a polyphony of 16 notes, we need 16 voices.

1.6 SynthLab C++ Implementation

Every SynthLab component is a C++ object or structure, from the top-level SynthEngine object
down to the SynthClock – a tiny modulo counter that is the time-base for most oscillators. Figure
1.3(a) shows the C++ object hierarchy – take some time to study this diagram since I use the same
paradigms throughout the text.

• Rounded corner blocks are C++ objects or structures
• Many objects contain an interface pointer to another object, shown with the familiar interface

circle-bar on the left
• Square boxes contain string lists, or non-C++ objects
• C++ objects, structures, and their member variables and methods are always italicized

Figure 1.1 T he MMA representation of a software synth includes control logic, articulation, and an audio
engine that renders the synthesized signal

6 SynthLab Introduction

Figure 1.3(a) shows how each sub-component is made of smaller components, and some of them
reveal string lists that wind up on the GUI.

• The SynthEngine contains a set of 16 SynthVoices, one for each note of polyphony
• Each SynthVoice (voice 0 is shown here) contains a set of SynthModules that encapsulate the

functionality of each row in Table 1.1
• All SynthModules except the wave sequencer, mod matrix, and DCA include four ModuleCore

objects – I will always provide at least one core per module, and some include bonus cores to
boot

• Each SynthModule exposes the names of its module cores
• Each ModuleCore object implements a variation on the module’s theme and exposes a list

of up to 16 strings for selecting core-specific parameters; for oscillators, these are waveform
string names, and for filters, they are filter types, etc.

Figure 1.2 SynthLab voice architecture includes two filters that may be processed in series or parallel, or
individually bypassed; the SynthLab-WS project also includes a wave sequencer object

SynthLab Introduction 7

The module-plus-core paradigm is not only central to the way in which SynthLab is able to gener-
ate professional results, exposing banks of waveforms or sets of filters, but also part of the way in
which it helps teach how each of the modules – which correspond to chapters in the book – operate
within the synth structure. It also allows you to focus on only one part of the project at a time, and
you are free to add your own modules so you can really personalize the synth projects without hav-
ing to build new synths from scratch. In addition, the cores demonstrate variations on the module
functionality. Examine the module cores in Figure 1.3:

• ClassicWTCore: wavetables of classic sounds, like analog and FM waveforms, as well as some
tables taken from slicing instrument samples

• MorphWTCore: wave morphing oscillator that uses banks of wavetables to crossfade-morph
• DrumWTCore: one-shot wavetables of classic electronic drums, one drum sound per voice
• FourierWTCore: demonstrates dynamic wavetable creation using Fourier synthesis

There is a bonus SFXWTCore that implements one-shot sound effects that are useful in the wave
sequencing synth.

1.6.1 Core, Module, and Mod Knob Strings

To maximize flexibility, SynthLab uses a dynamic GUI interface that allows loading string
lists and GUI labels on-the-fly. The sizes of the lists are fixed to allow proper handling of
automation and DAW state save and restore operations. You may also decide to implement
a static GUI and not use the dynamic core paradigm – that is up to you and is covered as an
option in Chapter 5. Figure 1.3(b) shows a typical GUI implementation for wtOsc1, the first
of four wavetable oscillators (C++ object named WTOscillator) in the SynthVoice object. On
the right side, there are four “mod knob” controls named A, B, C, and D which are specific to
each module core. Most cores have at least one unassigned mod knob for you to experiment
with. Examine Figure 1.3(a) and (b), and notice how the GUI controls connect to the module
and its cores:

1 The GUI exposes the module core names that the WTOscillator provides in a list for the
user – Classic WT, etc.

2 When the user selects a core, the module strings are dynamically loaded into the next control,
named “Waveform” here (or “Filter Type” for the filters, “EG Contour” for the EGs, etc.)

3 In addition, the mod knob labels (A, B, C, and D) are re-named for that particular core to
show the functionality; un-assigned knobs show only the alphabetical letter

4 Each object includes four hard-wired controls that are specific to that module: for example, in
the oscillator object, these are tuning, output, and pan controls, while for the EG object, these
are attack, decay, sustain, and release

You will see that almost all of the synth modules follow this paradigm and include exactly ten
GUI controls per module; the exceptions are the sequencer, mod matrix, and DCA, which are
either too complex to shoehorn into this format or too simple to require multiple cores and GUI
controls.

8 SynthLab Introduction

1.7 Why SynthLab Uses This Architecture

You may be wondering why SynthLab has this module-core paradigm with the dynamic strings
and mod knobs. The short answer is that it is a result of both reader comments on the first edition
of this book and, more importantly, years of teaching at the university level, where the class must
be brought up to speed in only one semester. It is not uncommon for grad students from other
universities to contact me for advice about very specific synth components – such as the virtual
analog filters or FM operators they are researching for their thesis work. SynthLab’s modules
and cores make it easy to focus on just one concept and study that in depth. In addition, you can
personalize your own components. For example, suppose you want to create your own morphing
oscillator and make your own wavetable banks. If you only want to change the waveform banks,
you can simply modify my object to supply the bank names. If you want to do the chapter home-
work problems or invent your own variation on my objects to add some interesting functionality
that you want to investigate, you can subclass the ModuleCore base class; implement the object,
name the core, and choose the names of the morphing banks that the user sees; and implement the
functionality of the free-agent mod knobs and your own added ideas.

Figure 1.3 (a) SynthLab C++ objects include the engine, voice, modules, cores, and their associated string
lists; (b) typical GUI layout for the wavetable oscillator

SynthLab Introduction 9

In addition, I usually break my classes into groups and have them each work on their own var-
iation on a specific module. I use a three-step approach to facilitate their understanding. The first
two steps are usually done as homework or a “pre-lab,” while the third is for a larger project. The
goal of the project is to implement something new and interesting, so the students must brainstorm
and research to think of new ideas.

1 First, I assign homework and projects that only involve altering my code that extends the ob-
ject in a simple but interesting manner.

2 Next, I assign a variation-object (which changes some specific behavior or functionality) or a
combination-object (which amalgamates two or more modules in an interesting or intelligent
manner) so they must subclass the base class object and work on implementing either their
own variations or completely new functionality. This is when the students really begin to un-
derstand how the theory connects to the code as they are forced to go in and dissect and debug
the existing code.

3 Finally, I assign an open-ended project that involves adding new objects or orchestrating
big-picture parts of the synth that require brand new types of components (note sequencers,
weird oscillators, and bizarre filters are some student favorites).

With SynthLab, you can start with the first wavetable synth project and design its GUI, which
takes time because there are many components and controls, then debug and implement the synth.
To move to the next project, you only need to change the oscillator-rendering core as everything
else is the same. This means you can re-use the same project and GUI over and over, and if you
implement the dynamic string loading and core selection, you only need to change a few lines of
code to generate what appears to be a completely different synth. The only project that would
require more GUI work is the wave-sequencing synth, which exposes the sequencer controls but
also hides the underlying oscillator controls, so you can make it fit into the same GUI real-estate
area as the rest.

1.8 SynthLab Object Operational Phases

In Chapter 3, you will see that all synth modules implement the same set of five functions plus the
constructor; these perform the majority of the synth operations. When these objects appear in
future chapters, I use the same paradigm for describing the C++ coding details based on the func-
tions that correspond to the six operational phases of the modules and are named in the same way.

1.8.1 Construction Phase

Each object’s constructor performs specific construction related to that module. The SynthEngine
is instantiated first and creates its set of SynthVoice members, along with the delay FX object. The
SynthVoice object creates its set of SynthModules and wires the modulation matrix. At the Synth-
Module level, the constructor creates the audio buffers used to shuttle data between objects and
creates and initializes any other member objects. It also sets up the processing structure used to
communicate with its set of cores. At the ModuleCore level, the constructor is mainly involved in
exposing the set of 16 core strings and text labels for the mod knobs.

10 SynthLab Introduction

1.8.2 Reset Phase

The reset phase usually only happens once after the DAW loads the plugin, but it will also happen
if the user changes the DAW sample rate. For synth plugins, the sample rate is usually established
only once and not changed again; however some DAWs, such as Reaper®, may implement the reset
operation many times prior to streaming audio. Therefore, each module implements a function
named reset whose only argument is the current sample rate. The details of the reset phase and
function are dependent on the object: for example, the wavetable oscillators use the reset phase to
query the wavetable database to make sure the necessary tables are available.

1.8.3 Note-On Phase

Each module and core implements a doNoteOn function that accepts the MIDI data for the par-
ticular note-event. Most modules perform some meaningful operations during note-on: for ex-
ample, the oscillators reset their internal clock objects and store the MIDI pitch of the incoming
note. The note-on phase must fully prepare the object for its operation of rendering or processing
audio data.

1.8.4 Update Phase

The update phase is one of the most important and can be the source of CPU bottlenecks. Each
module will be updated once per audio block processing cycle, as detailed in Section 2.4, and im-
plements the update function to perform these operations. The update phase consists of two parts:
updating the component state due to changes made on the GUI and updating the rendering vari-
ables based on modulation from other components. Usually, the equations are combined for both
of these parts. For example, an oscillator’s state may change because the user adjusted the coarse
tuning control, which affects the pitch. At the same time, an LFO connected to the oscillator’s
modulation input may also alter the oscillator pitch. The values of both of these are combined to
generate a single pitch shift for that audio block processing cycle. The details of pitch modulation,
which is key to almost every synth module in some fashion, are discussed in Section 6.8.1.

1.8.5 Render Phase

There are two fundamental types of synth components: those that render information (audio or
control signals) and those that process information (usually audio but may also apply to control
signals in some cases). All synth modules implement a render function that performs each module’s
functionality; clearly, there will be numerous differences based on the kind of module. Modulation
objects render their output into special arrays called modulation inputs and outputs. Pitched os-
cillators render audio into audio-only buffers. Filters and DCAs process audio input buffers and
write to audio output buffers; all of these are detailed in their corresponding chapters.

1.8.6 Note-Off Phase

Interestingly, most modules do nothing during the note-off operation, with the exception of the en-
velope generators, which play a critical role in the note-event lifecycle, as described in Section 4.1.
If nothing occurs during the note-off phase, then it is not documented in the chapter.

SynthLab Introduction 11

1.8.7 Why No Destructor Phase?

Almost all SynthLab objects and their members are instantiated dynamically and use the
std::unique_ptr or std::shared_ptr for maintenance, freeing us from worrying about calling the
delete operator and keeping track of reference counts and lifecycles. Use of these auto-deleting
pointers goes all the way down to some of the lowest-level objects. But still, there are a handful
of exceptions, such as dynamic wavetable creation that is sample-rate dependent, wherein the de-
structor has meaningful code. In many of these cases, you will likely implement your own object to
handle these operations in a way that makes sense to you, such as creating tables or reading files,
so in general, that will be your issue to deal with.

Bibliography

MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 1. https://www.midi.org/specifications-
old/item/dls-level-1-specification, Accessed October 14, 2020

MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 2. https://www.midi.org/specifications-
old/item/dls-level-2-specification, Accessed October 14, 2020

Roads, Curtis. 1996. The Computer Music Tutorial, Chap. 2. Cambridge: The MIT Press.

https://www.midi.org
https://www.midi.org
https://www.midi.org
https://www.midi.org

The synth engine implements the entire synth architecture, and SynthEngine is the single C++
object you need to add to your plugin framework’s processing object. In the example plugins de-
signed with ASPiK, this is the PluginCore C++ object; for JUCE, it is the AudioProcessor object.
Each of the synth projects is packaged in a single SynthEngine object, which is implemented in
synthengine.h and sythengine.cpp, and located in a directory with the other supporting object files.
These objects are framework agnostic, meaning they are pure C++, have no bindings to any plugin
framework, and do not require additional libraries beyond the built-in standard template libraries
included in your compiler. In Chapter 5, you will learn how to wire up the engine to render audio
and how to send GUI parameter information to it. This chapter focuses on the synth engine’s du-
ties and overall architecture.

2.1 Engine Behavior

The engine performs three tasks during the synth’s operation: (1) initialization, (2) applying GUI
control changes, and (3) rendering the synthesized audio. I designed the SynthEngine object to
expose simple functions that service these operational functions, with an interface that is not de-
pendent on any plugin framework. Your plugin framework’s processing object will create and use
the engine object – it is the sole C++ object and interface that you need to wire into your plugin.
After instantiation, the plugin will call five methods on the engine for the three engine functions,
as seen from the plugin/DAW side:

1 Initialization: the plugin calls the engine’s reset and initialize functions
2 Set GUI parameters: the plugin calls getParameters for a shared pointer to the engine’s GUI

connected parameters and setParameters to instruct the engine to update its states, causing a
trickle-down transfer of parameters using shared pointers and without data copying

3 Rendering audio: the plugin calls the engine’s render function, passing it audio buffers to fill
one a block-by-block basis

2.2 Engine Architecture

The SynthEngine objects are identical for all of the SynthLab. Each SynthEngine owns a set of
SynthVoice objects, each of which renders a single note-event for that particular synth flavor, so
there is a different SynthVoice for the FM synth, the virtual analog synth, etc. For a synth with a
polyphony of eight notes, you will need eight SynthVoice objects. You can create a multi-timbral

2 The Synth Engine

The Synth Engine 13

synth by mixing SynthVoice objects of different types. The engine mixes the audio outputs of the
active voice objects as it renders the final synth output for your framework’s processor object to
handle. The SynthEngine objects use a statically declared array of std::unique_ptrs, one for each
voice. The unique pointer object deletes the underlying resource automatically when no other ob-
ject references it and doesn’t require memory maintenance or the delete operation.

std::unique _ ptr<SynthVoice> synthVoices[MAX _ VOICES];

If you are an experienced programmer, you will want to modify the object in your own way: for
example, you could put each voice on its own thread and include another mixer-thread to mix the
outputs. Or you could dynamically control the number of voice instances based on CPU power.
For this chapter, you don’t need to think about the internal voice operation, only that you will be
creating, initializing, and calling the voice rendering function from the SynthEngine instance.

Figure 2.1 shows the SynthEngine architecture in block diagram form. The GUI, MIDI input,
and audio output connections are inside of dotted boxes – this is where your plugin framework
processor object makes its interface connections. You can see that there are three connection
points:

1 GUI information, sent to a shared voice parameter and the sole engine parameter data
structures

2 Incoming MIDI information for CCs and other common messages, collectively called “global
MIDI data”

3 Audio output rendering, delivering data from the engine to the processor object

Figure 2.2 shows the big-picture block diagram of objects and function calls. The circle-bar on the
left edge of each object represents an external function call or interface. Most objects also include
a few functions that are only used within that object. In this chapter, we focus on the SynthEngine,
its exposed functions, and their operations, shown in the bold box in Figure 2.2. In Chapter 5, you
will see details of the framework side. In the next chapter, we look at the voice, module, and core
objects.

2.3 Shared Data

Sharing data across C++ objects is a necessity for a software synth. Even a complex FX plugin
still only has one main target for the GUI controls, but in a polyphonic synth, each note-rendering
object (SynthVoice) shares the same voice GUI controls with all the others – the filter fc, oscillator
detuning, and EG settings are applied identically to each voice object. In addition, SynthLab mod-
ules are designed so that each component has full access to all incoming MIDI data, allowing you
to tailor your objects specifically for custom MIDI message processing – for example, MIDI Pol-
yphonic Expression (MPE). The wavetable and PCM sample data is generally large and likewise
must be shared across the voices to prevent redundancy and memory consumption.

2.3.1 The Singleton

If you don’t know what a singleton is, some programmers will tell you that you are better off not
knowing. The singleton is a source of heated debate among programmers. You were probably

14 The Synth Engine

taught that declaring global variables is a bad design choice; these exist through the lifetime of
the process in which they are created, even if they are created in a DLL, loaded into that process
address space, and later deleted. Essentially, a singleton is a global variable that points to a data
structure or C++ object which often acts as a database, using get/set functions to store data that
persists for the lifetime of the process. Singletons are delightfully simple to implement and use.
They are also disastrous in some cases, especially where class factories are involved. Having
been burned with singletons in the past, I avoid them unless there is no other option. This book
will not use singletons in any manner. That said, if you poke around the AAX, AU, and VST
API base classes and lower-level code, you might be interested in what you find – while eschewed
in the academic world, global variables and singletons are known for appearing in real-world
applications.

2.3.2 The Shared Pointer

The standard library’s std::shared_ptr object is designed to allow the safe sharing of resources with
lifecycle control, which deletes the underlying resource automatically when no other object refer-
ences it. Objects that use the shared pointer cannot harm the underlying data. For the SynthLab

Figure 2.1 The SynthEngine object architecture; the dotted boxes show the interface points to your plugin
framework’s processor object

Figure 2.2 Hierarchy of SynthLab objects responding to function calls from the host plugin framework
processor object

The Synth Engine 15

projects, I am using std::shared_ptrs to share engine and voice data structures across objects as
well as to share MIDI, wavetable, and PCM sample data. As thin wrappers, the shared pointers re-
quire a function call to use the underlying “naked” pointer, but that bit of overhead is outweighed
by the benefits of safe data sharing and automatic lifecycle control. Within the SynthLab objects,
there are a handful of instances in which old-fashioned (naked) pointers are used; generally, this
involves access to floating point arrays that are audio input and output buffers, dynamically cre-
ated wavetables, and ultimately connected to the plugin framework.

2.3.2.1 Shared GUI Parameters

The SynthLab architecture consists of one engine that owns a set of SynthVoice objects. Each
voice owns a set of SynthModule objects that encapsulate the synth building blocks. Each module
includes a custom data structure that is used to pass GUI control data into the object. Consider the
array of four synth voice objects stacked together in Figure 2.3(a), in which each voice consists of
the following SynthModules: LFO, EG, filter, wavetable oscillator, and DCA. Figure 2.3(c) shows
that the voice’s custom parameter structure, SynthVoiceParameters, contains a set of module pa-
rameter structures that are maintained with std::shared_ptrs, one for each module, and shown in
dotted boxes.

This means that the LFOParameter structure and its contents for the voice’s lfo1 member object
are shared across all lfo1 members and, thus, the stack of objects connected to the parameter struc-
ture box. Each of the module’s custom structures are shared across the same objects and across
all voices. In Figure 2.3(c), the engine object owns a single instance of a SynthVoiceParameter
structure, also implemented with a shared pointer that is likewise shared across all voices. In order
to force programmers to maintain this important architecture, all voice and module constructors
require shared pointers to their specific data structures. Note that this is not required when using
the objects in stand-alone mode as they will synthesize their own parameter structures.

The SynthEngine contains a shared parameter member, created during instantiation, that is
used for updating from the GUI. It is a shared pointer because the plugin framework’s processor
object will need to obtain it to update the GUI control information.

std::shared _ ptr<SynthEngineParameters> parameters =
std::make _ shared<SynthEngineParameters>();

Within the SynthEngineParameters definition, you will find the shared pointer of voice parameters:

std::shared _ ptr<SynthVoiceParameters> voiceParameters =
std::make _ shared<SynthVoiceParameters>();

When the synth engine creates the voice objects, it passes the identical shared pointer to each one
during construction.

2.3.2.2 Engine-Specific GUI Parameters

In addition to the shared voice parameters, the engine parameters also include some top-level
controls, which apply at the engine level only. The most important parameter is a strongly typed
enum that sets the synths mode: monophonic (one note at a time), unison (one note at a time, but
the note is made of layered voices) and polyphonic (multiple notes can be played simultaneously).
Operational modes are covered in Chapter 4.

16 The Synth Engine

enum class synthMode { kMono, kLegato, kUnison, kUnisonLegato, kPoly};

The other members include global controls for volume, pitch bend sensitivity, and overall instru-
ment tuning. These are mapped to their corresponding MIDI data values, and use names that
define their functionality.

2.3.2.3 Shared MIDI Input Data

The engine receives and decodes MIDI messages from your plugin framework’s processor
object, as described in Section 5.4.3. All decoded messages are then stored in two arrays of
uint32_t data types, one for the MIDI continuous controller (CC) data and the other for a se-
lected set of messages relevant to the SynthLab projects. The two sets of messages are called
MIDI CC and Global MIDI data, respectively. A third array of DAW data, comprising BPM
and time signature information, is included, though it is not specifically MIDI and is called
“aux DAW data.” This is likewise shared with the modules. A simple C++ class named MI-
DIInputData manages the three arrays and allows for read-only access to incoming data
for all synth modules, simplifying MIDI modulation calculations and allowing for MPE.

Figure 2.3 (a) The engine owns a stack of voice objects (four in this example but 16 in the SynthLab projects),
each of which includes an identical set of LFO, filter, EG, oscillator, and DCA objects; (b) the en-
gine owns a voice parameter structure that is shared across these voices; and (c) the shared voice
parameters structure consists of a set of shared module parameter structures

The Synth Engine 17

This class is derived from IMIDIInputData that allows module core objects to access the
data. The SynthEngine contains a single member, created during instantiation, that is used
for sharing the MIDI input data:

std::shared _ ptr<MidiInputData> midiInputData =
std::make _ shared<MidiInputData>();

When the synth engine creates the voice objects, it passes each one the identical shared pointer
during construction.

The engine is set up to allow for the generation of MIDI output data for MIDI effects, but
this is not implemented for the SynthLab projects as it is unnecessary for their operation. On
occasion, you will see midiOutputData variables in the code, but they are only there if you want
to get into MIDI effect programming, which is outside the scope of the synth signal processing
presented here.

2.3.2.4 Shared Wavetable and PCM Sample Data

The wavetable and PCM sample data is shared across the voices, as are their modules using shared
pointers. The WavetableDatabase and PCMSampleDatabase objects maintain the data for the
wavetable and PCM sample oscillators. You will notice that the engine, voice, and MIDI input
data shared pointers are all created with std::make_shared right in the synthengine.h file and are
generated during instantiation but before the constructor function is executed. The engine is the
original creator and owner of this data. To provide maximum flexibility in the modules and their
cores, the wavetable and PCM sample databases are created empty, lacking content of any kind.
The wavetable and PCM sample oscillators bring their own data, either creating it at construction
time or reading from compiled data arrays or .wav files included with the plugin. The module chap-
ters contain details about the databases and their interfaces.

As the wavetable and PCM sample oscillators are instantiated, each will query the corre-
sponding database to see if the required tables or sample arrays exist. If not, the oscillator
object will create them and add them to the database. This means that the very first wavetable
oscillator of a given core type will create and register its tables with the database. All subse-
quent wavetable oscillator cores will find the data and will not need to create it. The same par-
adigm holds true for PCM sample oscillators that use .wav files to package their multi-sample
sets such that the files are only accessed once. The engine’s members are therefore declared
with nullptr:

// --- shared tables
std::shared _ ptr<WavetableDatabase> wavetableDatabase = nullptr;

// --- shared samples
std::shared _ ptr<PCMSampleDatabase> sampleDatabase = nullptr;

Then, in the engine’s constructor, the empty databases are generated and passed to the voice ob-
jects during construction, which, in turn, construct their modules passing in the shared database
pointers. You can see how the shared pointers trickle down from engine to voices, and then from
voices to modules, each during construction.

18 The Synth Engine

2.4 SynthEngine Constructor

We can put all of this information together by examining the SynthEngine’s constructor which
does the following set of tasks:

1 Initialize some of the MIDI global and CC data to values that will prevent the synth from
starting up without audio: for example, MIDI CC7 (volume) is set to the maximum value 127,
while MIDI CC10 (pan) is set to the center value 64; the code below is a partial listing as there
are numerous other defaults to make

// --- volume/pan prevent accidental silence, pan
midiInputData->setCCMIDIData(VOLUME _ CC07, 127); // --- MIDI VOLUME max
midiInputData->setCCMIDIData(PAN _ CC10, 64); // --- MIDI PAN center

2 Create the wavetable and PCM sample database shared pointers

// --- these databases are empty at this point
if (!wavetableDatabase)

wavetableDatabase = std::make _ shared<WavetableDatabase>();

if (!sampleDatabase)
sampleDatabase = std::make _ shared<PCMSampleDatabase>();

3 Create the set of voice objects that will render audio, passing MIDI; notice the unused midi-
OutputData (also a shared pointer) and the blockSize parameter which we will investigate next

// --- create the voices
for (unsigned int i = 0; i < MAX _ VOICES; i++)
{

// --- reset is the constructor for this kind of smartpointer
//
synthVoices[i].reset(new SynthVoice(midiInputData,

midiOutputData, /* unused */
parameters->voiceParameters,
wavetableDatabase,
sampleDatabase,
blockSize));

}

The last line of code sets up a special structure for rendering from the voice and is discussed in
Section 2.4.4.

// --- voice render
voiceProcessInfo.init(NUM _ INPUT _ CHANNELS,

NUM _ OUTPUT _ CHANNELS,
blockSize);

2.5 Audio and MIDI Block Rendering

The engine is also responsible for accepting incoming MIDI data and rendering the final output
signal. All plugin frameworks, like ASPiK, JUCE, and iPlug2, ultimately process and render audio

The Synth Engine 19

in blocks named “audio I/O buffers” here. This is covered in detail in the second edition FX book.
In addition, the frameworks gather incoming MIDI messages that are queued and time-stamped to
align in a sample-accurate manner with the audio data. This package of information in applied to
the processor object’s audio processing or rendering function. For some synth APIs, like VCV Rack,
the processing must be done on a sample-by-sample basis in which processing occurs on each sample
interval. If you are rendering stereo audio, there are two samples to render on each sample interval.

In SynthLab, audio is rendered in blocks with a preferred size of 64 stereo samples at a time;
this is the designated default blockSize variable you see in the SynthVoice construction in Section
2.2.2.4. A stereo sample means one sample each for the left and right channels, and the blockSize
value indicates the number of stereo samples. When you instantiate the engine in your framework,
you send it the default block size; you thus have the ability to change this value, but there is a rea-
son for the preferred size of 64 samples/channel. All plugin frameworks deliver audio samples in
independent left and right data buffers, and SynthLab expects you to render into individual buff-
ers as well. The SynthLab projects are set up with the ability to accept incoming audio data that
you may process through filters or use as a side-chain, vocoder, or other control generator. The
stock SynthLab projects only render audio, so we will only be discussing the audio output buffers.

Incoming MIDI data is also applied in the same block fashion, with all MIDI messages sent to
the engine via a std::vector of midiEvent objects. However, as with many commercially available
synth products, the MIDI messages are serviced all at once, before the audio block is rendered.
This means that they are not sample-accurate and are part of a SynthLab scheme to granulize
MIDI data and internal modulator signals over blocks of data that generate a massive increase
in efficiency and a lowered CPU usage. The tradeoff in efficiency is well worth the loss of perfect
sample accuracy between MIDI and audio, and follows a law of diminishing returns – as the block
size becomes larger, the savings flatten out.

The amount of MIDI “slop” in the system is a function of the block size since all messages will
be processed first, placing a maximum error in MIDI event timing that is equal to the block size
multiplied by the sample interval. At 44.1 kHz, 64 samples of MIDI slop will equate to a worst-case
time offset error of 1.4 mSec, and the performer will not notice this slight latency in playing keys or
using MIDI controllers. You may also up the block size to 128 samples and experiment with your
own tactile limits. However, if you demand perfect sample accuracy, set the blockSize variable to
one (1) during engine construction; just be prepared to pay the price in CPU usage.

2.5.1 The AudioBuffer Object

The AudioBuffer object plays several roles in SynthLab and is used not only for moving audio data
between your processor object and the engine but also within the synth modules themselves as the
voice renders them, in turn. The AudioBuffer object is designed with plugin frameworks and native
APIs in mind; the input and output buffers are independent per channel and passed float** param-
eters that are compatible with all plugin APIs and frameworks that process channel buffers (i.e.
everything but VCV Rack). In addition, it includes members that store channel counts, maximum
block size, and current block size if a partial block needs rendering, which may happen. Details for
preparing the buffers can be found in Chapter 5.

2.5.2 The midiEvent Structure

The midiEvent structure contains the raw MIDI data that has been converted from BYTE to uint32_t
in your framework. The sample-offset value is transmitted, but it is ignored during block processing.

20 The Synth Engine

uint32 _ t midiMessage = 0; //< BYTE message as uint32 _ t
uint32 _ t midiChannel = 0; //< BYTE channel as uint32 _ t
uint32 _ t midiData1 = 0; //< BYTE data 1 as uint32 _ t
uint32 _ t midiData2 = 0; //< BYTE data 2 as uint32 _ t
uint32 _ t midiSampleOffset = 0; //< sample offset

2.5.3 The SynthProcessInfo Object

Your plugin framework’s processor object prepares a SynthProcessInfo object that is passed to the
engine on each block processing cycle. The object inherits from AudioBuffer and therefore includes
the protected members and methods mentioned in Section 2.3.1. The object includes a member
vector of midiEvents to be decoded for the render operation. The engine’s render function uses this
information for MIDI and for rendering audio. The framework duties are discussed in Chapter 5.

2.6 SynthEngine Operational Phases

We discussed the engine constructor in Section 2.2.2.4. The SynthEngine does not have a base class
but is set up with virtual functions and a virtual destructor so that you may use it as a base class,
overriding its behavior with your own functions and allowing you maximum freedom in imple-
menting your own ideas. Aside from a few functions dedicated to voice-stealing and polyphony,
discussed in Chapter 4, there are only five functions to deal with, and two of them are trivial. Let’s
examine the guts of each method and discuss its role in engine functionality.

2.6.1 SynthEngine Reset and Initialization

The engine initialization phase is shown in Figure 2.4(a), and your plugin framework only needs
to make five function calls to the engine for operation. The first two are initialize and reset. Your
framework will call the engine’s reset function whenever the sample rate is established or changed
for the plugin. In many DAWs, this will be called only once. The reset function for the SynthEngine
is trivial in that it simply forwards the reset call to its array of SynthVoice objects and FX module.

bool SynthEngine::reset(double _ sampleRate)
{

// --- reset array of voices
for (unsigned int i = 0; i < MAX _ VOICES; i++)
{

// --- reset them
synthVoices[i]->reset(_ sampleRate);

}
// --- FX
pingPongDelay->reset(_ sampleRate);
return true;

}

The SynthLab-PCM project uses .wav files to load PCM sample data. For the precompiled and
ASPiK versions, these files are located in a folder in the same directory as the plugin component
or DLL. You have the freedom to move this location as you see fit. The initialize function is used to

The Synth Engine 21

forward the path to your DLL’s container directory to the voice objects for use in parsing the PCM
samples. The PCM database objects assume that the PCM sample folder is in a subfolder of this di-
rectory. Your plugin framework or your personal plugin project needs to know the folder name at
instantiation time, so if you want to change this path, just make sure it is in a directory with an es-
tablished location. The initialize function simply forwards this path to the member voices. A const
char* is used for maximum flexibility across frameworks and APIs, and to allow dynamic core
loading across a thunk barrier. See the documentation for more information on the DLL path.

bool SynthEngine::initialize(const char* dllPath)
{

// --- loop and init
for (unsigned int i = 0; i < MAX _ VOICES; i++)
{

// --- init
synthVoices[i]->initialize(dllPath);

}
return true;

}

2.6.2 Setting SynthEngine Parameters

Your plugin framework will take GUI control information and send it to the SynthEngine via the
getParameters and setParameters method that uses a shared pointer to shuttle parameters to the
voice objects and engine-specific components. This is shown in Figure 6.4(b) and occurs at the top
of the buffer processing cycle.

void setParameters(std::shared _ ptr<SynthEngineParameters>& _ parameters)

The framework side of the code is discussed in Chapter 5. The engine parameters allow the Syn-
thEngine GUI to expose the following controls (this is your decision, and they may be omitted):

• Global volume control
• Global pitch bend sensitivity, coarse and fine adjustments
• Global tuning, coarse and fine adjustments (as with analog synths)

These parameters may be sent directly to the engine, voice, and oscillator objects, but I have set
them up to be converted into the appropriate MIDI data values. The MIDI specification includes
data variables for all of these items and is detailed at www.somascape.org/midi/tech/spec.htm-
l#usx7F0401 (note that the MIDI spec uses the term “master” where I use the term “global”). The
MIDI data values are written to the globalMIDIData array and require massaging to be converted
from 7-bit MSB/LSB into uint32_t values.

The setParameters function performs three operations for the engine:

1 Set up the global MIDI data with information from the global parameters for volume, pitch
bend, and tuning; some code is straightforward, such as the pitch bend range (sensitivity),
while others require work; remember that this is optional, and you may remove it if you like.

http://www.somascape.org
http://www.somascape.org

22 The Synth Engine

// --- pitch bend range in midi data table; for a released synth, you
// want to decode this as SYSEX as well
// --- sensitivity is in semitones (0 -> 127) and cents (0 -> 127)
uint32 _ t pbCoarse = parameters->globalPitchBendSensCoarse;
boundMIDIValueByte(pbCoarse);

unsigned int pbFine = parameters->globalPitchBendSensFine;
boundMIDIValueByte(pbFine);

midiInputData->setGlobalMIDIData(kMIDIMasterPBSensCoarse, pbCoarse);
midiInputData->setGlobalMIDIData(kMIDIMasterPBSensFine, pbFine);

2 Call the update function on the voices one at a time; this is only required for changing module
cores, as described in Chapter 5, and requires little overhead; no calculations are performed.

3 If unison mode is chosen, this function also sets the unison voices’ detuning and panning pa-
rameters; this is also discussed in Chapter 5.

2.6.3 SynthEngine Render Operation

The plugin framework’s processor object will call the render function once per data block during
its own audio processing function. The render operation consists of three phases:

Figure 2.4 SynthEngine operation consists of three phases: (a) initialization, (b) GUI updates, and (c) audio
rendering

The Synth Engine 23

1 Update the engine’s GUI parameters with calls to getParameters and setParameters that use
shared pointers for setting parameters, as shown in Figure 2.4(b)

2 Prepare a SynthProcessInfo structure with the incoming MIDI data and pointers to audio
buffers for rendering

3 Enter a block processing loop that sends the SynthProcessInfo structure into the engine repeat-
edly, using MIDI data and audio buffer pointers for each blockSize; if the last buffer is smaller
than blockSize, just call the render function, and set the current blockSize value, as shown in
Figure 2.4(c)

This function processes the incoming MIDI using the processMIDIEvent function and then calls
the voice render methods.

2.6.4 SynthEngine MIDI Processing

All MIDI messages are decoded at the top of the block processing cycle in the function processMI-
DIEvent that is called once for each incoming MIDI event. This function is split into three parts,
as shown in Figure 2.5: one part decodes and stores all MIDI CC messages in the CC database,
another stores global non-note messages, while the third handles MIDI note-on and note-off mes-
sages only. The engine is set up to respond to all MIDI channels, which you can change easily since
this function is the primary MIDI receiver.

The top portion of the processMIDIEvent function that decodes note-on and -off events is key to
the mono/unison/polyphonic operation and is covered in Chapter 4.

bool SynthEngine::processMIDIEvent(midiEvent& event)
{

if (event.midiMessage == NOTE _ ON)
//
// --- ALL NOTE ON/NOTE OFF MESSAGES
//
// --- Covered in Chapter 4

The second part deals with the MIDI CC messages. You can easily modify this function to add
more data to the global MIDI data array. For the pitch bend message, the LSB and MSB are placed

Figure 2.5 SynthEngine MIDI processing

24 The Synth Engine

into the globalMIDIData array using the set function call; for the CC messages, the data is simply
stored as-is in uint32_t format.

// --- store the data in our arrays
if (event.midiMessage == PITCH _ BEND)
{

midiInputData->setGlobalMIDIData(kMIDIPitchBendDataLSB,
event.midiData1);

midiInputData->setGlobalMIDIData(kMIDIPitchBendDataMSB,
event.midiData2);

}

if (event.midiMessage == CONTROL _ CHANGE)
{

// --- store CC event in globally shared array
midiInputData->setCCMIDIData(event.midiData1, event.midiData2);

}

After that, you may add code to store any other MIDI input data you wish to include, such as tun-
ing, pitch bend, and global volume/pan messages. These are implemented on the SynthLab GUI
and stored as their MIDI counterpart data.

2.6.5 SynthEngine Audio Synthesis

The engine calls the voice’s render function repeatedly, as shown in Figure 2.3(c). The Syn-
thVoice::render function takes the same kind of argument as the engine – a SynthProcessInfo
structure – but it is an engine member object and has been prepared in advance. The last line of
code in the engine’s constructor from Section 2.2.2.4 is:

// --- for voice objects
voiceProcessInfo.init(NUM _ INPUT _ CHANNELS,

NUM _ OUTPUT _ CHANNELS,
blockSize);

This function sets up the AudioBuffer’s input and output arrays using the arguments as channel
counts. The parameters NUM_INPUT_CHANNELS = 0 NUM_OUTPUT_CHANNELS = 1
set up no audio input buffer and two output buffers, one for each stereo channel. The blockSize
parameter sets the maximum size of these buffers. Let’s step through the render function:

bool SynthEngine::render(SynthProcessInfo& synthProcessInfo)

First, a call is made to flush the output buffers in the incoming synthProcessInfo object as they may
contain old data; it is not uncommon for plugin frameworks and APIs to leave old data in these arrays.

// --- clear out
synthProcessInfo.flushBuffers();

Next, all of the MIDI events in the vector are serviced using the member function:

The Synth Engine 25

// --- issue MIDI events for this block
uint32 _ t midiEvents = synthProcessInfo.getMidiEventCount();
for (uint32 _ t i = 0; i < midiEvents; i++)
{

// --- get the event
midiEvent event = *synthProcessInfo.getMidiEvent(i);
// --- process it
processMIDIEvent(event);

}

Next, we set up for the render operation. When summing many voices (notes) together, the synth
may overload the output, so this chunk of code sets a scaling factor for each voice depending on
the mode; this is further discussed in Chapter 4.

double gainFactor = 1.0;
if (parameters->mode != synthMode::kUnison)

gainFactor = 0.5;

Next, the midiInputData and voiceProcessInfo objects are refined with data for the current block;
note the use of getSamplesInBlock to determine how many of the maximum blockSize samples
need to be rendered. Also, notice how the DAW information is transferred into the MIDI aux-
DAWData array; this makes it instantly available to every component.

// --- important
voiceProcessInfo.setSamplesInBlock(

synthProcessInfo.getSamplesInBlock());

midiInputData->setAuxDAWData(kBPM, synthProcessInfo.BPM);
midiInputData->setAuxDAWData(kTSNumerator, etc…
midiInputData->setAuxDAWData(kTSDenominator, etc…
midiInputData->setAuxDAWData(kAbsBufferTime, etc…

Lastly, the engine loops over the voices calling the render function on each of the active voices.
A voice state is set to active only if the voice is currently processing a note-event. A helper function
is used to accumulate the voice output buffers together (the audio mixer operation). The final ap-
plication of global volume and delay FX is covered in Section 16.4.

// --- loop through voices and render/accumulate them
for (unsigned int i = 0; i < MAX _ VOICES; i++)
{

// --- blend active voices
if (synthVoices[i]->isVoiceActive())
{

// --- render and accumulate
synthVoices[i]->render(voiceProcessInfo);
accumulateVoice(synthProcessInfo, gainFactor);

}
}

26 The Synth Engine

Bibliography

MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 1. https://www.midi.org/specifications-
old/item/dls-level-1-specification, Accessed October 14, 2020

MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 2. https://www.midi.org/specifications-
old/item/dls-level-2-specification, Accessed October 14, 2020

somascape.org. 2019. Guide to the MIDISoftware Specification. http://www.somascape.org/midi/tech/spec.
html#usx7F0401, Accessed October 14, 2020

SynthLab Documentation. 2020. www.willpirkle.com/synthlab-docs, Accessed on October 14, 2020

https://www.midi.org
https://www.midi.org
https://www.midi.org
https://www.midi.org
http://somascape.org
http://www.somascape.org
http://www.somascape.org
http://www.willpirkle.com

The SynthLab SynthVoice object is responsible for rendering note-events, and there is one voice
object per note of polyphony in the synths. As with the engine, the SynthVoice object has no base
class but is set up to be a base class with the virtual functions and destructor, so feel free to subclass
your own when you are ready. The term “voice” has several meanings in synth lingo, but here, it
also includes the synth type. The voice architecture is covered in Section 1.5.

3.1 Voice Behavior

The voice performs three tasks during the synth’s operation: (1) initialization, (2) responding to
MIDI note-on and note-off messages, and (3) controlling the audio signal flow through a set of
member objects called modules. The voice object’s central responsibility is maintaining the set
of SynthModule objects that make up the synthesizer components, such as oscillators and filters.
I designed the SynthVoice object to expose simple functions that service these three areas of oper-
ation. The voice object also processes incoming MIDI data for note-on and note-off events, which
it uses to control its set of modules.

1 Initialization: the voice calls the module’s reset function
2 Note-on and note-off: the voice calls the doNoteOn and doNoteOff methods on its set of modules
3 Controlling audio signal flow: the voice calls the module’s update and render functions during

each block processing cycle and delivers the rendered audio back to the engine

Figure 3.1 shows the big-picture block diagram and connection from the engine to the voice to an
individual module. This chapter focuses on the blocks in bold: voice, module, and core.

3.2 SynthVoice Modules

The SynthLab-DX and SynthLab-PCM synths only differ in their SynthVoice objects – everything
else is identical. Furthermore, the only thing that differentiates the FM voice from the PCM voice
is the set of oscillators used to render the signal. This means that the code for the voice objects is
about 95% similar. Each SynthVoice object owns a set of objects subclassed from SynthModule.
Each module is a synth building block and can be grouped into modulators, oscillators, proces-
sors, and controllers, as shown in Figure 3.2. The voice object also needs to update these modules
with new GUI control information once per buffer process cycle. A voice is a collection of these
objects, plus all the code needed to manage them.

3 Synth Voices, Synth Modules, and
Module Cores

28 Synth Voices, Synth Modules, & Module Cores

3.3 SynthVoice Parameters

The SynthVoiceParameters structure contains all of the GUI information for programming the
voice object and all of the controls for all of the modules in Figure 3.1, plus the additional pa-
rameters for the chosen oscillators. All of these are implemented with shared pointers within the
SynthVoiceParameters structure.

The engine object creates the global SynthVoiceParameters during its construction, and all of
the shared pointers and parameter structures for each of the voice’s modules are also created since
they are members of the voice parameter structure. The top part of the declaration is for voice
parameters whose names indicate their target functionality.

Next, each parameter structure is declared with make_shared, thereby constructing each under-
lying structure and generating the safe pointer, in a series of declarations. This is the underlying
mechanism that allows both the voice object and its modules to share common parameters exclu-
sive to each of them. These structures are where you will place the GUI control information, as
described in Chapter 5.

Figure 3.1 F low of function calls from host plugin framework processing object to the SynthEngine, then to
the voices, modules, and their cores

Figure 3.2 S ynthLab modules each implement one synth building block; all are subclassed from SynthMod-
ule; note that the normal and morphing wavetable oscillators are combined (dotted box) and may
be mixed freely

Synth Voices, Synth Modules, & Module Cores 29

// --- LFOs
std::shared _ ptr<LFOParameters> lfo1Parameters =

std::make _ shared<LFOParameters>();
std::shared _ ptr<LFOParameters> lfo2Parameters =

std::make _ shared<LFOParameters>();

// --- EGs
std::shared _ ptr<EGParameters> ampEGParameters =

std::make _ shared<EGParameters>();
std::shared _ ptr<EGParameters> filterEGParameters =

std::make _ shared<EGParameters>();
// --- etc . . .

3.4 SynthModule Members

Each voice’s member modules are exclusive to that voice and are not shared with other objects. The
modules are all maintained with an std::unique_ptr and are declared in the class definition, then
constructed in the SynthVoice constructor. Table 3.1 lists the modules that are identical across all
voices – of course, you may add, remove, or change the modules for your own designs.

The declarations are simple:

// --- modules common to all voices:
std::unique _ ptr<DCA> dca;
std::unique _ ptr<AnalogEG> ampEG;
std::unique _ ptr<SynthLFO> lfo1;
std::unique _ ptr<SynthFilter> filter1;
etc . . .

The SynthVoice members include shared pointers to the MIDI input, wavetable, and PCM sample
databases in Section 2.3. These are declared along with the modules, then populated during the
voice constructor.

std::shared _ ptr<MidiInputData> midiInputData = nullptr;
std::shared _ ptr<WavetableDatabase> wavetableDatabase = nullptr;
std::shared _ ptr<PCMSampleDatabase> sampleDatabase = nullptr;

Table 3.1 SynthVoice modules that are identical across all synth projects

Module Object Name SynthVoice std::unique_ptr< > Notes

DCA dca Output only DCA
AnalogEG ampEG; Hardwired to DCA
AnalogEG filterEG; Hardwired to filter 1
AnalogEG auxEG Assignable EG modulator
SynthLFO lfo1 LFO1 may modulate LFO2
SynthLFO lfo2 General purpose LFO
SynthFilter filter1 18 different filters, plus bypass
SynthFilter filter2 18 different filters, plus bypass
ModMatrix modMatrix Modulation matrix object
WaveSequencere waveSequencer Generates modulation values only; specific to

SynthLab-WS

30 Synth Voices, Synth Modules, & Module Cores

3.5 SynthVoice Construction

The voice object must create all of its modules and pass them the MIDI input, wavetable, and
PCM sample database pointers at construction time. The SynthVoice constructor prototype is
shown here; the midiOutputData is not used but is available for your own experimentation. Notice
the maximum block-size parameter – this is needed for the modules to create their audio output
buffers at that maximum size.

SynthVoice(std::shared _ ptr<MidiInputData> _ midiInputData,
const std::shared _ ptr<MidiOutputData> _ midiOutputData,
std::shared _ ptr<SynthVoiceParameters> _ parameters,
std::shared _ ptr<WavetableDatabase> _ wavetableDatabase,
std::shared _ ptr<PCMSampleDatabase> _ sampleDatabase,
uint32 _ t _ blockSize = 64);

During construction, the voice object needs to do the following:

1 Create all sub-modules using std::unique_ptr and its reset function, passing in the shared mod-
ule parameter structures from its voice parameters structure

2 Add sources and destinations to the modulation matrix (covered in detail in Chapter 14)

The module creation follows the same paradigm – each module receives a shared pointer to a
structure within the voice’s shared parameters for GUI updates. The wavetable and PCM sample
oscillators are also given database pointers; the database details and usage are explained in each
oscillator chapter, as are the constructor prototypes, but they are all fundamentally similar. Here
is the construction of a few of the modules: it is easy to see where the shared parameters and data-
bases are part of each constructor; the modulation matrix object only requires the shared parame-
ters. Stand-alone mode construction is generally simpler and is covered in Section 5.3.1.
LFO:

lfo1.reset(new SynthLFO(midiInputData, /* shared midi data */
parameters->lfo1Parameters, /* shared parameters */
blockSize)); /* max blocksize */

Filter:

filter1.reset(new SynthFilter(midiInputData, /* shared midi data */
parameters->filter1Parameters, /* shared parameters */
blockSize));

Wavetable Oscillator:

wtOsc.reset(new WTOscillator(midiInputData, /* shared midi data */
parameters->wtOscParameters, /* shared parameters */
wavetableDatabase, /* shared wavetables */
blockSize));

PCM Sample Oscillator:

pcmOsc.reset(new PCMOscillator(midiInputData, /* shared midi data */
parameters->pcmOscParameters, /* shared parameters */

Synth Voices, Synth Modules, & Module Cores 31

sampleDatabase, /* shared PCM data */
blockSize));

Modulation Matrix:

modMatrix.reset(new ModMatrix(parameters->modMatrixParameters));

3.6 SynthVoice Operational Phases

You can see from Figure 3.1 that the voice and module object share nearly identical member func-
tions, and many of the voice functions simply call the same named functions on the modules.

3.6.1 SynthVoice Reset

This function calls the reset functions on all of its modules. It also sets the currentMIDINote flag
to −1, indicating that no notes are playing. This will be used for polyphony and voice-stealing in
the next chapter. We will look into each reset function in the corresponding module chapters.

pcmOsc->reset(_ sampleRate);
dca->reset(_ sampleRate);

lfo1->reset(_ sampleRate);
lfo2->reset(_ sampleRate);

ampEG->reset(_ sampleRate);
filterEG->reset(_ sampleRate);
auxEG->reset(_ sampleRate);

filter1->reset(_ sampleRate);
filter2->reset(_ sampleRate);

etc…

3.6.2 SynthVoice Update

The update function is called after the GUI parameters have been set on the engine. For the Synth-
Voice, this only consists of swapping module cores in or out, as described in Section 3.7, when the
user selects them from the GUI. The modules are identified with index values that you use in your
GUI’s control so they are not related to any framework.

3.6.3 SynthVoice doNoteOn and doNoteOff

The voice’s processMIDIEvent function is called repeatedly at the top of each processing block to
service all MIDI messages for that audio block. This function only looks for note-on and note-
off messages, then calls the voice’s corresponding functions that accept midiEvents as arguments
(see Section 2.3.2). These methods perform two main functions: calling the note-on or note-off
message on all of the sub modules, and setting a state variable so the voice knows its state, which
is used for voice-stealing.

32 Synth Voices, Synth Modules, & Module Cores

enum class voiceState { kNoteOnState, kNoteOffState };

SynthVoice::doNoteOn(midiEvent& event)

The note-on function is a bit more complex as it involves portamento, which uses the GlideModu-
lator object described in Section 6.7.1. Each SynthModule has its own pre-defined glide modulator
member object. The MIDI note number is converted to a pitch and stored as the current note,
and the previous note is recalled. If portamento is enabled in the voice parameters (which would
have come from a GUI control), the note information and glide time are used to start the glide
modulator.

// --- calculate MIDI -> pitch value
double midiPitch = midiNoteNumberToOscFrequency(event.midiData1);
int32 _ t lastMIDINote = currentMIDINote;
currentMIDINote = (int32 _ t)event.midiData1;

GlideInfo glideInfo(lastMIDINote, currentMIDINote,
parameters->glideTime _ mSec, sampleRate);

if (parameters->enablePortamento && lastMIDINote >= 0)
{

xxxOsc1->startGlideModulation(glideInfo);
xxxOsc2->startGlideModulation(glideInfo);
xxxOsc3->startGlideModulation(glideInfo);
xxxOsc4->startGlideModulation(glideInfo);

}

Next, the series of note-on message handlers is called, and the state variable and voiceIsRunning
members are set.

MIDINoteEvent noteEvent(midiPitch, event.midiData1, event.midiData2);

// --- start oscillators
vaOsc1->doNoteOn(noteEvent);
vaOsc1->doNoteOn(noteEvent);
vaOsc3->doNoteOn(noteEvent);
vaOsc4->doNoteOn(noteEvent);

// --- modulators/processors
dca->doNoteOn(noteEvent);
ampEG->doNoteOn(noteEvent);
filterEG->doNoteOn(noteEvent);
etc…

// --- set the flag
voiceIsRunning = true; // --- we are alive!
voiceNoteState = voiceState::kNoteOnState;

Synth Voices, Synth Modules, & Module Cores 33

The note-off handler is simpler, merely calling the module functions and saving the state variable.

SynthVoice::doNoteOff(midiEvent& event)

// --- lookup MIDI -> pitch value
double midiPitch = midiFreqTable[event.midiData1];

MIDINoteEvent noteEvent(midiPitch, event.midiData1, event.midiData2);

ampEG->doNoteOff(noteEvent);
filterEG->doNoteOff(noteEvent);

etc…

// --- set our current state
voiceNoteState = voiceState::kNoteOffState;

3.6.4 SynthVoice Render

The rendering function in the SynthVoice is quite simple as the modules do the hard work. The
function accepts the SynthProcessInfo structure that the engine sends in and uses the samplesTo-
Process during the calls to the sub-modules.

SynthVoice::render(SynthProcessInfo& synthProcessInfo)

The function follows this pattern:

1 Call a render on all modulator member modules
2 Run the modulation matrix to transfer modulator sources to destinations (see Chapter 14)
3 Process the audio from the oscillators through the filters and DCA, managing the flow of au-

dio buffers; this is somewhat dependent on the voice type

Each module’s render function makes a call to the core’s update method first. The update functions
will set the modulator’s parameters for the current block, then each modulator will generate one out-
put value for the block during the render operation. The modulation matrix applies the modulator
values to the destinations. This chain of update/render is identical across all SynthLab voice objects.

// --- render modulators
lfo1->render(samplesToProcess);
lfo2->render(samplesToProcess);

ampEG->render(samplesToProcess);
filterEG->render(samplesToProcess);
auxEG->render(samplesToProcess);

// --- do all mods
modMatrix->runModMatrix();

34 Synth Voices, Synth Modules, & Module Cores

Next, the oscillators are rendered; this will depend on the voice type. We will look at this process
for each synth project in Chapter 16. It is more important to understand how the audio is trans-
ferred from the oscillators to the filters to the output DCA. All processes are done with helper
functions that perform fast memcpy operations on the audio buffers, transferring blocks of au-
dio data down the signal path. These are named copyOutputToInput and copyOutputToOutput,
and take buffer pointers, samples to copy, and a channel indicator (mono to mono, stereo to
stereo, etc.).

Here are some examples:

1 Render and transfer audio from the virtual analog oscillator (vaOsc) output into the filter1
input:

vaOsc->render(samplesToProcess);

copyOutputToInput(vaOsc->getAudioBuffers(), /* source */
filter1->getAudioBuffers(), /* destination */
STEREO _ TO _ STEREO, /* channel info */
samplesToProcess); /* samples to copy */

2 Run filter1, and copy its output to the input of dca:

filter1->render(samplesToProcess);

copyOutputToInput(filter1->getAudioBuffers(), /* source */
dca->getAudioBuffers(), /* destination */
STEREO _ TO _ STEREO,
samplesToProcess);

3 Run the dca, and copy its output to the output buffers, which the engine passed to the voice
when the render was called – note that the copyOutputToInput function includes multiple ver-
sions that accept different types of input pointers so they are simple to use

// --- update and render
dca->render(samplesToProcess);

// --- copy to mains out
copyOutputToOutput(dca->getAudioBuffers(), /* source */

synthProcessInfo, /* NOTE: destination! */
STEREO _ TO _ STEREO,
samplesToProcess);

The MIDI note-on message places the voice into its active state, notifying the engine to call
its render operation. The MIDI note-off message places the voice into the note-off state, but
the voice does not fully finish operations until the output EG that is connected to the output
amplifier has finished its release state and expired into the off state. At this point, the voice
may be shut down.

Synth Voices, Synth Modules, & Module Cores 35

The very last part of the render function is also one of the most important – checking for the note-
off state and an expired ampEG object. This will be covered in detail in Chapter 4.

3.7 SynthModules and ModuleCores

The module-core paradigm is fundamental to SynthLab. Each module is subclassed from the Syn-
thModule base class, and each implements the same set of overridden base class functions which
correspond nearly identically with the voice object functions. Figure 3.2 shows how I diagram the
modules, using the PCMOscillator as an example. The figure shows everything you need to know
without needing large data tables.

At the top of the diagram, you can see the GUI control knobs. There are always four assigned
knobs at the top and four assignable controls called “mod knobs” shown below, labeled A, B, C,
and D. In some modules, all are assigned; others have “free” controls with which you can easily
perform experiments without needing to modify a bunch of code. These controls funnel into the
parameters block, which represents the shared parameter structure for this module. The param-
eters are applied to the active ModuleCore object, which is an internally owned member that has
access to the SynthModule’s input and output ports, labeled with icons and text. Different modules
require access to different ports, which are shown as enabled when connected to the core with a
bar, also shown in Figure 3.3(a). You will sometimes see a dotted box around a module core’s sting
list – this indicates a separate downloadable project that can be used for building only the module
core in the SynthLab-DM projects.

3.7.1 SynthModule I/O Ports

The I/O ports connect a module to its input and output sources. Figure 3.3(b) shows a block dia-
gram of the SynthModule with inputs and outputs. Modulation inputs and outputs are arrays of
double values, one modulation value per audio block, but with numerous slots in the arrays for
various modulator types. Audio data is transferred via the AudioBuffer described in Section 2.5.1.

3.7.1.1 Input Ports

• MIDI input is provided via the engine’s shared structure
• Modulation input values arrive in a pre-defined modulation array with one active modulation

value processed per block; there may be many inputs, each with its own slot in the array (e.g.
bipolar input (from LFO)), unipolar input (from EG), etc.

• FM inputs are from outputs of other oscillator modules and include one block’s worth of au-
dio data

• Audio inputs allow you to send external audio data to the module (e.g. from a side chain or
vocoder microphone input); these are declared for you but not used in the book projects

3.7.1.2 Output Ports

• Modulation output values are written into an array that has pre-defined slots for the various
modulators; e.g. the LFO writes to the bipolar array slot, while the EG writes to the unipolar slot

• FM outputs are identical to the audio output for a given module; all oscillator module output
buffers may be used as FM input buffers for other modules

36 Synth Voices, Synth Modules, & Module Cores

• Audio output is written into a pre-prepared AudioBuffer object that always has two channels
(for dual-mono or stereo operation) and is only valid for oscillators as the modulators write to
the modulation arrays

• A MIDI output structure is provided but not used in the projects

3.7.2 SynthModule Virtual Functions

All modules must override the five SynthModule virtual functions: reset, update, render, doNo-
teOn, and doNoteOff. These correspond to the five SynthVoice virtual functions with identical
names. The engine calls the voice object functions, which, in turn, call the individual module func-
tions. Table 3.2 lists these virtual functions, along with a brief description; they are also shown in
Figure 3.2. We will look deeper into these functions as they apply to the different modules inside

Figure 3.3 (a) Module diagrams show attributes and connections in the module and its core, along with
module and mod knob strings for each core; notice that the moduleStrings show up in the GUI as
a selection list and (b) the SynthModule block diagram

Synth Voices, Synth Modules, & Module Cores 37

of their respective chapters. The main point here is that the synth voice will call these functions
directly from its own functions of the same name.

3.8 Module Cores

Each SynthModule owns an array of up to four ModuleCore objects. The module cores are special-
ized components that operate within the overall behavior of the module but with individualized
functionality. For example, the SynthFilter is a SynthModule that has two module cores: VAFilter-
Core and BQFilterCore. Both of these implement audio filters, but one is used specifically for the
virtual analog filters described in Chapter 12, while the other provides alternate but useful filters
based on the biquad algorithms in the first edition FX book. When the user selects a core, two
things happen: first, the new core object becomes the “active core,” and second, its specialized
string list of up to 16 items is loaded into a GUI control for the user. In Figure 3.2, you can see the
module core names in a list in the dotted box; this GUI control is available for all modules and is
not shown in the individual module chapter diagrams.

3.8.1 ModuleCore Strings

The VAFilterCore and BQFilterCore will likely expose different strings for their different filters,
and if some stings have the same name, that is fine. In Figure 3.2, you can see the core module
strings for the PCM oscillator’s LegacyCore object as it appears in the module chapter. This array
of strings is a ModuleCore member, and you supply the string names in the core’s constructor.
Figure 3.4(a) shows how the module strings are related to their cores and how these will appear to
the user on a typical GUI using the PCMOscillator and its cores that expose the bank waveforms.
For this object, each core is slightly different: the legacy core uses transient + loop PCM samples,
while the Mellotron uses single long recordings of notes, and the wave slice core uses the Aubio
audio tool to slice up the .wav files that are its data arrays.

3.9 SynthModule/ModuleCore Relationship

The SynthModule is an ultra-light wrapper around the active core; examine the class definition
in synthbase.h, and you will see that the ModuleCore base class virtual functions have the same
names as the SynthModule functions in Table 3.2. The difference is in the argument that is passed

Table 3.2 SynthModule virtual functions that all modules must override and descriptions

Function Name Description

reset Sets the sample rate and resets member objects
update Using GUI and modulation input, calculate the object variables for the current block of

data (e.g. filter fc, EG release time,…)
Render output; modulators write to modulation outputs, oscillators write to audio

buffers, processors read from and write to audio buffers
render

doNoteOn Perform note-on activities
doNoteOff Perform note-off activities (used on EG only)

38 Synth Voices, Synth Modules, & Module Cores

to the core virtual functions. Figure 3.2(b) shows a module with its module I/O and parameters.
The core sits inside and does the real work for each of the module’s functions. In order to give the
core access to the I/O buffers, modulation arrays, and parameters, the module passes it a data
CoreProcData structure that contains mainly interface pointers and references to these resources,
and the core uses them during its function calls. There are some advantages to using this paradigm
for SynthLab:

1 Cores are simple and compact; if you want to focus your work on just one type of module and
not the entire synth, then you only have a few files to edit – usually just two

2 Cores follow the idea of C++ encapsulation; each one hides the details of functionality of a
concept that is encapsulated; the filter cores generate filters in drastically different ways (vir-
tual analog versus biquad), but the user only sees another bank of filters

3 Cores allow for the concept of program and data “banks” in which each core implements
16 different variations on its basic theme, each being presented to the user in a list every
time the core changes; each wavetable oscillator core generates a bank of waveforms,
each PCM sample oscillator generates a bank of samples, each filter core creates a set of
filters, etc.

Cores allow me to make a version of SynthLab that can dynamically load the cores you write and
compile as a plugin-within-a-plugin; my version of the SynthLab-DM projects is able to load core
DLLs into itself at startup time (you can add this functionality yourself if you know how to user
your plugin framework).

Figure 3.4 (a) The PCM oscillator includes three pre-written cores and one empty (user) core that allow the
PCM oscillator to implement banks of waveforms; (b) the relationship between voice, module,
and core is tight

Synth Voices, Synth Modules, & Module Cores 39

3.9.1 CoreProcData Structure

The cores require access to the module’s I/O ports and parameters, accomplished with the Core-
ProcData structure that is setup with only basic C++ data types and agnostic C++ interfaces,
whose functions likewise only contain the basic data types. Unlike most of SynthLab, this struc-
ture does not use the std:: library and has no shared pointers and no std::strings. This allows for
the dynamic loading of core modules (mini-plugins); any function calls from the host (the plugin
DLL) to the server (the core DLL) must cross the “thunk” barrier, meaning that arguments passed
back and forth must have C++ memory footprints that are exactly described and known a-priori.
The CoreProcData consists of input and output audio buffer pointers, along with several safe
interfaces for accessing the outer module’s resources, including IModulator, IWavetableDatabase,
IPCMSampleDatabase, and IMIDIInput, all of which are documented online. Since each module
has a separate custom parameter structure, a void* is used to pass this structure in and out of the
core using void* cloaking and un-cloaking.

3.9.2 SynthModule Constructor

The SynthModule constructors follow a three-step pattern:

1 Setup the audio input and output buffers; oscillators only have outputs, while processors (fil-
ters and amplifiers) have both inputs and outputs

2 Set up a CoreProcData member structure that will be used for communication with the core
3 Instantiate the cores, store them, and select the default core

This code is fundamentally identical in every module-core relationship and only varies with the
kind of core and audio capabilities; there is no need to repeat it in every chapter. Here is the con-
structor for the PCMOscillator that creates three member cores.

Create audio buffers for inter-module signal flow; note use of constants with 0 inputs and 2
outputs:

// --- create our audio buffers
audioBuffers.reset(new SynthProcessInfo(SMPL _ OSC _ INPUTS, /* 0 */

SMPL _ OSC _ OUTPUTS, /* 2 */
blockSize)); // prefer 32 or 64

If you are using my SynthLab pre-compiled plugins, you can build a “core plugin” – a plugin
that is loaded into the SynthLab plugin at startup time – allowing you to customize each
module for yourself. This allows you to go through the book, learning about each module
and its parameters, and understanding its inner code and theory of operation. The cores are
pure C++ and are not tied to any plugin framework, requiring a minimal compiler setup
that is so simple, you won’t need CMake. You can also build your own modules in any com-
ponent flavor and add them to the existing plugin. This means that my SynthLab plugins
are dynamic, and you may modify and change their core operations – all of the modules in
Figure 3.1, if you like – to suit your own research or interest areas.

40 Synth Voices, Synth Modules, & Module Cores

The coreProcessData structure gets its interface pointers from the module’s resources: audio I/O
buffers, modulation I/O arrays, MIDI data, and databases. Examine each core’s constructor for
the details:

// --- setup the core processing structure for dynamic cores
coreProcessData.inputBuffers = getAudioBuffers()->getInputBuffers();
coreProcessData.outputBuffers = getAudioBuffers()->getOutputBuffers();
coreProcessData.modulationInputs =

modulationInput->getModulatorPtr();
coreProcessData.modulationOutputs =

modulationOutput->getModulatorPtr();
etc. . .

Finally, create the cores, and store them on the module’s array, then select the first core as the
default.

// --- setup the cores
for (uint32 _ t i = 0; i < NUM _ MODULE _ CORES; i++)

moduleCores[i] = nullptr;

std::shared _ ptr<PCMLegacyCore>
defaultCore = std::make _ shared<PCMLegacyCore>();

addModuleCore(std::static _ pointer _ cast<ModuleCore>(defaultCore));

etc…

// --- core[0]
selectDefaultModuleCore();

3.9.3 SynthModule Wrapper Functions

Most of the module-to-core functions are trivial as they simply call the selected module’s func-
tions of the same name with the coreProcData argument. The reset function must reset all of the
cores, while the rest of the functions operate on the selected core. Here is the reset function for the
PCMOscillator:

bool PCMOscillator::reset(double _ sampleRate)
{

// --- PCM cores need path to DLL for adding to database
coreProcessData.dllPath = dllDirectory.c _ str();
coreProcessData.sampleRate = _ sampleRate;

for (uint32 _ t i = 0; i < NUM _ MODULE _ CORES; i++)
{

if(moduleCores[i])
moduleCores[i]->reset(coreProcessData);

}

Synth Voices, Synth Modules, & Module Cores 41

return true;
}

The update function merely calls the core version:

bool PCMOscillator::update(){
return selectedCore->update(coreProcessData);

}

The render function parses the samplesToProcess variable and updates the coreProcData structure:

bool PCMOscillator::render(uint32 _ t samplesToProcess){
// --- update
coreProcessData.samplesToProcess = samplesToProcess;

return selectedCore->render(coreProcessData);
}

The note-on and note-off functions apply the current MIDINoteEvent:

bool PCMOscillator::doNoteOn(MIDINoteEvent& noteEvent)
{

coreProcessData.noteEvent = noteEvent;

return selectedCore->doNoteOn(coreProcessData);
}

3.10 Review

Chapters 2 and 3 contain the fundamentals of how the synth engine, voices, modules, and their
module cores are related and used to create the synth projects, and show the main coding details of
each object connection. The idea is to give you an understanding of how Figure 3.1 works on the dif-
ferent levels – from engine to voice to modules to cores. Go back and review Figure 3.1, and follow
the function calls from the framework to the engine’s render operation. The engine calls the voice
render, which calls render on all modules, which, in turn, call update and render on the active core.

Chapters 7–13 and 14–15 contain SynthModule and ModuleCores for each of the building blocks
used for the SynthLab projects. Each of these “module chapters” has the theory of operation,
followed by the module and core descriptions and implementation strategies. There are a con-
siderable number of interfaces, synth objects, helper objects, and functions included, and these
are documented online at www.willpirkle.com/SynthLab-docs. You will need to download the
code for the projects and spend time comparing the code with what you read in the text as you
go through the book, which will also take considerable patience. After the module chapters, we
will put the pieces together in the complete SynthLab projects. You have several options for their
implementation, which are discussed in Chapter 5.

Bibliography

Gabrielli, Leonard. 2020. Developing Virtual Synthesizers with VCV Rack, Chaps. 1, 3. New York: Routledge.
SynthLab Documentation. 2020. www.willpirkle.com/synthlab-docs, Accessed on October 14, 2020

http://www.willpirkle.com
http://www.willpirkle.com

Synthesizers have three basic operational modes: monophonic (mono), monophonic-unison (uni-
son), and polyphonic (poly). The two monophonic modes include an option for legato operation
in which the amp EG does not re-trigger for new note-events; this is covered in Section 7.1.3. Note
that legato mode only applies if the user holds a key down, then presses another key without releas-
ing the first key, generating two note-on events in succession. It does not apply when playing mono
but releasing each key before triggering a new note. On some synths, the legato mode has its own
dedicated switch; for SynthLab, I combined legato mode with the two mono modes to produce a
total of five synth modes of operation:

1 Mono: basic monophonic operation that uses the same voice object for every note-event; new
note-events re-start the amp EG and produce transient edges (clicks)

2 Legato: monophonic mode with legato slurring
3 Unison: monophonic mode with multiple voice objects mixed together and each detuned

slightly, producing a thick sound
4 Unison legato: unison mode with legato slurring
5 Polyphonic: polyphonic mode; when all voices are exhausted, and a new note-event arrives, an

existing voice is sacrificed to play the new note, aka voice-stealing

When dealing with mono and unison modes (non-legato), we must make an important decision on
handling the re-triggering of the amp EG when the new note-event arrives. One of our options is
to trigger the new note immediately, placing the EG back into the attack state from wherever the
EG was in its cycle. The second is to shut down the EG through an ultra-fast release time of about
a millisecond, thereby bringing the output down to zero, then moving to the attack state and
re-starting the EG. The second mode is called return-to-zero (RTZ). Both modes are covered in
Sections 7.1.2 and 7.1.3, and shown in Figure 7.3. The EG objects expose an additional virtual func-
tion named shutdown that places the EG into this fast-release state, allowing the voice to quickly
shutdown the EG. The shutdown function is also used in polyphony during voice-stealing so that
one voice may be quickly silenced to make way for a new note-event.

The SynthLab projects all implement RTZ mode for the monophonic non-legato modes such
that the monophonic voice steals from itself if a new note is triggered while the single mono-
phonic voice is playing. The legato modes ignore the shutdown operation and are therefore
simpler to implement and understand.

4 Synth Operational Modes
Polyphony and Voice-Stealing

Synth Operational Modes 43

4.1 The Note-Event Lifecycle

It is important to clarify the difference between the note-off event and the end-of-note signal.
As it turns out, the amp EG plays a major role in the grand scheme of things. The amp EG is the
envelope generator attached to the output DCA; it produces the synthesized signal’s time domain
envelope. Figure 4.1 shows a synth voice consisting of an oscillator and a DCA that is connected
to the amp EG and shows the four parts of the note-event lifecycle:

1 Note-on message: resets objects and starts amp EG in attack state
2 Note-off message: places amp EG into the release state; all other modules continue operation

as normal
3 Waiting for release: the voice monitors the state of the amp EG, waiting until its release state

has finished
4 Release complete: when the amp EG finishes its release phase, it goes into the off state; only at

this point is the note-event finished and the voice off

Figure 4.1 T he four states of the note-event lifecycle: (a) the note-on message resets objects and places the
amp EG into the attack state; (b) the note-off message places the amp EG into the release state;
(c) the voice waits for the amp EG to finish, rendering output the entire time; and (d) the note-
event is finished when the amp EG reaches the off state

44 Synth Operational Modes

4.2 SynthEngine MIDI Processing

The engine and voice object both handle the note-on and note-off messaging. The engine’s process-
MIDIEvent method splits the incoming MIDI messages into note-events and CC events, then calls
the voice’s processMIDIEvent, which handles the more complicated details; it is shown in Figure
4.2. The block marked “Choose Target Voice” represents the logic for the five modes of operation.
For mono and unison modes, the choice is hardwired but more complex for the poly mode that
involves voice-stealing. This chapter is all about making that choice.

4.2.1 SynthEngine Mono Modes

The engine parameters include a variable for the operational mode coded as an index-based pa-
rameter from the GUI control that displays the modes for the user. The index is compared to a
strongly typed enum for easier code readability:

enum class synthMode { kMono, kLegato, kUnison, kUnisonLegato, kPoly };

The SynthEngine performs the initial MIDI message processing, as covered in Section 2.3.2.3,
and implements the engine-side of the synth operational modes. For mono and legato modes, the
SynthEngine uses the first SynthVoice object in its array for all note-events and simply forwards
the MIDI event to the voice object for processing. The engine’s processMIDIEvent function is
blissfully simple for mono and legato. The note-on and note-off code is shown here, using the GUI
index parameter for decoding the mode:

bool SynthEngine::processMIDIEvent(midiEvent& event)

Figure 4.2 The engine decodes the incoming MIDI messages; for note-on and note-off, the engine first finds
a target voice, then forwards the MIDI processing function call

Synth Operational Modes 45

For note-on operation the engine saves the current note number and velocity in the global MIDI
data for the objects to share – for example, filter key-tracking and oscillator portamento both re-
quire knowing the MIDI note number.

if (event.midiMessage == NOTE _ ON)
{

// --- set current MIDI data
midiInputData->setGlobalMIDIData(kCurrentMIDINoteNumber,

event.midiData1);
midiInputData->setGlobalMIDIData(kCurrentMIDINoteVelocity,

 event.midiData2);

// --- mono mode
if (parameters->synthModeIndex == enumToInt(synthMode::kMono) ||

parameters->synthModeIndex == enumToInt(synthMode::kLegato))
{

// --- just use voice 0
synthVoices[0]->processMIDIEvent(event);

}

For note-off operation, the engine first queries the voice with isVoiceActive, then sends the MIDI
message to the voice and returns immediately.

else if (event.midiMessage == NOTE _ OFF)
{

// --- for mono, we only use one voice, number [0]
if (parameters->synthModeIndex == enumToInt(synthMode::kMono) ||

parameters->synthModeIndex == enumToInt(synthMode::kLegato))
{

if (synthVoices[0]->isVoiceActive())
{

synthVoices[0]->processMIDIEvent(event);
return true;

}
}

}

4.2.2 SynthEngine Unison Modes

Unison and unison legato are handled just like the mono modes except that multiple voices are all
called at once with the same MIDI messages, placing multiple voices into the running state. Both
unison modes involve detuning the voices slightly and setting the oscillators to start at slightly
different phases so they do not sum together in a way that produces a click or pop due to the in-
phase components. For SynthLab, unison mode uses four voices: synthVoice[0] – synthVoice[3].
The engine’s MIDI processing is identical to the mono modes, except for the fact that it uses
multiple voices.

46 Synth Operational Modes

For both note-on and note-off operation, the engine calls the four voice functions in succession,
and the code is identical for both messages:

if (parameters->synthModeIndex == enumToInt(synthMode::kUnison) ||
parameters->synthModeIndex == enumToInt(synthMode::kUnisonLegato))

{

// --- SynthLab: 4 voices
synthVoices[0]->processMIDIEvent(event);
synthVoices[1]->processMIDIEvent(event);
synthVoices[2]->processMIDIEvent(event);
synthVoices[3]->processMIDIEvent(event);

}

4.3 SynthEngine Unison Detuning

The engine is also responsible for setting the detuning, panning, and phase offsets of some of the uni-
son voice objects. This happens in the engine’s setParameters method so that the detuning is updated
if the user changes the control while notes are playing. The engine parameters include the global de-
tuning that the user controls. The voice parameters include their own unison detuning value, which
is set differently for each voice to thicken up the sound, as well as a phase offset variable. The code
in the engine’s setParameters method sets these variables, and you have the ability to customize this
code as you like. Note that for many synths, unison mode also involves panning the voices differ-
ently, but all SynthLab oscillators are stereo in nature, and individual oscillators may be panned. If
you want to override this, feel free to do so; a unisonPan variable is already declared for you in the
voice parameters, but you will need to modify the rendering function accordingly. The engine’s set-
Parameters function has all the action; notice how the global unison detuning is applied differently
to each of the four voices. The phase offsets were set with experimentation and prevent clicks and
pops. The engine cycles though the voice objects in order to call their corresponding update methods:

for (unsigned int i = 0; i < MAX _ VOICES; i++)
{

// --- update voices
synthVoices[i]->update();

Inside this for-loop, we check the mode parameter and issue the detuning and phase offsets – note
that the phase offsets only apply during note-on operation.

if (parameters->synthModeIndex == enumToInt(synthMode::kUnison) ||
parameters->synthModeIndex == enumToInt(synthMode::kUnisonLegato))

{
// --- voice 0

if (i == 0)
{

parameters->voiceParameters->unisonDetuneCents = 0.0;
parameters->voiceParameters->unisonStartPhase = 0.0;
parameters->voiceParameters->dcaParameters->panValue = 0.5;

}

Synth Operational Modes 47

// --- voice 1
else if (i == 1)
{

parameters->voiceParameters->unisonDetuneCents =
parameters->globalUnisonDetune _ Cents;

parameters->voiceParameters->unisonStartPhase = 13.0;
parameters->voiceParameters->dcaParameters->panValue = -1.0;

}
etc . . .

Table 4.1 lists the voice detuning and phase offsets for unison mode – feel free to change these or
add more voices for a thicker unison sound.

4.4 Voice State and MIDI Event Storage

The voice object maintains a few Boolean flags, which it uses to help implement the synth modes.
The voice keeps track of a simple state variable named voiceIsActive that is true as long as the
voice is rendering output in the first three phases of Figure 2.1 and is accessed via the isVoice-
Active method. When a new MIDI note-on event is received, the data is stored in the member
structure voiceMIDIEvent, which persists until the note is either turned off or stolen. During steal
operations, the voice keeps track of a Boolean flag stealPending during the steal operation and
another MIDI structure voiceStealMIDIEvent that stores information about the new note. The
voice state variable and steal flag are used along with the MIDI event structures to implement the
steal operation.

4.5 Voice-Stealing

Voice-stealing is usually associated with polyphonic operation. The SynthEngine declares some
number of voice objects based on the synth type, target device, CPU power, and other information.
For simplicity, the SynthLab projects have a fixed number of voices, but you can override that be-
havior in the constructor for your own experiments. If the user presses enough keys or generates
enough note-on messages, the engine will run out of voices at some point. If this happens and a
new note-on message arrives, the engine will need to implement a plan for stealing an existing
voice to use for the new note-event. This involves code on both the engine’s and the voice object’s
sides. The engine will need to use a heuristic technique to choose the voice to steal, but after that,
it simply issues a note-on message to that voice, as with other voices. On receiving the note-on
message, the voice determines that it is being stolen and sets up logic on its side to handle that part.

Table 4.1 Voice detuning, panning, and starting phase offsets for unison mode

Voice
Index

Detuning Coefficients Multiplied
with globalUnisonDetune_Cents

Pan Value Oscillator Start
Phase Offset

0 0 0.5 (center) 0
1 (+1.0) −1.0 (left) 13 degrees
2 (−1.0) +1.0 (right) −13 degrees
3 (0.707) −0.5 (halfway left) 37 degrees

48 Synth Operational Modes

4.5.1 Voice-Stealing for RTZ Operation

SynthLab uses the RTZ EG operation in the non-legato mono and unison modes to avoid in-
consistent clicks and pops. However, this requires quickly shutting down the current voice, then
stealing it once it completes its shutdown. In this mode, voice actually steals itself. The voice im-
plements the processMIDIEvent function, which usually calls either its doNoteOn or its doNoteOff
sub-functions during normal operations.

4.5.2 Note-On Steal Operation

The steal operation starts with logic in the voice’s note-on message handler, which determines
whether the voice is being stolen. Once that determination is made, the following events occur:

1 Voice stores the current note-on MIDI message in a member structure voiceStealMIDIEvent –
this contains the note number and velocity information for the stolen event

2 Voice calls the shutdown function on the amp EG to quickly shut itself down
3 Voice sets stealPending so it will know how to handle the end-of-note event when the amp EG

expires

4.5.3 Post-Shutdown Steal Operation

During the one-millisecond shutdown time, the voice’s oscillators and other modules will continue
normal operation for the length of the render process. The voice will need to monitor the amp EG
and wait for it to complete its shutdown cycle at the end of the render function, as described in
Section 4.5.5. Once detected, the voice performs the following:

1 Check the stealPending flag to see if the voice is being stolen, and if so:
2 Call the voice’s note-off handler – this was never called because the event was stolen
3 Copy the voiceStealMIDIEvent structure into the voiceMIDIEvent structure
4 Call the note-on handler with the new MIDI event information, switching the pitch and

velocity to the stolen note – the steal operation is complete

The RTZ voice self-steal operation is simpler than poly mode stealing because there is no selection
of a target voice, so the engine-side code does nothing more than call the voice’s processMIDIEvent
method. Studying RTZ operation first allows you to see the voice-side code in isolation, and it is
identical to the poly mode operation.

4.5.4 SynthVoice Stealing Code Part 1

The code that implements the steps in Section 4.5.2 is located in the SynthVoice:: processMIDIE-
vent function and is triggered when the voice gets a note-on message while it is still active. Once
the EG is shut down, and flags are set, the function returns. If it is not stealing, it simply calls its
doNoteOn handler.

if (event.midiMessage == NOTE _ ON)
{

// --- steal detection
if (isVoiceActive())

Synth Operational Modes 49

{
// --- save information
voiceStealMIDIEvent = event;

// --- set amp EG into shutdown mode
ampEG->shutdown();

// --- set the steal flag
stealPending = true;
return true;

}

// --- call the subfunction if NOT stealing
doNoteOn(event);

}

Notice that the note-off message is always handled the same way, with a simple call to the note-off
handler.

else if (event.midiMessage == NOTE _ OFF)
doNoteOff(event);

4.5.5 SynthVoice Stealing Code Part 2

At the end of each render function call, the voice checks to see if the amp EG has expired into the
off state; if not, it simply returns as usual.

if (voiceIsActive)
{

if (ampEG->getState() == enumToInt(EGState::kOff))
etc . . .

At this point, the voice knows that the note-event is finished and will either shut off or perform the
steal operation, depending on the state variable we set. For the steal operation, we implement the
steps in Section 4.5.3. If no steal is pending, then the voice goes into the inactive state, setting its
state variable to false.

// --- check for steal pending
if (stealPending)
{

// --- turn off old note event
doNoteOff(voiceMIDIEvent);

// --- copy new note MIDI info
voiceMIDIEvent = voiceStealMIDIEvent;

// --- turn on the new note
doNoteOn(voiceMIDIEvent);

50 Synth Operational Modes

// --- stealing accomplished!
stealPending = false;

}
else

voiceIsActive = false;

The two functions here comprise the two-part steal operation that the voice implements for RTZ
and poly modes. To complete the chapter’s discussion, we just need to examine the engine-side
code for polyphonic operation.

4.6 Polyphony and Voice Timestamps

For polyphony, the engine services the note-on message in two stages. First, it tries to find a
free, unused voice in its array. If all voices are active, then it finds a suitable voice to steal. This
code is implemented in the engine’s processMIDIEvent function and uses getFreeVoiceIndex and
 getVoiceIndexToSteal – note that these return the index in the engine’s array of the suitable voice
object.

else if (parameters->synthModeIndex == enumToInt(synthMode::kPoly))
{

// --- get index of the next available voice (for note on events)
int voiceIndex = getFreeVoiceIndex();

// --- find a voice to steal
if (voiceIndex < 0)

voiceIndex = getVoiceIndexToSteal();

// --- start/steal the voice
if (voiceIndex >= 0)

synthVoices[voiceIndex]->processMIDIEvent(event);

Once that index is found, the engine simply calls the corresponding voice’s processMIDIEvent as
usual – there are no extra functions or Boolean variables to set since the voice operates in a very strict
manner, as described in Sections 4.5.4 and 4.5.5, and knows when it is being stolen. This means that
the engine-side code involves selecting the voice to steal and nothing else. Selection of the voice in-
volves a heuristic technique, which is a decision-making operation that has no optimal solution (other
than making a new voice object). For voice-stealing, several common heuristics apply, including:

1 Stealing the “oldest” voice’s note – the voice that has been playing longer than all the others
2 Stealing the voice with the oldest note that is also not the lowest MIDI pitch since drone notes

are common across many musical styles
3 Stealing a voice based on the chord being played; choosing inner or outer voices, or other ad-

vanced selection criteria
4 Stealing notes based on MIDI channels (e.g. MIDI channel 10 has priority as the general

MIDI drum channel)

We are going to use the first heuristic: steal the oldest voice. This requires us to know something
about the ordering of the voice note-on events. For this heuristic, we only care about the absolute

Synth Operational Modes 51

age of the voice’s active state and can use a simple time-stamping method. We don’t care about
the actual DAW system time that the note-events occur at, just the ordering. This is accomplished
with a simple counter named timestamp, which is a SynthVoice member variable and includes three
functions for manipulating it:

uint32 _ t timestamp = 0;

uint32 _ t getTimestamp() { return timestamp; }
void incrementTimestamp() { timestamp++; }
void clearTimestamp() { timestamp = 0; }

During the voice’s note-on handler, the timestamp is cleared just before we detect the voice steal.

if (event.midiMessage == NOTE _ ON)
{

// --- clear timestamp
clearTimestamp();

// --- detect if we are being stolen:

This means that after the processMIDIEvent function call returns to the engine, the newly active
voice will have a timestamp value of 0. Immediately after issuing a note-on call to a voice, the en-
gine loops over its array, incrementing the timestamps of all active voices.

// --- increment all timestamps for note-on voices
for (int i = 0; i < MAX _ VOICES; i++)
{

if (synthVoices[i]->isVoiceActive())
synthVoices[i]->incrementTimestamp();

}

This means that the newly triggered voice will have timestamp = 1, while the previous voice will
have timestamp = 2, and so on. The voice with the highest timestamp value is the oldest one that’s
active – the voice to steal has been identified. Figure 4.3 shows a sequence of voice activations
and time stamping for an engine with four total voice objects. In Figure 4.3(a), all voices are free,
while Figure 4.3(b)–(e) show how the voice timestamps are incremented for one, two, three, and
four note-on events. When a new note-on event arrives, the engine finds voice 0 with the largest
timestamp and selects it. During the voice note-on handler, the timestamp is reset to 0; it is then
immediately incremented with the preceding code and becomes the youngest voice.

The function getFreeVoiceIndex is trivial and simply loops over the voices, testing the voiceIs-
Active flag on each one, returning the free index or −1 if not found. The function getVoiceIndex-
ToSteal is where you implement your heuristic. To find the oldest voice, you simply examine the
timestamps of the active voices:

int SynthEngine::getVoiceIndexToSteal()
{

int index = -1;
int timestamp = -1;
int currentTimestamp = -1;

52 Synth Operational Modes

for (int i = 0; i < MAX _ VOICES; i++)
{

currentTimestamp = (int)(synthVoices[i]->getTimestamp());

// --- find index of oldest voice
if (currentTimestamp > timestamp)
{

timestamp = currentTimestamp;
index = i;

}
}
return index;

}

In addition, the voice has query functions for its MIDI note number, so you may use heuristics
that involve a note’s pitch in relation to the other voices. For example, to find the oldest voice that
is not playing the lowest note, you would modify the function above to find the two oldest voices,
then query each one for the MIDI note number and return the index of the voice with the higher
of the two values.

uint32 _ t getMIDINoteNumber() { return voiceMIDIEvent.midiData1; }

Figure 4.3 A n engine with four voices: (a) prior to any notes triggered (b) when the first note is triggered,
voice 0 is selected then (c) second note and (d) third note and (e) fourth notes are triggered with
timestamps incremented each time and (f) after the oldest voice is stolen, it becomes the youngest
and so on

Synth Operational Modes 53

4.7 Review

The MIDI note lifecycle depends on the amp EG’s state to determine when the note-event has fin-
ished so that plays a role in the synth modes. The legato modes do not reset the amp EG, so there is
no click to suppress, and their operation only involves informing the EG that it is in legato mode.
For mono and unison non-legato modes, RTZ is implemented so that depressing a note while an-
other is held will shut down the existing note before starting the next, an operation that is a voice
self-steal operation. This operation only involves voice-side code. In polyphonic operation, the
engine gets involved as it uses a heuristic function to select a suitable voice to steal.

Bibliography

Braut, Christian. 1994. The Musician’s Guide to MIDI, Appendix A. Alameda: SYBEX.
Sound on Sound Magazine. 1999. “Synth Secrets.” http://www.soundonsound.com/sos/allsynthsecrets.htm,

Accessed October 14, 2020
SynthLab Documentation. 2020. www.willpirkle.com/synthlab-docs, Accessed on October 14, 2020

http://www.soundonsound.com
http://www.willpirkle.com

Now that we’ve covered the SynthLab architecture, synth modules, cores, and their operational
phases, we can learn how to use SynthLab. You have numerous options here, and you can move
around easily, from testing modules in the precompiled SynthLab-DM versions to integrating
small bits and pieces into your existing projects to cloning the entire engine and voice architecture
and building the GUIs to go with them. Remember that SynthLab is not tied to any third-party
plugin framework and does not use any third-party libraries or code as a result.

5.1 Designing Modules with the SynthLab-DM Projects

The easiest way to start using SynthLab is with the DM projects. In this case, you will compile
a tiny .dll file (Windows) or .dylib file (MacOS), which encapsulates a single synth module – a
specific type of EG, filter, LFO, or pitched oscillator. The only difference between the var-
ious DM synths is the quad oscillator bank, described in Section 1.5. This means that any
LFO, EG, or filter module you design will instantly work as a dynamic module in any of the
other synths. In the ensuing chapters, each time you are introduced to a module core, you
have the ability to copy, modify, or redesign that core as you like and then test it within the
 SynthLab-DM project.

There are example dynamic modules with code for every type of component. Suppose you cre-
ated your own wavetable oscillator module that generates drum sounds, and you named it “Drum
WT DLL.” You set up your tables and assign a list of your waveform strings: “Kick 1, Kick2,”
etc. You also have a cool idea for filtering and reversing the audio, so you implement four of your
own mod knob functions, and you assign the labels. You then compile your module mini-plugin
and place the result in the proper location (detailed in Section 5.2.2). When you open your DAW
and instantiate the wavetable synth, your new module will appear in the list of cores along with
the others, and the mod knob labels will change to reflect your ideas, as shown in Figure 5.1. This
allows you to design as many modules as you like and truly customize the synth in your own
unique way.

5.2 SynthLab-DM Modules Are Dynamic Linked Libraries

In order to make your own dynamic module, you will need to create a simple project in Visual
Studio or Xcode that will generate a dynamic linked library (DLL) that is loaded at runtime. If
you are unfamiliar with DLLs and how they relate to plugins, check out my FX plugin book for a

5 Learning and Using the SynthLab
Objects & Projects

SynthLab Objects & Projects 55

complete detailed description. The Visual Studio and Xcode DLL projects are so lean and simple,
there is no need for a CMake script or other utility – there are less than five steps required for both
OS platforms. You can find the exact step-by-step details in the SynthLab documentation at www.
willpirkle.com/synthlab-docs; you will be delighted at how painless it is to set up these mini-plugin
projects.

5.2.1 SynthLab-DM Modules Generate a C++ ModuleCore Object

In Section 3.9, you learned about the overview of the ModuleCore and its relationship to the outer
container SynthModule. You also saw how the CoreProcData structure is used as the function
argument that connects and allows safe communication across the thunk barrier between the
DM synth and your module. The ModuleCore object represents the SynthLab-DM API. Your
derived class overrides five functions, plus a constructor, and the DLL project creates a new in-
stance of this object that is delivered into the SynthLab-DM synth at startup time. It then shows
up as a module core, along with the others that are built into each project. You have complete
access to all of the module core code, so you can freely use any existing core as a basis for your
own designs. And you can test and debug your module within the DAW of your choice – the de-
bugger will show you how the core is being loaded and used. The ModuleCore virtual functions
are shown below.

class ModuleCore

// --- ModuleCore pure virtual functions
virtual bool reset(CoreProcData& processInfo) = 0;
virtual bool update(CoreProcData& processInfo) = 0;
virtual bool render(CoreProcData& processInfo) = 0;
virtual bool doNoteOn(CoreProcData& processInfo) = 0;
virtual bool doNoteOff(CoreProcData& processInfo) = 0;

Figure 5.1 Y ou can create internal modules for the SynthLab-DM synths without needing to recompile the
entire project; this shows a module named Drum WT DLL that exposes a set of waveform and
mod knob strings for the user to see

http://www.willpirkle.com
http://www.willpirkle.com

56 SynthLab Objects & Projects

// --- for EG only
virtual int32 _ t getState() { return -1; }
virtual bool shutdown() { return false; }

Your module must override and implement the functions in bold (and the two extra functions get-
State and shutdown for EG modules only); with that accomplishment, you have a proper module
to dynamically load. To streamline the modules, I’ve already created your derived class named
SynthLabCore and set up the virtual functions, which are mostly empty. You may freely cut and
paste from the example core code, copy the core objects and use some text replacement, or start
from scratch. The details of these functions as they apply to each synth component are given in the
following chapters.

The DLL instantiation mechanism is fundamentally the same for Windows and MacOS. Your
DLL module project ultimately exposes an export function that you can find in synthlabdll.h and
synthlabdll.cpp, which includes code for both MacOS and Windows.
MacOS:

extern “C” SynthLab::ModuleCore* createModuleCore()

Windows:

#define DllExport extern “C” __ declspec(dllexport)
DllExport SynthLab::ModuleCore* createModuleCore();

The function creates the object with the new operator and returns it.

SynthLab::ModuleCore* createModuleCore()
{

SynthLab::ModuleCore* module = new SynthLab::SynthLabCore();
return module;

}

5.2.2 Loading the C++ ModuleCore Object

The code to load your modules into the SynthLab-DM projects is likewise textbook DLL code for
both OS platforms. Windows projects use the LoadLibrary function from windows.h, while MacOS
projects use dlopen from dlfcn.h; these are heavily documented functions and operations that have
been in use for a long time, so there is no need to cover them here. However, the location of your
module DLL is very important as the loading functions will fail if this is not correct. Both AU and
VST3 plugins are packaged in a bundle rather than a single file. A bundle is a folder that appears to
the user as a file. When you download the SynthLab-DM projects, you will receive either a .vst3 or
a .component bundle. On Windows, you simply double click on the bundle icon to enter it, while on
MacOS, you right click and use “Show Package Contents.” Both bundles feature a special folder
named Resources, located within the outer Contents folder. If you open this folder, you will see the
coremodules subfolder, which will already include at least one .dll or .dylib for each kind of module.
When you build your own module, you will then need to place it inside of the Contents/Resources/
coremodules folder. When you instantiate the DM-synth in the DAW, it scans this folder and tries
to load all of the libraries it finds.

SynthLab Objects & Projects 57

5.2.3 Differentiating Your ModuleCore

You only need to write two lines of code to instruct the DM-synth on how to treat your module.
At the top of each module core constructor are two statements – for example, in the BQFilterCore
module, you will find the following:

SynthLabCore::SynthLabCore ()
{

moduleType = FILTER _ MODULE;
moduleName = “BQFilterDLL”;
etc…

The moduleType dictates the type of component, and you have eight choices that implement the
eight different supported cores according to Table 5.1. The module name you expose will show
up in the module core lists for that kind of component. For example, if you create a module with
moduleType = WTO_MODULE and name it “GoldenTables,” then each wavetable oscillator’s
GUI control will list “GoldenTables,” along with the pre-compiled cores for the user to choose.

There are three SynthLab modules that do not include cores in their design patterns. The DCA
object is so simple that there is no need for module cores as there isn’t much variation you can add.
The ModMatrix object is mainly a bunch of for-loops and multiplication of simple gain and inten-
sity factors but it has a very specific way of initialization and programming. The WaveSequencer
only generates modulation values, making it quite simple to replace with your own; however, the
GUI design and programming are very different from any of the SynthModules, so creating cores
would be cumbersome from the GUI aspect. If you want to modify these objects, you will need to
integrate them directly rather than writing the simple module DLLs.

Table 5.1 SynthLab’s module types, their container objects, and the downloadable examples

moduleType SynthModule Container SynthLab Examples

LFO_MODULE LFO ClassicLFOCore
FMLFOCore

EG_MODULE EnvelopeGenerator AnalogEG
DXEG
LinearEG

FILTER_MODULE SynthFilter VAFilterCore
BQFilterCore

WTO_MODULE WavetableOscillator ClassicWTCore
MorphWTCore
DrumWTCore
SFXWTCore
FourierWTCore

VAO_MODULE VAOscillator VAOCore
FMO_MODULE FMOscillator FMOCore
PCMO_MODULE PCMOscillator LegacyPCMCore

MellotronCore
WaveSliceCore

KSO_MODULE KSOscillator KSOCore

58 SynthLab Objects & Projects

5.2.4 Testing Your Module Core

Once you have copied your core object into the bundle’s resources according to the instructions in
Section 5.2.2, you will want to test it; actively debugging the module will show you the sequence
of operations that all cores and their respective module containers carry out and will prepare you
for integrating the main C++ objects. In your compiler, set the debug executable to your favorite
DAW, then attach to the running process. Place breakpoints in your constructor and in each of
the five (or seven, if EG module) overridden functions it implements. Then instantiate the synth
plugin, and catch the constructor in action. Once constructed, play a note, then watch the se-
quence of events that occurs cyclically for each note-event, covered as the operational phases in
Sections 1.8.1 through 1.8.6. Make sure you can trace the behavior of the update and render func-
tions specifically as these are the two most important for each module. For the wavetable and PCM
cores, take special care to watch how the modules query the wavetable and sample databases, then
install their data as required – this is likewise very important if you want to create your own oscil-
lators, especially the morphing varieties.

5.3 Using SynthModules in Your Projects

The next step up from working with the ModuleCores is to use the SynthModules that aggregate
these cores. All SynthModules feature a stand-alone mode of operation, making it simple for you
to use them straightaway. There are three kinds of SynthModules: modulators, pitched oscillators,
and processors (filters, DCA, and delay FX), and all are easy to use outside of SynthLab.

5.3.1 Modulator Objects in Stand-Alone Operation

The LFO and EG objects are modulators that write their outputs into an output modulation array
and have simpler constructors than the pitched oscillators. For example, say you want to incor-
porate the SynthLFO object into your own project. You have learned that all of the synth module
constructors include two similar arguments: a shared pointer to the special GUI parameter struc-
ture and another shared pointer to the MIDI input structure. All SynthModules will construct
their own shared-pointer to their custom parameter structures if the constructor argument is a
nullptr, then you may access the structure using a function for stand-alone mode that has the same
name across all objects: getParameters. The SynthModule and ModuleCore base classes store a
Boolean flag, standAloneOperation, that you may set or clear. You may find it helpful to know the
stand-alone state when you aggregate objects – see the FMOperator and FMOCore for an example
of using this variable.

The MIDI input data offers two choices. If you do not want or need to send MIDI data to the
object, then construction is simple – just pass a nullptr in for the MIDI data, along with the object
parameters; here, I use a shared pointer, but you could also use old-fashioned naked pointers as
well. If you want to process individual samples rather than blocks, just set the blockSize parameter
equal to 1.

// --- blocksize
uint32 _ t blockSize = 64;

//--- unique _ ptr
std::unique _ ptr<SynthLFO> myLFO;

SynthLab Objects & Projects 59

// --- pass nullptrs for the parameters
myLFO.reset(new SynthLFO(nullptr, nullptr, blockSize));

In this case, the LFO will synthesize its own MIDI input data structure that is initialized with
zeros; this will have no effect on the update phase.

If you want to send MIDI into the object, just create your own shared pointer and use it during
construction:

std::shared _ ptr<MidiInputData> midiInput =
std::make _ shared<MidiInputData>();

// --- create object
myLFO.reset(new SynthLFO(midiInput, nullptr, blockSize));

To send MIDI information, you transfer data into the proper slot in the array. To set a mod wheel
CC value of 42 and set the MIDI note velocity to 79, you would write:

midiInputData->setCCMIDIData(MOD _ WHEEL, 42);
midiInputData->setGlobalMIDIData(kCurrentMIDINoteVelocity, 79);

This MIDI data will be used on the next update phase of the LFO operation, and there is no
set-function to call as it is automatic.

To connect the LFO to GUI controls, or to manipulate it programmatically, you get its parame-
ter structure and set the values. As with the MIDI input data, these parameters will be applied on
the next update phase, and likewise, there is no set-function to call.

std::shared _ ptr<LFOParameters> params = myLFO->getParameters();

To manipulate the object directly, you set its values accordingly:

params->frequency _ Hz = 333.333;
params->outputAmplitude= 0.707;

If you are interfacing to a GUI, you send in the values directly from your GUI controls using ac-
tual (not normalized) values, as shown above.

double lfoRate = myGUI->lfoFreq; // in HZ!
double lfoAmplitude = myGUI->lfoAmp; // actual value!
params->frequency _ Hz = lfoRate;
params->outputAmplitude= lfoAmplitude;

5.3.2 Accessing Modulator Outputs

The ensuing chapters will detail how the modulation values are rendered and where they are writ-
ten into the module’s MIDI output array. To render and then access the fresh modulation values,
you write:

//--- render
myLFO->render(blockSize);

60 SynthLab Objects & Projects

// --- access output
double lfoModOut = myLFO->getModulationOutput()->getModValue(kLFONor-

malOutput);

The modulation array constants (e.g. kLFONormalOutput here) for every SynthLab object are
found in synthlabparams.h as well as in the future chapters.

5.3.3 Oscillator Objects in Stand-Alone Operation: VA and KS

The virtual analog (VA) and Karplus-Strong (KS) oscillators use the same construction as the EG
and LFO, so these follow the same pattern as the modulators. In stand-alone mode, they will create
their own MIDI input and parameter structures, and accessing them is identical to the EG and
LFOs for connecting to GUI controls or direct manipulation. All pitched oscillators write their
outputs to AudioBuffer objects.

To create a virtual analog oscillator in stand-alone mode with MIDI input, you write:

//--- unique _ ptr
std::unique _ ptr<VAOscillator> vaOsc;

std::shared _ ptr<MidiInputData> midiInput =
std::make _ shared<MidiInputData>();

// --- pass nullptrs for the parameters
vaOsc.reset(new VAOscillator (midiInput, nullptr, blockSize));

And to access and manipulate parameters:

std::shared _ ptr< VAOscParameters > params = vaOsc->getParameters();

params->outputAmplitude _ dB = -3.0;

or from a GUI of your own design:

params->fineDetune = myGUI->oscFineDetune;

5.3.4 Oscillator Objects in Stand-Alone Operation: WT and PCM

The WT and PCM oscillators have extra arguments that are likewise shared pointers to the wavet-
able and PCM databases; these are described in Sections 9.3 and 11.4, respectively. Each database
subclasses a base class abstract interface (IWavetableSource, and IPCMSampleSource) so that you
may design your own versions in the way that makes most sense to you; these are key to efficiently
sharing the tables and sample arrays. Manipulating the object via its parameter structure is done
the same way as the other SynthLab components.

For example, to use the wavetable oscillator with my database object, and your MIDI input
structure (assuming you want to send MIDI CC or global data to the pitched oscillator), you write:

// --- create shared resources
std::shared _ ptr<WavetableDatabase> wavetableDatabase =

std::make _ shared<WavetableDatabase>();

SynthLab Objects & Projects 61

std::shared _ ptr<MidiInputData> midiInput =
 std::make _ shared<MidiInputData>();

// --- declare
std::unique _ ptr<WTOscillator> wtOsc;

// --- create
wtOsc.reset(new WTOscillator(midiInput, nullptr, wavetableDatabase,

blockSize));

For true stand-alone operation, in which each oscillator creates and owns the database, you pass
a nullptr for the database argument:

// --- create
wtOsc.reset(new WTOscillator(midiInput, nullptr, nullptr, blockSize));

The PCM sample oscillator named PCMOscillator works the same way – either provide a shared
IPCMSampleSource database or the oscillator will create and use its own.

5.3.5 Accessing Pitched Oscillator Audio Outputs

To render the pitched oscillator output and access the audio samples, you use the getAudioBuffer
methods. Remember that all SynthLab oscillators output stereo. As with the LFO, you may choose
to render individual samples or blocks of audio. To render a block of 64 samples and access the
output samples in a loop, you would write:

// --- render 64 samples
blockSize = 64;
wtOsc->render(blockSize);

float* leftBuffer =
wtOsc->getAudioBuffers()->getOutputBuffer(LEFT _ CHANNEL);

float* rightBuffer =
wtOsc->getAudioBuffers()->getOutputBuffer(RIGHT _ CHANNEL);

for (uint32 _ t i = 0; i < blockSize; i++)
{

float leftSample = leftBuffer[i];
float rightSample = rightBuffer[i];

// --- do something with the audio...
}

5.3.6 Filter Object in Stand-Alone Operation

The last category includes objects that process audio from input to output, such as the SynthFilter.
The constructors of these objects are identical to the LFO, EG, VA oscillator, and KS oscilla-
tor, requiring the MIDI input data and custom parameter structure shared pointers, and you can

62 SynthLab Objects & Projects

instantiate them in stand-alone operation using the same paradigms of providing the resources or
letting the object manufacture its own. To create the SynthFilter object without MIDI input so that
it manufactures its own parameter structure, and then set its parameters, you write:

// --- create in pure standalone form
std::unique _ ptr<SynthFilter> filter;

filter.reset(new SynthFilter(nullptr, nullptr, blockSize));

// --- set the filter cutoff and Q controls
std::shared _ ptr<FilterParameters> filtParams = filter->getParameters();

filtParams->fc = 1000.0;
filtParams->Q = 0.707;

5.3.7 Accessing Filter Audio Inputs and Outputs

A single AudioBuffer object includes both input and output arrays. To send a block of audio (in-
cluding a block of only one sample) into the filter, you first prepare the audio buffer object using
either the specialized constructor or the init method, which have the same arguments:

AudioBuffer(uint32 _ t _ numInputChannels,
uint32 _ t _ numOutputChannels,
uint32 _ t _ blockSize);

For example:

std::unique _ ptr<AudioBuffer> filterBuffers;

filterBuffers.reset(new AudioBuffer(STEREO _ CHANNELS,
STEREO _ CHANNELS, blockSize));

Load up the input buffer using the same for-loop that you use to access the output buffer:

float* leftInBuffer = filterBuffer->getInputBuffer(LEFT _ CHANNEL);
float* rightInBuffer = filterBuffer->getInputBuffer(RIGHT _ CHANNEL);

for (uint32 _ t i = 0; i < blockSize; i++)
{

leftInBuffer[i] = // set here...;
rightInBuffer[i] = // set here...;

}

To simplify buffer copy operations, I’ve included several helper functions (synthfunctions.h) that
will move buffers into and out of the objects. To write the buffer into the filter and render the out-
put, you write:

// --- to Filter1
copyBufferToInput(filterBuffers, /* pointer to source */

filter->getAudioBuffers(), /* pointer to dest */

SynthLab Objects & Projects 63

STEREO _ TO _ STEREO, /* stereo in, stereo out */
blockSize); /* sample count */

// --- render filter
filter.render(blockSize);

Then, to get the filter’s processed data, you use another helper function and the same kind of loop
to access the samples.

// --- copy filter output to buffer output
copyOutputToOutput(filter->getAudioBuffers(), /* pointer to source */

filterBuffers, /* pointer to dest */
STEREO _ TO _ STEREO,
blockSize)

5.4 Using SynthEngines in Your Projects

Each synth has a single SynthEngine object that encapsulates the complete project, and you only
need to instantiate that engine object, then send it blocks of buffers to render into, along with the
MIDI messages that occurred during that block, and update its state with the current GUI parame-
ters in order to create a working synth. You should not attempt this until you are comfortable work-
ing with the modules and their cores. Connecting the engine to your framework’s processing object
is actually quite simple and straightforward; the details lie more in the audio block processing and
GUI updating than in the engine internals. These are described in detail in the SynthLab documen-
tation (www.willpirkle.com/synthlab-docs), and therefore, this is just an overview of the operation.

For example, to implement the wavetable synthesizer, you download the folder that includes the
engine, voice, and modules – this is a self-contained synth folder requiring no other libraries or
files. You will usually add the engine object to your plugin framework’s processor, then instantiate
it, passing along the maximum block size that can occur, as detailed in Sections 2.3 and 2.4. Make
sure you understand how the SynthProcessInput is used to provide the block processing. In your
processor object, you set up the objects:

// --- structure for passing audio and MIDI into and out of the engine
SynthLab::SynthProcessInfo synthBlockProcInfo;

// --- the entire synth in one object
std::unique _ ptr<SynthLab::SynthEngine> synthEngine = nullptr;

Then, set up the two objects in your processor’s initialize or constructor method. The arguments
to the information structure include input audio channel count (zero here as there are no audio or
side-chain inputs), output channel count (stereo synth), and maximum block size:

// --- setup audio buffers 0 channels in, 2 channels out
// block size = 64 (64 stereo samples)
synthBlockProcInfo.init(0, 2, 64);

// --- reset engine with max block size
synthEngine.reset(new SynthLab::SynthEngine(64));

http://www.willpirkle.com

64 SynthLab Objects & Projects

5.4.1 SynthEngine Reset and Initialize Phases

The engine is simple to reset when the sample rate changes – just call the reset method, and pass
the sample rate:

synthEngine->reset(resetInfo.sampleRate);

The engine also includes an initialize method that is called only once and sends the path to the
plugin DLL for several objects to use, including the PCM sample database, which needs to know
the location of the audio sample files. Your framework will provide you with a method to get the
path to your plugin, so you simply send that path to the engine. For maximum flexibility, a simple
const char* is used for the path.

// --- get the DLL path from your framework
const char* dllPath = myFramework->getComponentPath();

// --- initialize
synthEngine->initialize(dllPath);

5.4.2 SynthEngine Prepare for Render

For each block of audio you render, you need to first set up the SynthProcessInput structure by
clearing the MIDI events, then add the information you get from your plugin framework:

// --- clear MIDI events at top of buffer
synthBlockProcInfo.clearMidiEvents();

synthBlockProcInfo.absoluteBufferTime _ Sec = // get from your framework!
synthBlockProcInfo.BPM = // get from your framework!
synthBlockProcInfo.timeSigNumerator = // get from your framework!
synthBlockProcInfo.timeSigDenomintor = // get from your framework!

After this step, you fire off the MIDI events prior to rendering.

5.4.3 SynthEngine Prepare MIDI Input

As described in Section 2.5.3, you will need to prepare a SynthProcessInfo structure with the in-
coming MIDI data for rendering in blocks, as shown in Figure 2.4. This will be very framework-
dependent, so you need to know how to modify your processor object’s buffer processing function
to operate on sub-blocks that are blockSize in length.

You also need to know how to get the MIDI messages that were input during that block of samples,
which is likewise framework dependent. The SynthProcessInfo structure provides a few functions to
make this operation simpler. To add MIDI messages to the SynthProcessInfo structure for process-
ing, you need to fashion your framework’s MIDI input data into a midiEvent structure, then add it to
the queue with the helper function. Suppose you access a MIDI message that encodes the following:

• Message Type: Note On
• MIDI Channel 10

SynthLab Objects & Projects 65

• MIDI Note number: 60 (middle C)
• MIDI Velocity: 127
• Sample offset: 12 (this is optional information and not required for normal operation)

In your framework’s MIDI input queue or callback you create the event structure:

SynthLab::midiEvent synthEvent(0x90, /* note on */
10, /* CH 10 */
60, /* note #60 */
127, /* velocity */
12); /* offset (can be 0 for all) */

Then, use the helper function to queue the message:

synthBlockProcInfo.pushMidiEvent(synthEvent);

With the events queued, you then need to fire the events, which pushes them into a structure for
the engine to use, in the same sequence that you acquired these events in your framework’s MIDI
callback function. You need to do this just prior to calling the engine’s render function. Loop over
the block, and fire the events:

// --- fire ALL MIDI events for this block
for (uint32 _ t sample = 0; sample < blockSize; sample++)

processBlockInfo.midiEventQueue->fireMidiEvents(sample);

5.4.4 SynthEngine Audio Rendering

The SynthProcessInfo structure inherits from AudioBuffer and therefore carries the input and out-
put audio sample buffers with it. The SynthEngine does not require or accept input or output buffer
pointers from your framework. The engine will write its final synth output into the SynthProcessInfo
structure’s output buffers – you only need to copy them to your processor’s output buffers. To ren-
der the audio, you first set the number of samples to process in the information structure. When
you initialized the engine and the processing structure, you set the maximum samples per block.
However, it is possible that your framework or DAW will deliver a buffer that does not divide into
blockSize pieces, leaving a partial buffer to fill. Just pass the partial buffer, and set the block size,
and the engine will process and fill it like the other blocks.

// --- in case of partial block
synthBlockProcInfo.setSamplesInBlock(64); //<- equal/less than max-size

// --- render it
synthEngine->render(synthBlockProcInfo);

The final step is to write the audio to your framework’s output buffer; you may use a simple loop
or a memcpy function. In the code below, output_buffer is your framework’s audio output buffer
pointer, and the startSample and blockSize variables are part of the sub-block processing loop that
you maintain. Remember that we set up the input and output channel count (2) when we initialized
the processing structure in Section 5.4.2.

66 SynthLab Objects & Projects

// --- output
float** synthOutputs = synthBlockProcInfo.getOutputBuffers();

// --- block processing -- write to outputs
for (uint32 _ t sample = startSample, i = 0;

sample < startSample + blockSize;
sample++, i++)

{
// --- copy to outputs
for (uint32 _ t channel = 0; channel < 2; channel++)
{

output _ buffer[channel][sample] = synthOutputs[channel][i];
}

}

5.5 SynthEngine GUI Design and Parameter Update

To use the engine effectively, you will need to design the GUI and expose the parameters according
to your plugin framework. All modern DAWs will provide a default GUI if you need it, but you will
still need to set up the plugin parameters according to your framework. Each SynthLab project
includes documentation on the GUI parameter setup, including recommended minimum, maxi-
mum, and default values, along with the type of GUI control – continuous, numerical controls or
string-list-based controls. You may also examine the pre-compiled SynthLab-DM projects to see
my various GUIs to use as a basis for your own and to better understand the core-module controls.

5.5.1 SynthLab’s Dynamic Strings

Referring back to Chapter 3 and Figure 3.4, recall that each SynthModule exposes up to 4 Mod-
uleCores, each of which exposes up to 16 core strings that the user sees as waveform names, filter
types, and EG contours. Note that both the maximum core and module string counts are simple to
change to increase or decrease the size; you may also set the maximum number of cores to one if
you wish, greatly simplifying operation. When the user selects a new core from your GUI control,
its module strings and mod knob labels are dynamically loaded into the appropriate locations
on your GUI. This is an advanced GUI design technique that is going to be highly framework-
specific, so you will need to have a strategy for setting up these GUI controls and populating them
as required. There are several approaches here, and with the stock projects that you download,
all of the module names, core strings, and mod knob labels are known a-priori. To populate these
controls, you have two basic options: generate a master list from the documentation that you store
and retrieve as the user selects different cores or query the engine for these strings as you need
them during real-time operation.

5.5.1.1 Getting Core Names at Runtime

Each module features two dynamic GUI string list controls for the core and its associated strings,
and four assignable mod knobs that are initially labeled A, B, C, and D. When the user loads a new
module core, you need to update the module strings (16 of them) and the four labels that adorn

SynthLab Objects & Projects 67

the mod knobs. To query the engine at any time for a list of the four module core names that are
exposed for a given type of module, use the getModuleCoreNames function that returns a vector
of the four strings.

vector<string> getModuleCoreNames(uint32 _ t moduleType)

The moduleType argument is the module type code listed in Table 5.1. To get the four core names
for the LFO module, you write:

vector<string> cores = synthEngine->getModuleCoreNames(LFO _ MODULE);

5.5.1.2 Getting Module Strings and Mod Knob Labels at Runtime

To use dynamic string loading for the 16 module strings and 4 mod knob labels, you call two sim-
ilar functions that return vectors of the strings. A mask value indicates the exact target. To get
modules strings for the LFO2 waveforms and the FILTER1 types at runtime, you write:

vector<string> lfowaves = synthEngine->getModuleStrings(LFO2 _ WAVEFORMS);

vector<string> fltypes = synthEngine->getModuleStrings(FILTER1 _ TYPES);

To get the mod knob string labels for oscillator #3 and the filter EG (which is EG #2 in all projects),
you write:

vector<string> o3MK = synthEngine->getModKnobStrings(OSC3 _ MOD _ KNOBS);

vector<string> fegMK = synthEngine->getModKnobStrings(EG2 _ MOD _ KNOBS);

You can then populate your controls with these strings.

5.5.2 Setting Synth Parameters from GUI Controls

You will want to update the GUI parameters on the SynthEngine prior to each of your framework’s
buffer processing function calls. You may also place the update calls on block-boundaries; all of
the synth modules and objects follow this pattern. The engine’s parameter structure contains GUI
control variables for the engine (global tuning, delay FX, etc.) along with a shared voice parameter
pointer. These are detailed in Chapters 2 and 3, along with the shared data scheme in Section 2.3.

5.5.2.1 GUI Control Example: SynthLFO

Each SynthLab project includes documentation on the GUI parameter setup. The engine, voice,
and modules all include custom parameter structures that are described in this book and detailed
in the online documentation. These structures are used to pass GUI control information into the
objects. Generally speaking, there is a one-to-one correspondence with the structure member var-
iables and your GUI controls, though you do not need to expose every control. Each of these pa-
rameter structures includes a special array of four normalized values that correspond to the four
mod knobs A – D. As an example, let’s examine the custom parameter structure for the SynthLFO

68 SynthLab Objects & Projects

C++ object and compare it with a typical GUI implementation you might concoct, shown in
Figure 5.2.

The moduleIndex and waveFormIndex variables are the selection values from your string list
control (0 is the first item, 1 is the next, and so on). You send these integers into the module and
core where they are decoded. The mod knob strings are normalized on the range [0, 1], and mod
knob A always defaults to the center position. If Figure 5.2 represents connections to LFO2, you
would update its variables using the engine and voice sub-parameters shown below, which are also
discussed in Sections 2.6.2 and 3.3:

// --- declare and get shared pointer
shared _ ptr<SynthLab::SynthEngineParameters> engineParameters;

synthEngine->getParameters(engineParameters);

The engine’s shared voice parameters are then used to update LFO2. In the code below, myGUI
represents the GUI structure from which you parse your controls, which is also up to you and your
framework.

shared _ ptr<SynthLab::SynthVoiceParameters>voiceParams =
engineParameters->voiceParameters;

// --- LFO2 core and waveforms
voiceParams->lfo2Parameters->moduleIndex = myGUI->lfo2 _ coreindex;

Figure 5.2 G UI controls and their relationship to the custom parameter structure; the controls in grey in-
clude the dynamic strings and are different for each kind of module and core

SynthLab Objects & Projects 69

voiceParams->lfo2Parameters->waveformIndex = myGUI->lfo2 _ waveform;

// --- normal parameters
voiceParams->lfo2Parameters->modeIndex = myGUI->lfo2 _ mode;
voiceParams->lfo2Parameters->frequency _ Hz = myGUI->lfo2 _ frequency _ Hz;
voiceParams->lfo2Parameters->outputAmplitude = myGUI->lfo2 _ outputAmp;
voiceParams->lfo2Parameters->quantize = myGUI->lfo2 _ quantize;

// --- mod knob parameters
voiceParams->lfo2Parameters->modKnobValue[0] = myGUI->lfo2 _ ModKnobA;
voiceParams->lfo2Parameters->modKnobValue[1] = myGUI->lfo2 _ ModKnobB;
voiceParams->lfo2Parameters->modKnobValue[2] = myGUI->lfo2 _ ModKnobC;
voiceParams->lfo2Parameters->modKnobValue[3] = myGUI->lfo2 _ ModKnobD;

Refer to the SynthLab documentation for complete examples that parse all GUI parameters
with more detail on integrating the objects into your projects.

5.6 Programming the Modulation Matrix

The modulation matrix programming happens in the voice object’s constructor. In addition, mod-
ulation routings may be added or removed at run-time; this is also needed when the user selects a
new core to point the modulation matrix at the new object. These details are covered in Chapter
14 (modulation matrix), and you should examine the specific code in the voice object that loads
new cores (e.g. loadLFO1, loadFilter2, etc.) to see how to remove and add new modulation routings.
For this coding, the simplest option is to examine the sample code and notice how the routings are
made, including the hardwired routings, such as filterEG to filter1’s fc value.

5.7 Getting WaveSequencer Status Meter Updates

The WaveSequencer object outputs status meter values to indicate which step is active for a given
lane. Your processor may query the engine at any time to get an array of values that indicate an ac-
tive (1) or inactive (0) status for any of the steps. The arrays return the status of the wave sequencer
in the first voice that was triggered; you may modify this to return arrays for all voices, but this
may be very confusing for the user. There are four sequencer lanes named timing, wave, pitch, and
step sequencer, each of which has eight lane steps. The query functions are easily decoded using the
lane name and step number:

// --- status for wave step 0
wave0 = engineParameters->wsStatusMeters.waveLaneMeter[0];

// --- status for step sequencer step 5
ssMod5 = engineParameters->wsStatusMeters.stepSeqLaneMeter[5];

Bibliography

SynthLab Documentation. 2020. www.willpirkle.com/synthlab-docs, Accessed on October 14, 2020

http://www.willpirkle.com

Modulation is fundamental to synthesis, and there are numerous sources and destinations for
modulation values. The typical modulation sources include low frequency oscillators (LFOs), en-
velope generators (EGs), MIDI CCs, velocity, and note number. The output values are applied
to modulate or change the destination’s parameters. Typical destinations are pitched oscillator
frequency, output amplitude, shape and filter fc, Q, and drive. It is also possible for one modulator
to modulate another: for example, one LFO may modulate the other LFO’s oscillation frequency.
Modulators have two general output types: unipolar on a range of [0, 1] and bipolar on a range of
[−1, +1]. A modulation routing is a specific pair of modulation source and destination.

Some modulation calculations operate on the simple unipolar or bipolar values. Others require
scaling or mapping the modulator to some new range: for example, a range of filter fc values from
20 Hz to 18 kHz. Be sure to check out the online documentation, which lists numerous helper func-
tions and simple C++ objects that will do much of the labor for our modulations.

6.1 SynthLab Mod Knob Mapping

All of the SynthLab core objects implement one to four functions that are controlled, with the four
Mod Knobs included in every core. Some of these are already coded, and some are left as exercises
for you. All cores expose the four mod knob controls, which are named A, B, C, and D. When you
add strings to the coreData.modKnobStrings, they are exposed for the user in the GUI control. The
four knobs are each unipolar in nature and transmit values on the range [0.0, 1.0]. The first mod
knob (A) has its default in the center position (0.5), while the other three default to 0.0, so choose
wisely when customizing these controls. For example, in the synth filter cores, the constructor sets
up the four GUI strings; note that the “EG Int” and “BP Int” controls stand for “EG Intensity”
and “Bipolar Intensity,” respectively. Most modulation routings are controlled, with some kind of
intensity value that may be unipolar or bipolar, and the filter has specialized intensity controls for
each.

// --- modulation control knobs
coreData.modKnobStrings[MOD _ KNOB _ A] = “Key Track”;
coreData.modKnobStrings[MOD _ KNOB _ B] = “Drive”;
coreData.modKnobStrings[MOD _ KNOB _ C] = “EG Int”;
coreData.modKnobStrings[MOD _ KNOB _ D] = “BP Int”;

Since the mod knobs generate unipolar values, you will usually need to convert these to some
other range of values. There are three helper functions to allow you to map these controls easily.

6 Modulation
Theory and Calculations

Modulation: Theory and Calculations 71

Each function accepts the normalized mod knob value, then maps it to a range that you set with
the min and max parameters, and returns this value as a double data type.

getModKnobValueLinear(double normalizedValue, double min, double max)

getModKnobValueLog(double normalizedValue, double min, double max)

getModKnobValueAntiLog(double normalizedValue, double min, double max)

For example, the filter’s “Drive” control needs to map to a linear range of 1.0 to 10.0, and this is
easily accomplished as:

filterDrive = getModKnobValueLinear(
parameters->modKnobValue[MOD _ KNOB _ B], 1.0, 10.0);

The three functions map linear, log, or anti-logarithmically, and allow you maximum ease in deal-
ing with the incoming mod knob values.

6.2 MMA Transforms & Calculations

The MIDI Manufacturer’s Association (MMA) published two documents called “DLS Level 1”
and “DLS Level 2,” which are specifications for two PCM sample-based software synths that
used downloadable sounds (DLS) for samples. These documents are fantastic as they show two
different software synth specifications, with Level 1 being the simpler of the two. The MMA doc-
uments several transforms that are used to convert lines into curves and are based on maintaining
curvature between 7 and 14-bit control signals. These include concave and convex transforms that
are complementary in nature. These are easily adapted to work with floating point values on both
input and output ranges of [0.0, 1.0], as shown in Figure 6.1(a) and (b), and they are simple to make
bipolar by mirroring each half across the x-axis. The simple equations for these adapted trans-
forms are:

Concave Convex
 1.0 1x ≥ .0 1.0 1x ≥ .0
 5 (6.1)

y = − log 1() 5− ≥x x0.0 1≥ .0 y = 1+ log 0()x x.0 ≥ ≥ 1.0
 12 12
 0.0 0x ≤ .0 0.0 0x ≤ .0

The 5/12 factor comes from the −96 dB lower limit for 16-bit digital audio and causes a tiny error
near the 0.0 and 1.0 values. The functions in synthfunctions.h include a few more correction coeffi-
cients that I adapted from a similar transform which I use for logarithmic taper GUI controls and
which performs a perfect mapping along the input/output ranges of [0, 1].

The MMA also defined an attenuation calculation for converting MIDI velocity on the range
of [0, 127] into an attenuation value in dB, with −96 dB as the theoretical lower limit; this is
shown in Figure 6.1(c). This transform is also used for converting linear MIDI CC 7 (volume)
and CC 11 (expression) data into a curved form. This calculation is based off of a simple square
law on the MIDI value, and we may convert the MIDI velocity into a direct scalar, bypassing the

72 Modulation: Theory and Calculations

log function altogether with the square law equation producing the familiar y = x2 curve shown
in Figure 6.1(d):

1272
attendB = 20 log

 vel2
vel2 (6.2)

gain =
1272

Since the convex and concave transforms involve a log operation, I’ve also created lookup table
(LUT) versions for each, and the function will allow you to choose the method. The MMA velocity
to normalized gain uses a simple square law, but you can experiment with this. Many synths offer
multiple velocity curves for the users. The function prototypes of all these functions are below, and
each has an LUT option that is disabled by default. Their implementations follow the equations
and are simple and straightforward. There are also reverse (mirror image) versions that are used
specifically in the DX EG object.

double concaveXForm(double xn, bool useLUT = false)
double bipolarConcaveXForm(double xn, bool useLUT = false)
double convexXForm(double xn, bool useLUT = false)
double bipolarConvexXForm(double xn, bool useLUT = false)
double mmaMIDItoAtten(uint32 _ t midiValue)

6.2.1 MIDI Velocity to Attack and Note Number to Decay Scaling

A MIDI modulation for the envelope generator that is useful when applied to the output DCA in-
volves scaling the attack time with the velocity such that the attack time gets shorter as the velocity
increases. Another common MIDI modulation involves scaling the note number to the decay time
such that the decay gets shorter as the note number increases, similar to the way a piano note’s
envelope changes as you play in the higher register. These are both applied in the EG core object
and may be enabled in the SynthLab synths. The calculation is simple and creates a scalar value
that is multiplied against the attack or decay time during the note-on event, so this modulation
only happens during note-on.

Figure 6.1 (a) MMA concave and (b) MMA convex transforms; (c) MMA velocity to attenuation in dB and
(d) square law converted velocity to normalized gain graphs

Modulation: Theory and Calculations 73

velocity
scalarVEL = −1

127 (6.3)
note number

scalarNOTE = −1
127

6.2.2 Constant Power Panning and Crossfading

Most SynthLab oscillators include a panning control to place the signal in the stereo field. The
GUI control is set to move from −1 to +1 as the user pans from left to right, with zero as the center
value. To get the imaging correct, you need to apply complementary constant power curves to
generate the left and right channel. For crossfading between waveforms, as used in the morphing
oscillators, the same principle applies to make the crossfading sound smooth, though, in some
cases, linear crossfading may work better. For panning, the MMA DLS spec uses trigonometric
curves with one quadrant each of a cosine and sine function; these are shown in the solid lines
in Figure 6.2(a). In the center position, both functions evaluate to 0.707, which is exactly −3 dB.
Alternatively, a square power law equation may be used, as shown in the dotted lines in Figure
6.2(a). At the center point, each function evaluates to 0.75. For panning, the x-axis moves from −1
to +1 as the user moves the panning knob clockwise from the hard-left position. For crossfading,
the x-axis represents the crossfade time. Figure 6.2(b) shows the XFader C++ object that performs
the crossfade operation on two input signals. This object allows you to choose between linear or
either of the two constant power equations. It also allows you to set two crossfade times, one for
each input; as shown, the crossfade times are identical. The constant power equations are given in
Equation 6.4 for both panning (left/right) and crossfading (A/B).

Trigonometric Square Law

 π
() = +cos 1 1 = − 2A xLEFT () A x0.25 1

 4 ()LEFT ()+
 (6.4)

 π
() ()2B xRIGHT R= +sin ()1 1 B x() = − 0.5 0− .5

 IGHT4

Figure 6.2 (a) Constant power curves for panning and crossfading with solid line for trigonometric and dot-
ted line for square law transforms, and (b) the XFader C++ object crossfades between two signals,
A and B, using linear, trig, or square law crossfading

74 Modulation: Theory and Calculations

6.3 Sequential Circuits Vector Joystick Envelope Modulation

The Sequential Circuits Prophet VS® introduced a new kind of envelope modulation for crossfad-
ing between either two or four different audio signals with a “vector joystick” known as vector
synthesis. The Korg Wavestation® and Wavestate® synths include this modulation option as well.
In essence, the user controls the relative mixes of the signals with an X-Y joystick, either manually,
via MIDI CCs, or by programming a virtual path for the joystick to take during the note-event.
Figure 6.3(a) shows the joystick as it appears on the synths, in a diamond shape. The four vertices
marked A–D represent the four sources to be blended. The joystick’s (x, y) coordinates are con-
verted into four scalar values, which are used to attenuate each signal before mixing. The four
values always add up to exactly 1.0, and when the joystick is in the center position, the values are
all equal at 0.25.

Examining the Korg equations [Phillips], it is evident that the physical joystick unit was rotated
45 degrees clockwise prior to its mounting in the synth enclosure such that the true x and y-axes lie
at 45-degree angles, shown with the dotted lines in Figure 6.3(a). For soft synth GUIs, it is simpler
to get the true (x, y) coordinates by undoing the rotation, as shown in Figure 6.3(b), which places
the x- and y-axes in the standard orientation. The vector mix equations use the square law func-
tions, which are modified to produce the four envelope curves shown in Figure 6.3(c), in which the
curves are linearized for easier viewing.

The equations are designed to accept MIDI CC values, and to keep the code identical to
the original, you need to scale out the (x, y) coordinates to [0, 255] and rotate the incoming (x,
y) point counterclockwise prior to computation to match the rotated original. Equation 6.5
combines the point rotation with the MIDI scaling of the (x, y) coordinates into (xM, yM) and
then generates the vector multipliers as percentages that are easily converted into normalized
values.

 x y− x y+
xM M= 127 +1 y = 127 +1

 2 2
Coefficients as percentages [0, 100%]

x y
B = M M

645 (6.5)
x y(255 −)

C = M M

645
(255 − −x y)(255)

D = M M

645
A B= −100 − −C D

In addition to the four multipliers, two more potential modulation values are calculated: these are
the x- and y-axis reflections of the current joystick location, called the AC and BD axis values. The
function calculateVectorMix generates the A–D coefficients, along with the unipolar AC and BD
reflection values. A structure is used to return the data. Notice that the joystick origin may also
be adjusted.

struct VectorXFadeData
{

double vectorA = 0.25;
double vectorB = 0.25;

Modulation: Theory and Calculations 75

Figure 6.3 (a) The original Sequential/Korg vector joystick; (b) the rotated version is simpler for GUIs (the dot-
ted lines show the actual x- and y-axes); and (c) visualization of the four envelopes that are generated
as the stick moves from points 1 to 3, where it stays during the sustain period, and note-off moves
the joystick to its final position 4

double vectorC = 0.25;
double vectorD = 0.25;

// --- unipolar
double vectorAC = 0.5;
double vectorBD = 0.5;

};

VectorXFadeData calculateVectorMix(double joystick _ X,
double joystick _ Y,
double origin _ X = 0.0,
double origin _ Y = 0.0)

6.4 Linear Frequency Modulation with LFO or EG

In the most basic version of FM, you simply add or subtract a value from the underlying frequency
variable, then recalculate the new clock phaseInc. SynthLab uses bipolar modulation for linear
FM, so first, you calculate the range and half-range of the modulation limits linearly. The reason
for saving the full range is that you may wish to use a unipolar modulator such as the AmpEG in
your variations. FCMOD_MIN is the minimum oscillator frequency, and FCMOD_MAX is the
maximum value.

const double RANGE = ((FCMOD _ MAX - FCMOD _ MIN));
const double HALF _ RANGE = RANGE / 2.0;

To implement bipolar modulation, you multiply a bipolar value by the half-range of the modula-
tion limits. Linear frequency modulation means adding a frequency offset (positive or negative) to
the underlying frequency value.

mod *= biPolarValue HALF _ RANGE
f fOSC O= +SC mod (6.6)

76 Modulation: Theory and Calculations

The bipolar FM modulation value is always found in the module’s modulationInputs array:

double mod = processInfo.modulationInputs[kFrequencyMod] * HALF _ RANGE;

To apply the modulation, you simply add the half-range scaled value and then bound the value:

double newFrequency _ Hz = parameters->frequency _ Hz + mod;
boundValue(newFrequency _ Hz, FCMOD _ MIN, FCMOD _ MAX);

At this point, you will use the newFrequency_Hz to alter the clock’s phaseInc; then, the modulation
is complete.

lfoClock.setFrequency(newFrequency _ Hz, sampleRate);

6.5 BPM Sync

Synchronizing LFOs and delay FX to BPM is common today, and all DAWs and plugin frame-
works have the ability to send the plugin BPM and time signature information. You can calculate
timing values from the BPM and set the LFO frequency, or other time-based parameter, using a
note duration, such as eighth note triplets. SynthLab features two different functions: one for the
LFO and the other for the Wavestate wave-sequencer. The LFO function accepts a mod knob value
from [0.0, 1.0] and quantizes it into eight integers that are used as index values in a lookup table.
Moving the control from minimum to maximum steps through the sequence of note durations:
whole note, half note, dotted quarter, quarter note, dotted 8th, 8th note, dotted 16th, and 16th
note. The function returns the note duration in seconds:

double getTimeFromTempo(double BPM, double normalizedNoteMult)

// --- SynthLab code
double bpmSync = getTimeFromTempo(processInfo.midiData->auxData[kBPM],

parameters->modKnobValue[MOD _ KNOB _ D]

if(bpmSync > 0.0)
parameters->frequency _ Hz = 1.0 / bpmSync;

The extended function that is used with the WaveSequencer object implements more note durations
with a larger lookup table and returns the note duration in seconds or milliseconds. The function
supports 16 different rhythmic values: 32nd note triplet, 32nd note, 16th note triplet, dotted 32nd
note, 16th note, 8th triplet note, dotted 16th note, 8th note, quarter note triplet, dotted 8th note,
quarter note, half note triplet, dotted quarter note, half note, whole note triplet, dotted half note,
whole note, and dotted whole note. A strongly typed enum is used to send the note duration, and a
static lookup table of multipliers is applied.

enum class NoteDuration { k32ndTriplet, k32nd, k16thTriplet, kDot32nd,
. . . kWhole, kDotWhole,

double getTimeFromTempo(double BPM, NoteDuration duration,
bool returnMilliseconds = false);

Modulation: Theory and Calculations 77

Both functions use the same core code, which simply converts the BPM into the corresponding
duration for a quarter note in milliseconds or seconds, then uses a lookup table to scale the dura-
tion accordingly.

6.6 Quantizing

Several oscillators may implement step quantization on the output signal. Use the quantizeBipo-
larValue method, in which two mapping functions quantize the signal and remap it as a double
value.

double quantizeBipolarValue(double d, uint32 _ t qLevels)
{

uint32 _ t u = mapDoubleToUINT(d, -1.0 ,1.0 ,0 , qLevels, true);
return mapUINTToDouble(u, 0, quantLevels, -1.0, 1.0);

}

To use the function, choose the quantization levels directly, or calculate to mimic bit-depth
reduction:

// --- 12 steps
outputValue = quantizeBipolarValue(outputValue, 12);

// --- simulate 10-bit audio
outputValue = quantizeBipolarValue(outputValue, pow(2.0, 10));

6.7 Ramp Modulation: Fade-in and Fade-out

The simple RampModulator produces a linearly increasing or decreasing output depending on the
start and end values. It may be used to ramp up or down between any kinds of values – amplitudes,
frequencies, etc. Fade-in and fade-out are common uses of this object. Portamento is a special
circumstance and is handled with the GlideModulator instead. To set up the object, you give it the
required information for counting time intervals.

For a fade-in modulation, start and stop are 0.0 and 1.0; here, the fade-in time is 1 second =
1000.0 mSec, and we supply the normal processInfo.sampleRate.

RampModulator fadeInModTor;

// --- (start, stop, ramp time(mSec), sample rate)
fadeInModTor.startModulator(0.0, 1.0, 1000.0, processInfo.sampleRate);

For a fade-out modulation, start and stop are 1.0 and 0.0; here, the fade-in time is 5 seconds =
5000.0 mSec:

RampModulator fadeOutModTor;

// --- (start, stop, ramp time(mSec), sample rate)
fadeOutModTor.startModulator(1.0, 0.0, 5000.0, processInfo.sampleRate);

78 Modulation: Theory and Calculations

To apply the fade-in/fade-out, you use two functions: one to get the modulation (ramp) value and
the other to increment the clock. For block-processed modules like the LFO, you advance the clock
by the block size; otherwise, you advance it by 1.0 (the default).

// --- get modulation multiplier
fadeInModValue = fadeInModTor.getNextModulationValue();
// --- bump the clock; here is for a LFO (block processed)

fadeInModulator.advanceClock(processInfo.samplesToProcess);

The resulting modulation value is a simple scalar multiplier that you apply to a signal. For the LFO
output, you might write:

lfoOutput *= fadeInModValue;

6.7.1 Glide Modulation: Portamento

Portamento or glide modulation is a special case of pitch modulation. The user plays a note, which
sounds as usual. Then, the next note is triggered, and the pitch glides up or down to the new note
over a time-span the user selects. Each successive note glides up or down smoothly to the final
pitch. Portamento may be applied as a linear shift or as a shift in semitones, as done in SynthLab.
In addition, it may be applied with a constant time (e.g. 1000 mSec between each note, no matter
how close or far apart they might be) or a constant rate (e.g. 1000 mSec/octave). The THX® con-
stant time portamento chord is a famous example which plays in many theaters before a movie
starts.

The GlideModulator object is a specialized version of the RampModulator that is designed to
glide in semitones using the two MIDI note numbers, as described in the next section. All Mod-
uleCore objects have a GlideModulator attached as a member, so it is ready to use without much
work. This modulation is calculated on a per-block basis, as with the other low frequency mod-
ulators (LFOs and EGs). Using the GlideModulator only requires three function calls. The first
initializes and starts the modulation; notice that the start and end MIDI notes are set as double
data-types, and the glide time is in milliseconds. This function calculates and stores the distance
between notes in semitones, named the glideRange, and an increment (step) value called timerInc.

bool startModulator(double startNote, double endNote,
double glideTime _ mSec, double sampleRate);

To get the next glide modulation value, which is a pitch shift in semitones between the notes, you
call the getNextModulationValue function, which implements a simple countdown timer to create
the output.

double getNextModulationValue(uint32 _ t advanceClock = 1)
{

double output = 0.0;
if (timerActive)
{

// --- output
output = countDownTimer*glideRange;

Modulation: Theory and Calculations 79

countDownTimer -= advanceClock * timerInc;

if (countDownTimer <= 0.0)
timerActive = false;

}
return output;

}

The internal glide clock is advanced automatically by one tick during this function and may be
advanced independently with a function. After each render call, we will need to advance the clock
by the block size to ensure that the timing is correct.

void advanceClock(uint32 _ t ticks);

6.8 Pitch Calculation

Each MIDI note represents one semitone’s musical distance. To calculate the number of semitones
between two MIDI notes, you simply subtract the two note numbers. The equal temperament tun-
ing equation calculates the oscillator pitch from a MIDI note number and a tuning reference for
A4 (usually 440 Hz). Note also that the value 69 is the MIDI note number for A4.

 NoteNum−69

pitch A= ()4 _ freq 2 12 (6.7)

To reverse the calculation and find a MIDI note number from a pitch in Hz, use Equation 6.2 and
truncate the NoteNum value to an integer, which is the MIDI note number.

 pitch
NoteNum = ceil 12 * ln + 69 (6.8) A f4 _ req

6.8.1 Oscillator update Methods: Pitch Modulation

All SynthLab oscillators implement an update function that is nearly identical because the major-
ity of the function involves pitch modulation. The pitch shift calculation creates a scalar value that
you multiply with the MIDI note pitch value in Hz. The equation shows the relationship between
semitones and pitch. Some prefer to implement the equation in cents rather than semitones – there
is no mathematical difference in the end result; however you do need to formulate all shifts as
either semitones or cents.

 pitchModSemitones

pitchshift = 2 12
semitones

 pitchModCents (6.9)
pitchshift = 2 1200

cents

For our pitched oscillators, we will have numerous pitch shifts, which all need to be applied to-
gether. The good news is that you may simply add all the values in semitones (or cents), then only
call the pitch shifting function once. You should memorize the relationships: 1 octave = 12 semi-
tones and 1 semitone = 100 cents.

80 Modulation: Theory and Calculations

For pitched oscillators, we expose the following GUI controls and modulation inputs:

GUI Controls:

• octaveDetune
• coarseDetune (semitones)
• fineDetune (cents)
• unisonDetune (cents)

Modulation:

• bipolar pitch modulation (vibrato)
• glide modulation (portamento)
• MIDI pitch bend
• Global Tuning

The code for combining the modulation and GUI values, and calculating the pitch modulation
value is shown below. First, we define the range of modulation in semitones. I chose one octave up
and down; you may modify this value as you like.

const double kOscBipolarModRangeSemitones = 12.0;

The bipolar modulation value is scaled with the range and the intensity knob control.

double freqMod = processInfo.modulationInputs[kBipolarMod] *
kOscBipolarModRangeSemitones;

The glide modulation is handled with a separate object that does the calculation in semitones.
Notice that there is a secondary pitch shift function that uses a lookup table rather than a power
of two operation; it is commented out, and you can freely switch between the two functions to
evaluate.

// --- do the portamento
double glideMod = glideModulator.getNextModulationValue();

// --- combine all sources in semitones
double currentPitchModSemitones = glideMod + fmodInput +

midiPitchBend + masterTuning +
parameters->octaveDetune * 12) +
parameters->coarseDetune) +
parameters->fineDetune / 100.0) +
parameters->unisonDetune / 100.0);

// --- lookup the pitch shift modifier (fraction)
//double pitchShift = pitchShiftTableLookup(currentPitchModSemitones);

// --- direct calculation version 2 (̂n/12) - equal temperament
double pitchShift = pow(2.0, currentPitchModSemitones / 12.0);

Modulation: Theory and Calculations 81

// --- calculate the modulated pitch value
double oscillatorFrequency = midiPitch*pitchShift;

The wavetable and virtual analog oscillators may be used for FM synthesis, in which case they
must be able to generate negative frequencies and must be bounded to +/-Nyquist.

// --- BOUND the value to our range
boundValue(oscillatorFrequency, (-sampleRate/2.0), (+sampleRate/2.0);

The PCM sample and plucked string oscillators are not used for FM and are bounded to the
lowest MIDI note (OSC_FMIN = ~8 Hz) and OSC_FMAX = 20,480 Hz. I use 20,480 as a top value
in numerous objects; when the lower limit is set to 20 Hz, this produces ten octaves of pitch change,
which has a connection to analog synths that used a 10V control voltage (CV) to modulate across
ten octave ranges.

// --- BOUND the value to our range
boundValue(oscillatorFrequency, OSC _ FMIN, OSC _ FMAX);

At this point, we have the newly updated oscillator frequency. For the wavetable and virtual
analog oscillators, this value is used to update the oscillator clock object that acts as the time-base.
See Chapters 11 and 13 for the PCM sample and plucked string oscillator details.

// --- phase inc = fo/fs
oscClock.setFrequency(oscillatorFrequency, sampleRate);

6.9 Pulse-Width Modulation (PWM)

PWM is a bipolar modulation that operates on the pulse width (or duty cycle) of a square wave
and usually modulates over half ½ the normal range: for example, from 5% to 50% or from 50%
to 95%. This is due to the fact that the two half-range modulations sound identical to the ear. The
VAOscillator is the only SynthLab oscillator that implements PWM. This is accomplished by sim-
ply adding half of the bipolar pulse width modulation (PWM) amplitude to the user’s pulse width
GUI control value. You can find an example in Section 10.9.4.

6.10 Phase Distortion

Invented and patented at the Casio Corporation, Phase Distortion (PD) is roughly in the same
family as frequency modulation (FM) and phase modulation (PM) synths. A single index of
modulation is used to modify the spectral content of the signal. In its simplest sense, PD alters
the shape of the modulo counter’s ramp, which results in a distorted waveform with a modified
spectrum. In phase distortion, you speed up and slow down the time-base by changing the
slope of the modulo counter. You might also imagine the modulo counter, which moves from
0.0 to 1.0, as being a phase value from 0.0 to 2π radians. The modulo counter wraps around
at a point corresponding to the waveform’s period T, which you may think of as the x-axis, as
shown in Figure 6.4(a), with a slope of T/2π which is normalized to 1.0. In Figure 6.4(b), with
a breakpoint placed at (0.5, 0.5), a pure sinusoid is generated. Figure 6.4(c) and (d) show how
the counter output splits into two different slopes when the breakpoint is moved from the (0.5,
0.5) location.

82 Modulation: Theory and Calculations

 mcounter ≤ x mbreak ()1 ()mcounter
distortedModCounter = (6.10)

 mcounter > −x m()2 ()mcounter x y+ break break break

You may also experiment with multiple breakpoints, or you may place discontinuities within the
phase distortion curve. Aliasing can and will occur with phase distortion, and other options may
be used to smooth over sharp breaks between the segment slopes. The SynthLab phase distortion
function performs this simple one-breakpoint process. Modulating the shape value in time, which
is the xbreak variable here, can produce patches with a very nice sound.

double applyPhaseDistortion(double mcounter, double x _ break,
double y _ break = 0.5)

Figure 6.4 (a) The modulo counter with x-axis as period and y-axis as phase with a slope of 1.0, (b) a normal
sinusoid lookup, (c) and (d) relocation of the breakpoint produces two slopes m1 and m2 while
(e)–(f) show the distortion on a sinusoid and (i)–(l) show a ramp modified with phase distortion

In the most simple variation, you fix the y-breakpoint value at 0.5, which corresponds to
the half-cycle point for most waveforms. Then you adjust the x-breakpoint value to apply the
phase distortion as the modulo counter moves slower than normal (shallow slope) or faster than
normal (steep slope). The distortion effects on a sinusoid and ramp waveform are shown in
Figure 6.4(e)–(l).

The key to getting the proper result is understanding that the two-slope counter must always
wrap around at the correct point so that the next cycle starts on the proper location of the first
slope, m1. For single breakpoint phase distortion with an arbitrary breakpoint (xbreak, ybreak) pro-
ducing two slopes m1 and m2, the distorted modulo counter may be found with Equation 6.1.

Modulation: Theory and Calculations 83

{
// --- limit to [0.1, 0.9] to prevent jagged slopes/aliasing
mapDoubleValue(x _ break, 0.0, 1.0, 0.1, 0.9);

// --- calc 2 slopes
double m1 = y _ break / x _ break;
double m2 = (1.0 - y _ break) / (1.0 - x _ break);

// --- can happen if breakpoint is (0.5, 0.5)
if (m2 == m1) return mcounter;
// --- apply distortion
if (mcounter <= x _ break)

return m1*mcounter;
else

return (mcounter - x _ break)*m2 + y _ break;

return mcounter;
}

6.11 Hard Sync

Hard sync is an old analog modulation type that was originally implemented with two oscilla-
tors. In much of the literature and industry jargon, these are named master and slave. In this
text, they are named reset oscillator and output oscillator. The output oscillator is what the user
hears and runs at a higher frequency than the reset oscillator, which runs at the MIDI note
pitch. Each time the reset oscillator begins a new cycle, the output oscillator is reset to start
over. Interestingly, this means that the reset oscillator’s waveform is inconsequential as we
only use its period to adjust the output oscillator. Figure 6.5(a) shows the hard sync sawtooth
waveform, while Figure 6.5(b) shows the result with square waves, in which the hard sync
acts as a duty cycle control. In the most basic hard sync case, the main oscillator is reset back
to its starting point, which is −1.0 for Figure 6.5. Another option is to allow the user to ad-
just the reset point to begin the next cycle at a different value (or starting phase), as shown in
Figure 6.5(c) and (d).

Once again, something that is simple in analog is full of problems when attempted digitally.
Clearly, the discontinuity that is created will have aliased components, if not mitigated. For the
virtual analog oscillators, this is possible to implement while rendering the main oscillator’s wave-
form directly, though it is not simple. A different approach is employed in SynthLab for both the
wavetable and the virtual analog oscillators; this involves crossfading the original main oscillator
and the newly reset oscillator’s two outputs for a short period of time, thereby smearing over
the discontinuity in an attempt to lowpass filter it. This is shown in an exaggerated manner in
Figure 6.6(a) for normal reset and in Figure 6.6(b) for resetting to a non-zero starting phase. This
also means that for the duration of the crossfade window, we will need to have two oscillators
(or modulo counters) running: one for the original signal and the other for the reset version. An-
other option is to center the crossfade window on the discontinuity, which requires synthesizing a
portion of the waveform below −1.0.

84 Modulation: Theory and Calculations

6.11.1 Hard Sync with a Virtual Primary Oscillator

Since the waveform of the primary oscillator is unimportant – only the reset signal is needed – in
theory, we could hard sync an oscillator with an internal primary oscillator’s time-base or, in other
words, an invisible virtual primary oscillator that is grouped with the normal oscillator object.
This is already implemented in the wavetable oscillator cores. The only GUI control required is
the hard sync ratio control that operates on the range of [1.0, 4.0] – you may experiment with higher
ratio values if you like as the mapping is easy to change.

Figure 6.5 H ard sync with (a) ramp/sawtooth and (b) square-wave main oscillators, while (c) and (d) show
the effect of moving the reset point for ramp and triangle waves; notice that the reset oscillator’s
waveform is not used other than as a resetting device

Figure 6.6 C rossfading to smear over a hard-sync discontinuity for (a) the normal reset and (b) reset to a
non-zero starting phase

Modulation: Theory and Calculations 85

To facilitate this operation, a hard sync C++ object called Synchronizer is supplied. This object
contains two SynthClock objects, one for the virtual (imaginary) primary oscillator and the other
for timing the crossfade, along with an XFader object for performing the crossfade operation.
When the hard sync ratio is greater than one, the Synchronizer object’s hard sync primary time-
base is set to the new multiple of the current oscillator frequency:

// --- get the hard sync ratio, map to [1, 4]
hardSyncRatio = getModKnobValueLinear(

parameters->modKnobValue[MOD _ KNOB _ B],1.0, 4.0);

// --- set primary timebase
hardSyncronizer.setHardSyncFrequency(

oscillatorFrequency* hardSyncRatio);

You can check out the Synchronizer operation by examining the WTOCore::renderHardSync-
Sample function, which is called whenever the hard sync ratio is greater than 1.0. This function
performs the following:

1 Check to see if primary clock has wrapped, indicating a new hard sync phase: if not wrapped,
it calls the renderSample function as usual but uses the primary clock as the time-base

2 If a new hard sync phase starts, the crossfade clock begins, and the Synchronizer object per-
forms the crossfade on the old output waveform and the newly synchronized waveform to blur
over the discontinuity

3 When the crossfade is done, the function goes back to step 1 and starts monitoring the pri-
mary oscillator clock.

6.12 Filter Key Track Modulation

When filter key tracking is enabled, the filter’s fc value is set to match the MIDI pitch of the note
that is playing or a frequency that is mathematically related to the MIDI pitch. For example, you
may set the key track amount to +7 semitones, which would place the filter’s fc value a perfect fifth
above the MIDI pitch. If the filter is self-oscillating, then the effect is one of harmonization. The
modulation is simple to implement as it is a MIDI override of the user’s fc setting. There are nu-
merous other options with this kind of modulation, including tracking slopes, center MIDI note
values, and other advanced options. Key-track modulation usually requires two controls – one
to enable the key-tracking and another that sets the distance either as a ratio or as an absolute
offset, e.g. in semitones. The filter core objects include a dedicated on/off switch to enable/disable
the function, and a mod knob that acts as a key-track offset control, ranging from −48 to +48
semitones or +/− four octaves. The key-track modulation is simple: when enabled, disregard the
current GUI setting for the filter fc, and replace it with the MIDI note pitch. Then offset this value
in semitones using the normal pitch, shifting in semitones from Section 6.7. After that, update the
filters in the normal manner. You can find an example in the filter core’s update method:

// --- key tracking
if (parameters->enableKeyTrack)
{

86 Modulation: Theory and Calculations

// --- get semitone offset
ktFmodSemitones = getModKnobValueLinear(

parameters->modKnobValue[FLT _ KEYTRACK], -48.0, +48.0);

// --- reset current fc back to MIDI pitch
fc = midiPitch;

}

The filter receives bipolar and unipolar modulation values from the LFO and EG sources, then the
modulations are summed as normal, and the newly modulated filter fc value is set:

// --- sum modulations
double fcModSSemis = bpFmodSemitones + egFmodSemitones +

ktFmodSemitones;

// --- multiply by pitch shift factor
fc *= pow(2.0, fcModSSemis / 12.0);

Bibliography

danphillips.com. “Wavestation Vector Mix Calculation.” http://www.danphillips.com/wavestation/SYSEX/
WSDevDoc.zip, Accessed October 14, 2020

Dodge, Charles & Jerse, Thomas. 1997. Computer Music Synthesis, Composition and Performance, Chap. 4.
New York: Schirmer.

Junglieb, Stanley. 1986. Prophet VS Digital Vector Synthesizer. San Jose: Sequential Circuits, Inc.
MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 1. https://www.midi.org/specifications-

old/item/dls-level-1-specification, Accessed October 14, 2020
MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 2. https://www.midi.org/specifications-

old/item/dls-level-2-specification, Accessed October 14, 2020
Phillips, Dan. 1991. Wavestation SR Reference Guide. Tokyo: Korg Inc.

http://danphillips.com
http://www.danphillips.com
http://www.danphillips.com
https://www.midi.org
https://www.midi.org
https://www.midi.org
https://www.midi.org

The Envelope Generator (EG) and Digitally Controlled Amplifier (DCA) are two common synth
components found in most synth architectures. These two modules generate time-based amplitude
change values. The EG renders a unipolar output value, which is applied as a modulation value
to other modules. The DCA processes an input with gain and panning (left/right) multipliers; the
SynthLab DCA processes stereo signals.

7.1 Envelope Generator Fundamentals

EGs are most commonly used to control the overall amplitude of the synthesized note-event – the
time domain contour that the musician hears. Most EGs are documented with something like
Figure 7.1(a), which shows an EG with attack, decay, sustain, and release (ADSR) segments. Some
figures show the ADSR segments as lines, but they are usually curves; this is based not only on
the early analog EG circuitry but also on how we perceive loudness. Some of the figures in this
chapter show the EG with linear segments to make the figures simpler and aid in understanding,
but remember that they will usually be curved in an exponential manner.

The attack segment is triggered from the note-on message, and the release segment is triggered
from the note-off message. The message may be MIDI or a control voltage. There are several ways
in which to specify the EG parameters. Figure 7.1(b) shows an EG that uses levels and rates, which
is how the Yamaha DX7 EG is configured. The rate is simply the slope of the segment. Notice that
the start level (L0) does not necessarily need to begin at 0.0, and the end level (L3) does not need
to decay all the way to 0.0.

In most synths, the segments are specified as times, often in mSec. For the attack segment, it is
the time from the start level (usually 0.0) to the maximum amplitude level (usually 1.0), and this
makes sense. There is no sustain time setting, but there is a sustain level setting. The decay and
release times, however, are not specified the way you might think.

A fundamental ramification of the decay and release times being referenced to full-scale is that
the sustain level will alter the actual (perceived) decay and release times, as shown in Figure 7.1(d),
in which the sustain level has been lowered, but the decay and release times have not changed.

The decay and release times are not the actual times you hear but the times it would take for
the EG to decay or release from a full scale value of 1.0 all the way down to 0.0, as shown in
Figure 7.1(c). This is independent of the curvature of the segments themselves.

7 Envelope Generators and DCA

88 Envelope Generators and DCA

In this case, you can see that the actual decay time the musician perceives has stretched a bit, while
the actual release time has shrunk. If you think about it, this does make sense if the EG is controlling
the overall amplitude of the note-event. For example, if the release time were fixed at, say, 1.0 second,
then a loud note with a high sustain level and a quiet note with a low sustain level would have the same
release time of 1.0 second, and that would not make sense to a musician playing the instrument. Play-
ing quiet notes would have the same release times as loud ones. If you’ve played a piano, you know
that is not the case: softly played notes decay faster because there isn’t as much energy in the signal.

7.1.1 EG Contours

All of the EGs in Figure 7.1 consist of four segments, which are also called states: attack, decay,
sustain, and release. There are several other variations that are useful in different applications.
These include:

• AR: attack and release only, no sustain, as in Figure 7.2(a); the note may release and end long
before the musician releases the key

• AHR: attack, hold and release; the hold portion is flat and usually at the maximum amplitude,
as in Figure 7.2(b)

• DELAY: in some cases, such as in Figure 7.2(c), the attack state is delayed for some time before
starting; this adds a “D” to the acronym, such as DAHR, and is simple to implement with a
delay timer

• ADSLSR: attack, decay, slope, sustain, and release; the slope segment may move in the up-
wards or downwards direction – this is the SynthLab DX-EG object, which is similar to the
EG used in the DX7; Figure 7.2(d) shows an upward slope version – notice that the slope seg-
ment is linear

Figure 7.1 (a) ADSR envelope generator with linear (dashed) and exponential segments (b) specifying the
EG using levels (L) and rates (R), and (c) the decay and release times are actually calculated from
the full-scale value to zero and (d) changing the sustain level with all else constant changes the
perceived decay and release times

Envelope Generators and DCA 89

• OFF: the VCS3 has an interesting “trapezoidal” (AHR) EG that includes an off-state and off-
time; if the user sets the off-time to the maximum value, the EG behaves as normal, releases
to zero, and is finished, but if the off-time is less than the maximum value, the EG stays off
for that period of time, then retriggers itself for another sweep through the states, creating a
self-retriggering EG; this is shown in Figure 7.2(e)

Other variations also exist, such as a double-attack EG (ADADSR), which can be useful in mim-
icking the lip-buzz attack of horn instruments, or the Casio CZ EG, which implements nine seg-
ments, including a double-release state after the note-off event occurs. The EG is rendered using
a simple finite state machine, and it is easy to add or remove states or skip over states so that one
algorithm may implement many of the contour variations.

7.1.2 EG Triggering and Note-On

EGs may be used as modulators for the various synth modules, including the output EG that
controls the output amplifier and the filter EG, which modulates the filter cutoff frequency fc.
In almost all cases, the EG, no matter what its use as a modulator, is triggered to begin oper-
ation as a result of the MIDI note-on event. There are several modes of triggering and ways in
which the EG can respond, dating back to early analog synths that were monophonic. When
the user depresses a key, two signals are sent to the EG; these are called the trigger and gate,
as shown in Figure 7.3(a). The trigger marks the note-on event, and the gate supplies the key
hold time and the note-off event. Figure 7.3(b) shows an early variation in which the trigger
and gate are combined into an s-trigger, which attempts to relay the same information about
the note-event.

Suppose a musician plays a succession of notes, releasing each key before depressing the next. If
this is done so quickly that the EG never fully releases, there are two ways in which the EG may re-
spond. Figure 7.3(c) shows one variation in which the EG simply restarts from the last output level.
Figure 7.3(d) shows another option in which the EG is forced to reset back to the starting point,
even if the release period has not ended. This is called reset-to-zero (RTZ) or simply reset-mode,
and it is clear that this mode will produce a more pronounced staccato sound, sometimes with
audible clicks at the reset point.

Figure 7.2 More EG contours including (a) AR, (b) AHR, (c) DAHR, (d) the SynthLab DXEG with linear
slope segment (SL), and (e) the VCS3 re-triggering “trapezoidal” EG

90 Envelope Generators and DCA

7.1.3 Legato Mode

Now consider the case in which a musician plays a succession of notes but does not release each key
just before depressing the next. On piano, this is called playing legato, which means that there is a
smooth transition between notes as they blend into one another. Figure 7.4(a) shows the output for
trigger/gate synths – for each new note-event, the EG returns to the attack state. But for s-trigger
synths in Figure 7.4(b), there is no dedicated note-on signal, so the EG ignores the note-on events
and never returns to the attack state, creating the legato playing style where notes blend smoothly
together. On more modern synths, the s-trigger version is sometimes offered as an option called
legato mode.

Figure 7.3 Early analog EGs with (a) trigger and gate signals, and (b) EG with s-trigger signal, (c) the EG
restarts with each note on event from the previous output value and (d) the EG is reset back to the
starting point with each note on event; the logic is shown as active-high but may be implemented
as active-low as well

Figure 7.4 Legato playing with (a) a trigger/gate EG and (b) an s-trigger EG

Envelope Generators and DCA 91

7.1.4 EG Release and Note-Off

It should be evident by now that the EG and note-on and note-off events have a very close rela-
tionship. Additionally, when the EG is used to control the output amplifier, the note-event is only
recognized as being complete when the EG’s output value has decayed all the way to zero or its
final end value, which the user may control on some EGs. This means that the EG plays a vital role
in determining the state of each voice in a polyphonic synth. For a monophonic synth, the EG also
has a special function with respect to legato mode operation, as outlined in Section 7.1.3. Notice
that this means that the off-state needs to be included in the model.

7.1.4.1 Unconditional Release Mode

If the musician strikes a key and releases it quickly, before it has a chance to go from attack to decay
to sustain, then we have a couple of options for handling this event. The majority of EGs will simply
jump to the release state so the EG output decays from its value when the key is released, as shown
in Figure 7.5(a) and (b) – notice that the EG never reaches peak amplitude. This behavior usually
sounds natural because it is the way acoustic instruments usually function. Another option is called
unconditional release mode; it is often paired with an AR or AHR EG contour. In unconditional
mode, when the musician releases a key, the EG moves through all of its phases right through to
the release and off phases, as shown in Figure 7.5(c). This allows a musician to hold down a chord
and quickly release the notes, causing a volume swell without the need to keep the keys depressed.

7.1.5 EG Shutdown State

In addition to the four EG states of attack, decay, sustain, and release, there may be an additional
state called shutdown. In shutdown mode, the EG descends from its current value right down to

Figure 7.5 (a) The note-off event occurs before the EG reaches full amplitude and results in (b) a truncated
version while (c) shows the unconditional release mode

92 Envelope Generators and DCA

0.0 over a very short period of time, in about a millisecond, and in a linear manner. You can see
the shutdown phase in Figure 7.3(d) in reset-to-zero mode. It is also used during the voice-stealing
operation to quickly shut down the voice that is being stolen. For voice-stealing, it is important
that the shutdown take place fast enough that the musician does not discern a tactile response lag
before the new voice and note are rendered.

7.2 EG Implementation: Finite State Machine

The ADSR EG can be modeled as a Finite State Machine (FSM) with the following states; the
DXEG has an additional state called SLOPE that is between the decay and sustain states.

• OFF
• ATTACK
• DECAY
• SLOPE (DXEG only)
• SUSTAIN
• RELEASE
• SHUTDOWN

Figure 7.6 shows the state transition triggers in circles, which are either note-events or logic based
on the EG output, crossing above or below some value. Figure 7.6(a) shows the standard ADSR,
while Figure 7.6(b) shows one version of the DXEG with added slope state; in this case, the decay
level LDCY is below the sustain level. In the other variation, the decay level is above the sustain
level, and the logic is reversed.

In C++ code, the FSM may be coded with a switch-case statement, a compound if-else state-
ment, or a jump table if you are familiar with assembly languages. In SynthLab, the EGs are all
implemented with switch-case statements. For example, the state transition logic from the attack
to the decay state, using switch-case statements and a strongly typed enum for the state variable,
would resemble the following code – note the check to see if the attack time is zero, in which case
the FSM advances to the decay state, after setting the output to 1.0, which is the maximum EG
output value:

Figure 7.6 T he circles show the state transition triggers for the (a) ADSR and (b) DXEG with added slope
state; this EG may also have the decay level LDCY set above the sustain level, and the transition
trigger logic is inverted

Envelope Generators and DCA 93

case EGState::kAttack:
{

// --- render value
envelopeOutput = // <--- do the render here

// --- check for next state
if (envelopeOutput >= 1.0 || attackTime _ mSec <= 0.0)
{
// --- clamp to max value

envelopeOutput = 1.0;

// --- go to decay state
state = EGState::kDecay;

break;
}
break;

}

7.2.1 EG Implementation: Note-On, Note-Off, and Shutdown

The note-on and note-off messages play a special role in the EG’s state, and these set up a few rules
for the FSM.

7.2.1.1 Note-On

If a new note-on message arrives while the EG is OFF, it moves to the attack state and begins the
EG render cycle. If a new note-on message arrives while the EG is running, the FSM has three
options depending on the mode:

1 Normal mode: the EG moves back to the attack state and begins the render cycle from the
current output value

2 Legato mode: the EG ignores the new note-on message (as the s-trigger would) and continues
its render cycle

3 Reset-to-zero: the EG moves into its special emergency shutdown state (see Section 7.1.5) and
descends to 0.0 rapidly

7.2.1.2 Note-Off

Handling of the note-off message depends on the EG conditionality.

1 An unconditional EG will ignore the note-off message and continue the EG render cycle, end-
ing the EG render cycle only after the release state completes.

2 All other EG types will jump to the release state and begin decaying from that value down to
0.0 (or the user’s selected release-end value), ending the EG render cycle

94 Envelope Generators and DCA

7.2.1.3 Shutdown

The shutdown state is special in that it may or may not be used, depending on the situation. There
is no state transition trigger logic for this state. Shutdown is accomplished with a dedicated EG
function call and is a result of either a note-off or a note-on message.

1 Reset-to-zero (monosynth): when enabled, new note-on messages force the EG into the shut-
down state to create the jagged, click-y, instant-on sound

2 Voice steal (polysynth): in the event of a voice-stealing operation, the EG will go into the shut-
down state to quickly end the note-event so the voice can be stolen and begin rendering a new
note

The shutdown state uses a fast linear taper – this happens so quickly that no one will notice if it
is linear or not. The taper uses a simple increment value, which represents a negative step that is
subtracted from the output until it decays to 0.0. Knowing the sample rate, current output value,
and shutdown time in milliseconds, the increment value is found as:

−(1000.0 *envelopeOutput)
incshutdown = (7.1)()t fshutdown s()

So, you can see that the shutdown operation is a special case, and it is always followed by a new
note-on event. All of these states, rules, and transition logics are summed up in Figure 7.7, which
shows the FSM diagram for the ADSR EG, including shutdown. The dotted lines show that the
shutdown message may arrive any time after the EG has been started and will always result in the
same state. Likewise, the note-off message may occur at any time after the EG begins rendering
and results in a jump to the release state.

Figure 7.7 The FSM diagram for the ADSR EG with shutdown; this does not show the monosynth legato or
reset-to-zero options to simplify the diagram

Envelope Generators and DCA 95

7.3 Digital EG Implementation: Rendering the Output

The last detail may be the most important: how do you render the lines or curves that make up the
EG output with a digital system? There are several solutions, from simple to complex. I have a sep-
arate object for emulating an analog EG, so let’s focus on a digital version first. Linear EGs are not
especially useful for the output amplifier or the filter EG; however, they may be employed in FM
operators, which use an embedded EG that is permanently connected to an oscillator’s output. I
use a method to convert the linear segments into exponential curves, and this allows the user to
blend the linear and exponential curves together to generate any combination desired; this is the
basis for the DXEG object, used exclusively for FM operators in SynthLab.

7.3.1 Linear and Exponential Steppers

A linear EG is easily rendered using simple counters with preset step sizes or increment values, as
show in Figure 7.8(a). The counters usually move between off (0.0) and full-scale (1.0), but that is
not a fixed rule; the counters may start at a non-zero value, and full scale does not necessarily need
to be 1.0. In addition, some EGs allow the sustain level to be set below 0.0 as a negative number
usually on the range of [−1.0, 0.0]. An exponential EG may be approximated using non-fixed coun-
ters whose increment values change by some pre-calculated amount, as shown in Figure 7.8(b). The
Yamaha DX-7 EG is said to use this type of staggered counter system.

7.3.2 Linear EG

The equation that relates the attack, decay, slope, or release time in milliseconds to the step in-
crement size is shown in Equation 7.2. This includes a scale variable that is +1.0 for the rising
(upwards) segments and −1.0 for the downward segments (decay and release). However, you may
adjust the scale to either expand or shrink the segment times or alter the minimum or maximum
values. The DXEG features a slope segment that may move in the upward or downward direction
depending on the decay level setting. Once that is known, the calculation is trivial.

 1.0 upward
scale =

 −1.0 downward
 (7.2) 1000

egStepSize s= cale
 ()f ss (_egTime mSec)

Figure 7.8 (a) Linear EG with constant step sizes within each state and (b) approximating an exponential
EG with variable step sizes; the axes are unlabeled to show that the numerical limits of min and
max are variable

96 Envelope Generators and DCA

7.3.3 Exponential EG from Linear EG

Converting the linear EG into an exponential one presents some challenges that might not be ob-
vious at first glance. One simple option is to convert the linear values into decibel (dB) values with
0.0 dB as the maximum level – the top of the attack segment. This is easily accomplished with the
standard dB equation and you can think of this as a linear to dB mapping. Now the problem is
what to do with the linear EG value of 0.0 since you cannot calculate the log of a zero or negative
value. If that value must be 0.0, then the value just before it needs to be very close to zero, or the
user will hear a “step” as the EG shuts completely off. If you choose −60 dB for the last non-zero
map value, the step is easily audible when used to modulate the output amp or filter. If you choose a
small value like −96 dB or −120 dB, then the bottom section of the curve will be very flat and won’t
sound correct. Notice that slew limiting through a lowpass filter will have the same issue as well.

What we need is an exponential mapping equation that has its minimum and maximum val-
ues pinned down at 0.0 and 1.0. Fortunately, the MMA convex and concave transforms from
Section 6.2 may be employed using the SynthLab functions that automatically fix the endpoints
correctly – a bit more work than in the MMA documents. These functions allow you to choose
to use a lookup table (LUT) instead of performing a log10 or a pow function in C++ so you may
experiment for the best CPU usage. The transforms and tables are designed on a range of [0.0, 1.0].
You simply call the mapping function to convert the values along the range that you need.

It is crucial that we maintain the special consideration that the decay and release times are spec-
ified from full-scale to zero, as discussed in Section 7.1, in which the sustain level plays a key role in
the actual segment time perception. This means that we will only be using parts of the functions or
tables, and not their entire ranges. In other words, for these segments, we need to operate on parts
of the curves, not the entire curve. In order to make this work, we need a perfectly complementary
function (or LUT) to ascertain the range of values so that we can sew together the segments prop-
erly. The concave and convex transforms (or tables) in Figure 7.9(a) and (b) may be used to find
these values. Figure 7.9(c) shows the concept – the linear EG output is fed into either the convex or
concave transform, depending on the state. The attack segment uses the convex transform, while
the decay and release segments use the concave transform. Notice that the slope segment (SL) is
kept linear for the DXEGCore that uses this method and that the attack segment does not use the
entire range – it ends early, which is covered in Section 7.5 on analog EGs.

7.4 Biased EG Output

If you play an early analog synth or a faithful recreation, such as the Korg iPolysix® app, and you
apply one of the EGs to the pitch modulation of the oscillators, something strange happens – the
notes don’t play in tune. This is because the pitch is only shifted positive from the attack state, and
only goes back to 0.0 (no pitch shift) when the release state is complete. As shown in Figure 7.10(a),
if the sustain level is not set to 0.0, then the pitch of the note will be sharp for the entire sustain
duration of the note-event. While this might make an interesting harmonization effect with other
oscillators, it is usually not exactly what is required. If you subtract from the sustain-level setting,
then the EG is biased back down to 0.0 for the sustain portion, as shown in Figure 7.10(b). Here,
you can see the importance of allowing a non-zero start or end point so that the note does not
start or terminate flat in pitch with respect to the sustain portion, unless that is what the musician
desires. The pitch and filter EGs in the Korg Wavestate® are set up this way, with minimum and
maximum y-axis values of −100 to +100, or anything in between, corresponding to −1 and +1 for
SynthLab’s EGs.

Envelope Generators and DCA 97

7.5 Analog EG Emulation

The original analog EGs were always exponential in nature because they used one or more capac-
itors that charged for attack and discharged for decay and release. The attack, decay, and release
knobs are implemented with variable resistors that set three different RC time constants, which
control segment times. Ultimately, this is why the decay and release times are set from full scale
to complete discharge, and it sounds correct to our ears that the sustain level influences these
times. Figure 7.11 shows the underlying concept; in 7.11(a), the note-on event starts the capacitor C
charging, while the note-off event causes the discharge. The RC time constants for (RATTC) and
(RRELC) set the attack and release times. The flat top that is normally formed during the charging
process usually does not sound correct. In the Curtis CEM3310 EG chip (used in several older
synth designs), the capacitor only charges to about 77% of the asymptote value, giving the attack

Figure 7.9 (a) The concave and (b) convex transforms are used to give contour to the linear segments,
and (c) shows the overall concept; note that the slope segment is kept linear

Figure 7.10 (a) When using the EG to modulate pitch, all of the portion above 0.0 is sharp, including the
sustain segment, and (b) the biased EG pulls the sustain back in tune but causes the start and end
of the note-event to be flat; adjustment of the start and end values mitigates this

98 Envelope Generators and DCA

The RC term is called the time-constant and named τ. The capacitor’s charge/discharge time is
related to the time constant. A real-world non-ideal capacitor charges to about 98% at the time
t = 5τ. It takes the same amount of time to discharge to 2%. To model the CEM3310, we’ll only let
the capacitor charge to 77% and discharge from there as well. It charges to 77% of the total at the
approximate time t = 1.5τ. It discharges in about t = 4.95τ. Normalizing the R and C values to 1.0, we
obtain the Equation (7.4) for a 77% capacitor charge/discharge over a range x = [0, 1] and y = [0, 1].

charge discharge

1
y e= −()1 − −1.5 4x xy e= .95 (7.4)

0.77

To implement an envelope generator with an exponential output, we will need to generate expo-
nential curves based on e. This poses a fundamental problem: mathematical exponential functions
do not discharge (decay) all the way down to 0.0 or charge all the way to 1.0. So, we need a way to
not only generate an exponential approximation but also ensure that it advances smoothly across
its thresholds.

7.5.1 Redmon’s Analog EG Emulation

Nigel Redmon’s implementation solves the exponential attack/decay issues and provides flexibility
for many different curve shapes. It is also easy to modify to add more segments. Figure 7.12(a)
shows a first order feedback structure with a single impulse as input and a feedback coefficient b

Figure 7.11 (a) SW1 closes for the note-on event, and the voltage source charges capacitor C through RATT,
then (b) SW1 opens, and SW2 closes for the note-off event, which discharges the capacitor
through RREL; (c) shows the resulting event; note that V is the asymptotic charge voltage, and
0.77V is 77% of this value, used for the analog emulation

portion of the curve a more linear contour, as shown in Figure 7.11(c). More elaborate analog EG
designs used multiple capacitors and resistors and electronic switches (transistors) to generate the
EG voltage. Check out the schematic for the Oberheim SEM® module for an interesting two-
capacitor EG circuit.

The equations for the charge and discharge time of an RC circuit are shown in Equation (7.3).

charge discharge

Q e= − − −t R/ /C te RC (7.3)
1

Envelope Generators and DCA 99

y x() = e−4.5x

y e(1) 0= =−4.5 (7.5)
.011109

For Redmon’s EG, this value is the Time Constant Overshoot (TCO). To calculate and adjust the b
coefficient in order to give the proper decay over the normalized range, use Redmon’s equation (7.6).

ts = time in samples for attack, decay or release
1+TCO

− ln TCO α = (7.6)
ts

= αb e

For example, to correct the exponential decay function in Equation (7.5), where the exponent is
−4.5x, you evaluate it at x = 1 to produce 0.011109. Equation (7.7) shows what happens to the alpha
value’s numerator; it produces −4.511048, which produces a slightly slower decay time than −4.5 as

Figure 7.12 A ttempting to generate a normalized exponential decay over the range of x = [0, 1] using (a) the
first order feedback structure, we observe that the output does not decay to 0.0 and takes on a
non-zero value at x = 1.0, while through (b) the addition of a negative bias signal and adjust-
ment to the b coefficient (b′), we can achieve the proper decay curve and hit, then cross over the
0.0 value

that is slightly less than 1.0. The impulse will recirculate through the structure, being multiplied by
b each time. It is evident that the output will never reach 0.0, though it will eventually become so
small that it cannot be represented with a float or double data-type – this is called underflow and
usually results in a de-normaled number that you see as #DEN when debugging. The idea behind
Redmon’s EG is to add a small offset -xo, as shown in Figure 7.12(b). This tiny bias signal adds a
small negative offset to the output value each time the impulse recirculates, eventually forcing the
value to 0.0, then crossing it into negative territory. In order to achieve the same exponential curve,
the b coefficient needs to be altered to make up for the added offset.

To find the value of the coefficient b, we need to know the RC time constant that we want to emu-
late. For the ADSR EG, there will be three different b values, one for each exponential state: bATT,
bDCY, and bREL. For example, if we look at the analog attack and decay equations in (7.4), we see
that the exponential functions inside are e−1.5x for the attack segment and e−4.5x for the decay and
release segments. Looking at the decay/release exponential, we can calculate that at x = 1.0, which
is where we would like the function to evaluate to 0.0, the function will return a non-zero value:

100 Envelope Generators and DCA

applied to the exponential function. The addition of a small negative bias will then speed up the
decay time so that hits 0.0 exactly in the time (in samples) required.

1 0+ .011109
− ln 0.011109 −4.511048α = = (7.7)

t ts s

b = eα

To find the bias value xo, use Redmon’s equation (7.8), where LSUS is the sustain level on the range
[0.0, 1.0].

 attack + − ()1 1TCO bATT A()TT

x0 = decay L()SUS D− −TCO bCY ()1 DCY (7.8)

release T− −CO ()REL R()1 b EL

7.6 Synth Module: EnvelopeGenerator

Figure 7.13 shows the EnvelopeGenerator module, along with the three included module cores, and
Table 7.1 lists the parameter structure and core information.

7.6.1 LinearEGCore

The linear EG is generally not useful as an amp EG, but it is set up for you to experiment with
and to use as a starting point for your own EG ideas –the segments, timing calculations, and finite
state machine operational code are present in the most minimal form possible. The LinearEGCore
is available to download as an example EG core project for SynthLab-DM. Examine the code for
this core to get started.

7.6.2 AnalogEGCore

The analog modeling EG core implements two EG contours: the traditional ADSR and attack-
release (AR) modes. The AR mode has no sustain-level and is used as a starting point for experi-
menting with unconditional EGs. This EG implements Redmon’s analog modeling equations (7.4)

Table 7.1 EnvelopeGenerator custom parameter structure and cores

Parameter Structure Description
EGParameters Used for all cores, includes additional DX controls

Included Core Description
AnalogEGCore Implements Redmon’s analog modeling EG
DXEGCore My variation on the Yamaha DX EG for FM synths
LinearEGCore Ultra-simple linear EG to use as a starting point, Downloadable SynthLab-DM

core project

Envelope Generators and DCA 101

Figure 7.13 The EnvelopeGenerator module and the three included cores: DX-EG, analog EG, and linear EG;
the module is shown with the DXEGCore selected

and (7.5) exactly; compare the C++ code with the equations. Notice that the calculation of attack,
decay, and release time constants requires an exp operation so these are only updated when the
user alters the GUI controls.

7.6.3 DXEGCore

The block diagram for the DXEGCore is shown in Figure 7.14. This EG has an added segment
called “slope,” as shown in Figure 7.9, and features a curvature control that uses the MMA con-
cave and convex transforms to apply curvature to a linear EG FSM. The curvature control is a
simple blending of the linear and transformed output values. The overall implementation follows a
simple finite state machine design, as shown in Figure 7.7, but with the addition of the slope state,
which is unaffected by the curvature control and remains linear. Examine the code for this core to
see how the MMA transforms are applied, including the inverse transform versions.

The DXEG uses the simple calculations in Equation (7.2) to generate the various states, each of
which has its own step-size, called the egStepInc. To simplify the object, the function setStepInc
implements Equation (7.2) and is used to update the increment value each time the state changes.

7.7 EG Retrigger Modulation

The EG cores are modulation destinations for EG retrigger modulation. When retriggered, the
EG will move directly back to the attack state and begin the FSM operation all over. Typically an
LFO is attached as the modulation source. The retriggering operation occurs when a threshold is
crossed. I made this a low-to-high crossing over the 0.5 unipolar middle value.

102 Envelope Generators and DCA

7.8 EG Core Programming Notes

Section 7.8.1 through 7.8.6 list the main points for the five operational phases, plus constructor
for the EG cores that subclass ModuleCore and override the same-named SynthModule virtual
functions in Section 3.10. With the C++ files open, compare the programming notes and hints to
the code that you see, and think about how each implements the FSM and deals with details like
legato mode and shutdown. The EG cores all use a state-variable to keep track of their current
EG segment. The EGState strongly typed enum is used for all cores and has enumeration strings
for all possible states. If you want to add more states, such as a two-stage release, then modify this
enumeration.

7.8.1 Construction Phase

All cores:

• The module strings are the EG contours, and their selection alters the FSM’s state operation.
• Note the similarities and differences in the use of the mod knobs

7.8.2 Reset Phase

All cores:

• Reset the FSM state to EGState ::kOff
• Store sample rate, and calculate initial step values or coefficients
• Set the initial EG output value
• Clear the retriggering noteOff variable

Analog EG core:

• Calculates new time coefficients only if sample rate changes

Figure 7.14 Conceptual block diagram of the DXEG with the curvature control; the concave and convex
transforms are applied to the appropriate segments

Envelope Generators and DCA 103

// --- parameters
EGParameters* parameters =

static _ cast<EGParameters*>(processInfo.moduleParameters);

// --- retain sample rate for update calculations
sampleRate = processInfo.sampleRate;

// --- reset the state
envelopeOutput = parameters->startLevel;
state = EGState::kOff;

noteOff = false; // for retriggering EG

7.8.3 Note On Phase

DX EG and linear EG:

• Calculates the linear attack step size, then subtracts it from the output variable to effectively
“back up” the EG by one click; this is used to make the initial attack state produce a perfect
value of 0.0 or the user’s start level

All cores:

• Set FSM state to EGState::kAttack
• Use mod knob A to set the start level, which is the initial output value
• Calculate velocity-to-attack, and note number-to-decay scaling values with a simple linear

coefficient
• Notice the way in which legato mode is handled – the EG does not reset its output value when

in legato mode

if (parameters->velocityToAttackScaling)
attackTimeScalar = 1.0 - processInfo.noteEvent.midiNoteVelocity / 127.0;

else
attackTimeScalar = 1.0;

if (parameters->noteNumberToDecayScaling)
decayTimeScalar = 1.0 - processInfo.noteEvent.midiNoteNumber / 127.0;

else
decayTimeScalar = 1.0;

7.8.4 Update Phase

All cores:

• Recalculate the step sizes or time constant coefficients according to GUI parameter changes
• Note that there is no real-time modulation input; the MIDI velocity and note number are only

applied during the note-on phase

104 Envelope Generators and DCA

• When the MIDI sustain pedal is depressed, and the CC value is greater than 63, a sustain
override flag is set, along with a release pending flag

• When the sustain pedal is released, the update function calls the note-off handler if the release
is pending

• Notice how the retriggering modulation operates, crossing the threshold from low to high

else if(!noteOff)// process retriggering
{

double retrig = processInfo.
modulationInputs->getModValue(kTriggerMod);

if (retrig > 0.5 && !retriggered)
{

// --- reset
envelopeOutput = parameters->startLevel;

// --- go to the attack state
state = EGState::kAttack;

retriggered = true;
}
else if (retrig < 0.5 && retriggered)
{

retriggered = false;
}

}

7.8.5 Render Phase

All cores:

• Steps through the finite state machine implemented with switch/case statements and uses the
EGState and the known attack, decay, and sustain levels to trigger movement into the next
state

• Output values are written into the modulationOutput array slots
• The for-loop only writes output values for the first iteration but runs all iterations to advance

the state machine properly; this is especially important if the number of samples to render is
less than the normal block size

DX core:

• Notice the way in which the MMA convex and concave, and their reverse functions are used to
apply curvature to the state segments, except EGState::kSlope, which remains linear

Envelope Generators and DCA 105

// --- decode the state
switch (state)
{

case EGState::kOff:
{

// --- if not legato, reset to start level
if (!parameters->legatoMode)

envelopeOutput = parameters->startLevel;

break;
}

case EGState::kAttack:
etc…

7.8.5.1 DX Core Decay and Release

The DX core decay and release states operate the same way for the linear output, simply adding
the new stepInc to the current value. However, we need to make sure we follow the rules for de-
caying from full scale, which involves only using a section of the normalized concave transform
and is accomplished with a mapping function. This requires using the opposite transform to find
the point at which the decay level hits the transform curve. Once the point is found, the section of
the transform curve, as shown in dotted boxes in Figure 7.15, needs to map to the same part of the
EG’s curved segment, which is dependent on both the levels and the times involved. The mapping
function effectively shrinks or expands the curve sections to stretch them into place.

7.8.6 Note Off Phase

All cores:

• EGs are the only modules that implement meaningful note-off handlers because of their con-
tribution to the note-event life cycle in Section 4.1

Figure 7.15 T he decay and release portions of the EG curve need to be mapped to the correction sections of
the normalized concave transform

106 Envelope Generators and DCA

• Notice how the sustain override flag will bypass the note-off handler if the sustain pedal is
depressed

• All cores move the FSM into the EGState::kRelease state

7.9 The Digitally Controlled Amplifier (DCA)

The digitally controlled amplifier (DCA) is the digital equivalent of the analog voltage controlled
amplifier (VCA), and it is the simplest of the synth modules, using basic calculations for gain (dB
to raw) and panning (see pan modulation in Section 6.2.2). The DCA sits at the output of the voice
architecture and controls the time domain contour of the note-event. The DCA is hard-wired to
the amp EG that sets the note life cycle as this EG is responsible for reporting the end-of-note
event. This object is so basic and simple that it does not use module cores. There is only one DCA
object. The DCA needs to calculate the overall gain and panning of the voice output. Since the
oscillators are pan-able, SynthLab does not implement a GUI control for pan – notice that, for
it to work properly, there would need to be a GUI pan control for every voice. However, the pan
functionality does play a role in two different ways: for unison mode, three of the four detuned
voices are panned according to a simple scheme. You can see this code in the SynthEngine::update
function, in which the panning and detuning are set for unison mode operation. The DCA pan
operation is also a modulation destination, and you may connect an LFO or EG to source the pan
modulation routing. All voices will pan alike, but they will begin the panning at note-on time, so
staggering the note-events will produce quite a dizzying display of the pan function.

7.9.1 DCA EG Modulation Intensity

The DCA has a tiny GUI parameter structure, and the SynthLab projects only expose one control:
the EG intensity. The EG intensity is interesting because it is a bipolar intensity value applied to
the EG, whose output is unipolar in nature. This is a special modulation because of the way in
which it operates. The EG mod intensity control defaults to a value of 1.0 so that the amp EG and
DCA will work in the normal fashion. Reducing the intensity value scales the output and reduces
it, like a volume control. When the intensity control is at 0.0, the DCA is silent. When the intensity
control goes negative, rather than inverting the phase of the audio signal, we invert the EG control
signal itself, simply by adding 1.0 to the value. This inverts the operation in an interesting way.
Figure 7.17(a) and (b) show how the EG intensity control operates with a positive or negative po-
larity. For the inverted version, loud becomes quiet, and quiet becomes loud, with the note-event
ending at maximum volume.

Figure 7.16 (a) The EG intensity acts as a simple gain control when positive, but (b) when negative, it inverts
the unipolar signal

Envelope Generators and DCA 107

7.9.2 DCA Note On Phase

When the user strikes a MIDI key, the controller sends a velocity value that translates into how
much force was used to strike the key. The velocity value is converted to a raw value, as described
in Section 6.2’s MIDI velocity modulation equations, and uses a built-in function. The MIDI ve-
locity arrives in the note-event structure.

bool DCA::doNoteOn(MIDINoteEvent& noteEvent)
{

// --- store our MIDI velocity
midiVelocityGain = mmaMIDItoAtten(noteEvent.midiNoteVelocity);

etc...

7.9.3 DCA Update Phase

The DCA update phase is the only interesting operation as it applies the amp, EG, and panning
modulation values. The amp modulation control creates the tremolo effect and must connect to
a LFO’s unipolar-from-max output value in order to operate intuitively. The update function is
shown below in its entirety. Examine the code, and notice how the EG intensity control is handled.

// --- apply Max Down modulator
double ampMod = doUnipolarModulationFromMax(

modulationInput->getModValue(kMaxDownAmpMod), 0.0, 1.0);
ampMod *= parameters->ampModIntensity;

// --- EG modulation
double egMod = parameters->ampEGIntensity * modulationInput->getModVal-
ue(kEGMod);

// --- flip EG output
if (parameters->ampEGIntensity < 0.0)

egMod += 1.0;

The DCA also has built-in support for MIDI CC #7 (volume):

// --- support for MIDI Volume CC
double midiVolumeGain = mmaMIDItoAtten(midiInputData->getCCMIDIData(VOL-
UME _ CC07));

The final gain calculation is just a combination of all of these, along with the original velocity-
based gain value.

// --- calculate the final raw gain value
// multiply the various gains together
gainRaw = midiVelocityGain * egMod * ampMod;

// --- apply final output gain
if (parameters->gainValue _ dB > kMinAbsoluteGain _ dB)

gainRaw *= pow(10.0, parameters->gainValue _ dB / 20.0);

108 Envelope Generators and DCA

else
gainRaw = 0.0; // OFF

The pan modulation uses the panValue as the center of operation. This value is 0.0, except for the
unison mode, where the value is preset according to the unison mode scheme. Pan modulation is
described in Section 6.2.2.

// --- now process pan modifiers
double panTotal = panValue + (parameters->panModIntensity *

modulationInput->getModValue(kPanMod));

// --- limit in case pan control is biased
boundValueBipolar(panTotal);

// --- equal power calculation in synthfunction.h
calculatePanValues(panTotal, panLeftGain, panRightGain);

7.10 Exercises

7.10.1 SynthLab-DM: Pre-Release state

The linear EG is used as the example dynamic module for the EG object. Download the sample
code, then compile and install the DLL into the SynthLab-DM project of your choice, following
the instructions in Section 5.2.2. Select the linear EG core to use for the output amp EG and filter
EG, and pay attention to how it sounds. Next, add a second release state modifying the FSM code
and adding a new EGState::kPreRelease, and use one of the mod knobs to adjust the pre-release
time and another to set the pre-release level. Implement the required code in the methods corre-
sponding to the operational phases.

7.10.2 Stand-Alone Module Exercise: More Contours

Add a stand-alone EG object to a plugin of your own design, and write the code to integrate it into
your system, remembering the five operational phases. You may choose any of the cores as a starting
point. Add the GUI controls, then make sure you can update and render the EG values properly.
Next, modify the core by adding more EG contours – the stock objects only implement two contours
each, so you have plenty of free module strings to add more contours. Notice how the additional
contours change the FSM operation. You may need to add more states to the EGState enumeration.

7.10.3 Stand-Alone Module Exercise: Unconditional Release

Review the way the unconditional release EG operates when the musician triggers a complete cycle
of EG states with a press and release of a key. Add unconditional release operation to your modi-
fied stand-alone module. What changes need to occur in the note-off handler?

7.10.4 Advanced Module Core: Yamaha and Casio CZ EGs

Figure 7.17(a) and (b) show the EG contours for the Yamaha EX and Casio CZ series synths, re-
spectively. Both feature multiple decay and release segments. Implement one or both EGs using

Envelope Generators and DCA 109

a stand-alone module core object in your own project or in any of the downloadable SynthLab
projects. Think about the challenges with the larger finite state machines and whether you intend
to implement curvature on some or all of the EG segments. Notice that the decay and release seg-
ments may move in the up or down direction, with the exception of the last release segment, which
decays downward to 0.0 or the release level.

Bibliography

digichip.com. “CEM3310 Voltage Controlled Envelope Generator Datasheet.” https://www.digchip.com/da-
tasheets/parts/datasheet/922/CEM3310-pdf.php, Accessed October 14, 2020

Hurtig, Brent, Ed. 1984. Synthesizer Basics, pp. 29–35. Winona: Hal Leonard Corporation Korg, Inc. 1997.
Triton Music Workstation Basic Guide. Tokyo: Korg Inc. manuals.lib. “Casio CZ-1000 Operation Man-
ual.” https://www.manualslib.com/manual/1160175/Casio-Cz-1000.html, Accessed October 14, 2020

Redmon, Nigel. “Envelope Generators Part 2.” http://www.earlevel.com/main/2013/06/02/envelope-generators-
adsr-part-2/, Accessed October 14, 2020

Yamaha, Inc. 1983. DX7 User’s Manual. Tokyo: Yamaha Inc.

Figure 7.17 T wo more EG contours for the (a) Yamaha EX and (b) Casio CZ series synths; the contours are
shown as linear here for simplicity; most segments are curved

http://digichip.com
https://www.digchip.com
https://www.digchip.com
https://www.manualslib.com
http://www.earlevel.com
http://www.earlevel.com

Low Frequency Oscillators (LFOs) belong to the render-group of synth building blocks as they
render an output without processing an input signal. LFOs are used as modulation sources that
generate relatively slow-moving values used to modulate the parameters of a destination object.
Since these oscillators are not used for audio frequencies, they do not suffer from aliasing issues
and can be generated with extremely simple equations. They are sometimes called trivial oscilla-
tors. The requirements for LFOs and pitched oscillators are summarized as follows:

LFO Requirements:

• Frequency range: 0.02 Hz–20.0 Hz (though this is highly variable)
• Constructed from simple equations, lookup tables, or piecewise functions
• Aliasing not a consideration since these are not used for audio output
• For block processing, LFO samples are only generated once per block prior to modulation

Pitched Oscillator Requirements:

• Frequency range: 20 Hz–20,480 Hz (10 octaves)
• Constructed from tables or band-limiting algorithms; direct form and other traditional DSP

algorithms have issues which make them unsuitable
• Should not alias, but if aliasing is present, then it must be as inaudible as possible or masked

by other harmonic components
• For block processing, samples are generated on each sample interval to fill the block

8.1 Noise Oscillators and Generators

Noise oscillators are unique in that they are used in both LFOs and pitched oscillators. These os-
cillators do not have a fundamental oscillator frequency fo like the others. They may be calculated
with random number generators. The NoiseGenerator produces white, Gaussian white, and pink
noise. You can add more noise types as well, and there are numerous variations. The output of the
NoiseGenerator is always on the range [−1.0, +1.0].

White noise is the result of a truly random number and has a flat spectrum indicating constant
amplitude across all frequency components, as shown in Figure 8.1(a). The name “white” corre-
sponds to white light, which includes equal contributions from all the visible color frequencies –
also known as the color spectrum.

Gaussian white noise (also called additive Gaussian white noise or AGW) likewise has a flat fre-
quency response, as shown in Figure 8.1(a). The difference is in the variance of the sample ampli-
tudes. In white noise, there is an equal probability that any sample will lie anywhere in the range

8 Low Frequency Oscillators

Low Frequency Oscillators 111

of [−1.0, +1.0] – each output is random and uncorrelated to the previous outputs, and over time,
averaging the sample values results in a zero mean. Gaussian white noise also has a zero mean when
averaged over time. The difference lies in the Gaussian sample value variance, which follows a bell-
shaped curve called the standard distribution. This means that an output sample has a higher prob-
ability of being near the extreme (center) +/−1.0 than of being near the minimum value around 0.0.

Pink noise has a spectrum that rolls off at −3 dB/octave or −10 dB/decade, as shown in Figure 8.1(b).
There are numerous approaches to the digital design of the shallow filter, which is simpler in analog.
Paul Kellet’s “economy” method involves a simple, three-coefficient lowpass filter on white noise. This
pinking filter code is detailed in the SynthLab documentation and the firstpr.com reference.

There are several methods of generating the random noise signals. The Standard Library object called
std::default_random_engine simplifies the creation of white and Gaussian white noise significantly.

std::default _ random _ engine defaultGeneratorEngine;

Gaussian (normal distribution with mean = 0, variance = 1):

std::normal _ distribution<double> normalDistribution(mean, variance);
gaussianWN = normalDistribution(defaultGeneratorEngine);

White (random distribution on interval [−1, +1]):

std::uniform _ real _ distribution<double> randomDisribution(-1.0, 1.0);
whiteNoise = randomDisribution(defaultGeneratorEngine);

Pink (filtered white noise):

pinkNoise = doPinkingFilter(doWhiteNoise());
pinkNoise *= 0.25; // filter gain is > 1

8.2 Oscillator Clocking

All non-noise oscillators require a time-base that is directly linked to the system sample rate. Most
SynthLab oscillators will use the same time-base, which consists of a modulo counter named
mcounter. This is also known as a phase accumulator, but I use modulo counter exclusively here.
A modulo counter starts from 0.0, then begins counting upwards at a rate corresponding to the
oscillator’s frequency. The counter step-size is called the phase increment (phaseInc) and is applied
once per sample period. When the modulo counter crosses above the value 1.0 by some amount
Δ, the clock rolls over and begins counting upward again, starting from the Δ value. Figure 8.2(a)

Figure 8.1 The frequency spectra of (a) white and (b) pink noise; FFT length is 131,072 points

http://firstpr.com

112 Low Frequency Oscillators

demonstrates this concept: the phaseInc is the step-size, and the counter rolls over to the offset level
Δ. The phaseInc calculation is blissfully simple and requires no trig function calls – it is simply the
ratio of the desired frequency of oscillation fo and the sample rate fs.

=phaseInc
f
f
o

s
 (8.1)

8.2.1 The SynthClock Object

To handle the modulo counter operation, I have included a simple C++ object called SynthClock.
Figure 8.2(b) shows a conceptual block diagram of the SynthClock object. You use the setFrequency
function to apply fo, fs to calculate the phaseInc, and the advanceClock function to increment the
time-base. The functions wrapClock and advanceWrapClock are used for the wrapping operation.

8.2.2 Reversing Time and Oscillator Scanning

All of the SynthLab oscillators can be designed to run forward or backwards, the latter a re-
quirement for FM synthesis that also allows interesting waveform generation. To run an oscillator
backwards, you simply negate the phaseInc parameter so that it counts down rather than up. The
SynthClock object will take care of wrapping the mcounter in the opposite direction. You can gen-
erate numerous new waveforms from your existing ones quite easily. One concept is called scan-
ning; this is when you alternate the forward and reverse directions each time the mcounter wrap
occurs in either direction. This produces back-to-back waveform cycles, as shown in Figure 8.9, for
the sine and triangle scanned waves. These were popular for early wavetable pitched oscillators as
the scan reversal operation is simple to implement. You can also change the direction at different
points in the waveform cycle or follow more complex patterns to create distinctive waveforms.

8.3 LFO Waveforms and Rendering Equations

The SynthLab’s default LFO core produces nine different waveforms, as shown in Figures 8.3 and
8.4. The calculations for each waveform are listed to the right, while the name and constant enu-
meration strings are to the left.

8.3.1 Fundamental Waveforms

The first set of waveforms consists of the most common LFOs you will find in most synths. These
include ramp up, ramp down, and triangle waveforms. These are all calculated directly from the Syn-
thClock’s mcounter, using simple equations. The ramp up waveform is used as the basis for the others.

Figure 8.2 (a) The modulo counter steps upward by the phaseInc on each sample period until the counter
crosses 1.0 and wraps to the same offset, and (b) the block diagram form of the SynthClock object

Low Frequency Oscillators 113

8.3.2 Exponential Waveforms

The default LFOCore also synthesizes exponential versions of the three basic waveforms. The
MMA concave transform concaveXForm is used to apply the exponential curve shaping across
the input and output ranges [−1.0, +1.0]. The key to using these transforms is applying them to the
correct parameter, which varies from one waveform to the next and is shown for these waveforms
in Figures 8.3 and 8.4.

8.3.3 Sinusoidal Approximations

For the LFO sine waveform, we could use a high-resolution lookup table, but that might be over-
kill for our LFO, which is only rendering one output sample per block of rendered samples. There
are numerous sinusoidal approximations, ranging from simple to relatively complex. The sinusoids
they produce are visually and, for most people, audibly identical, but the Fourier spectra reveal the
harmonic distortion components. The parabolic sine approximation is nearly distortion free and
so clean that it can even be used as a pitched oscillator if desired. Figure 8.5 shows the spectra and
equations for each.

8.3.4 Random Sample and Hold

The noise generator is commonly used to sample the random output and hold the value for some
period of time. This requires the noise generator, a register to hold the output value, and a Timer

Figure 8.3 Triangle and ramp waveforms and their algorithms; the ID values correspond to the waveform
selector in SynthLab

114 Low Frequency Oscillators

Figure 8.4 Exponential, sinusoidal, square, random, and pluck waveforms and their algorithms

object to trigger the sampling operation. For the common sample and hold LFO, the timer is set
to expire after N sample periods related to the LFO frequency’s period T = 1/fo. This produces
a waveform with random amplitude values and a constant hold time. In another variation, you
ignore the LFO frequency and reset the timer with a random hold time for each trigger. This pro-
duces both random amplitudes and random hold time intervals. These LFO block diagrams are
shown in Figure 8.6.

8.3.5 Stepped (Quantized) Waveforms

The stepped or quantized LFO waveforms are also sample and hold types, but they can be im-
plemented without timers. One option is to use the quantization formula on the mcounter value

Low Frequency Oscillators 115

Figure 8.5 F requency spectra and equations for three popular sinusoidal approximations: quadratic, Bhas-
kara I, and parabolic, with fo = 100 Hz

Figure 8.6 R andom sample and hold LFOs with (a) random amplitude and constant hold time, and
(b) random amplitude and random hold times

116 Low Frequency Oscillators

Figure 8.7 S tepped LFO waveform examples: (a) three-step sine, (b) six-step triangle, and shaped LFO wave-
forms (c) triangle and (d) ramp up with shape control = (0.0, 0.5, 1.0)

to produce the steps; this technique uses the same bit-crusher algorithm that appears in my FX
plugin book. Another option is to use the mapping functions in synthfunctions.h, which map dou-
ble values to unsigned integers, and vice versa. This first quantizes the LFO output value as an
unsigned integer, then remaps it back to a double value. The quantization occurs on the LFO’s final
bipolar output value, prior to attenuation and other processing. In the SynthLab LFO, the stepper
value is an integer that dictates the total number of steps across the output amplitude range; note
that −1.0 is not counted as a step. Figure 8.7(a) and (b) show two waveforms processed at different
quantization levels (QL). Quantizing the square wave has no effect as it is always a one-step wave-
form. Quantizing the random sample and hold waveform will produce variations on the sample
and hold that can be quite interesting.

8.3.6 One-Sided (Unipolar) Waveforms

There are a few unipolar LFO waveforms, including Korg’s “pluck” wave. Here, the idea is to sim-
ulate a plucked string, which goes sharp and then comes back into tune very quickly at the attack
of the note; the note never goes flat during the plucking process. The waveform resembles a leaning
or skewed window function in Figure 8.4.

8.4 Render Modes

There are three common render modes for the LFO: one-shot, free-run, and synchronized (sync).
The one-shot LFO renders one cycle of the waveform and then stops, either holding the last output

Low Frequency Oscillators 117

or forcing the last output to zero. The free-run LFO starts running on the first note-on event, then
runs forever, never resetting the LFO. In sync mode, the LFO is phase-reset and restarted on each
new note-on event.

8.5 Waveform Shaping

One common LFO parameter that varies widely in implementation is a shape control, which
alters some aspect of the LFO’s time-domain signal. A simple technique is to blend the output of
two different LFO waveforms, A and B, using the shape control to mix them in different ratios,
producing a range of hybrid waveforms. If one of the signals is a sinusoid, then the shape con-
trol will behave in a similar manner to a lowpass filter. Another method is to use waveshaping
on the LFO output or the modulo counter value to bend the segments. For the SynthLab LFO
cores, when the modulation knob is above 0.5, the reverse concave transform is applied, while
the normal concave transform is applied when the control is below 0.5. This produces a shape
control that is sometimes called a curve or curvature control. Figure 8.7(c) and (d) show how the
shape control affects the curvature of two different waveforms. When shape = 0.5, no curvature
is applied.

8.6 Delay and Fade-in Times

There are two more common LFO parameters: delay time and fade-in time. The delay time spec-
ifies how long it will take the LFO to start generating non-zero samples. The fade-in time uses a
linear amplitude ramp to fade the LFO from an amplitude of 0.0 to 1.0. For SynthLab, both times
are given in milliseconds. The implementations are easy: for the delay time, use a Timer object that
is reset at note-on and set to expire at the user’s delay time setting. For fade-in, use a RampModu-
lator object to generate a linear ramp of values from [0.0, +1.0] over the user’s fade-in time period,
then scale the output with the ramp.

8.7 Starting Phase

To adjust the starting phase of the LFO, you add a phase offset to the modulo counter so that it
starts at a non-zero location. An offset of 0.5 produces a shift of 180 degrees. You may want to
experiment with the LFO starting phase as it applies to the triangle and ramp waveforms. If you
examine Figure 8.3, you will see that the triangle and ramp waveforms start and end at non-zero
locations. When used in one-shot mode, the LFO may start or end abruptly. In addition, when try-
ing to blend LFOs with the sinusoidal waveform, there will be phase issues as the sine always starts
and ends on 0.0. Figure 8.3 shows how to adjust the starting phase of the SynthLab LFO triangle
and ramp waveforms to make them symmetrical, starting and ending at 0.0.

8.8 DC Offset

You may also offset the LFO waveform with a constant value called a DC offset. To do this, you
simply add or subtract a static value to the LFO’s output. Notice that you may use it to convert
one-sided LFO waveforms into bipolar versions. You need to decide how to handle values outside
of the normalized bipolar range [−1.0, +1.0].

118 Low Frequency Oscillators

8.9 SynthLFO and Cores

The SynthLFO and its core objects are shown in block form in Figure 8.8. The custom mod-
ule strings are the LFO waveform strings, and the mod knobs are chosen for the most common
operations.

8.9.1 LFO Controls, Modulations, and Features

The LFO frequency and output controls are self-explanatory. The step control quantizes the out-
put when its value is two or greater and works as an interesting arpeggiator when connected to
modulate an oscillator’s pitch. The BPM sync is a special feature and locks the LFO rate to a spec-
ified musical duration using the host’s BPM value and the BPM sync modulation in Section 6.4.
Table 8.1 lists the cores and their functionality.

Figure 8.8 The SynthLFO and its two cores block diagrams, module strings, and mod knobs

Table 8.1 LFO cores and their special modulation capabilities (*) downloadable dynamic module projects

Parameter Structure Description
LFOParameters Every possible parameter for both cores

Core Features
LFOCore*

FMLFOCore*

Classic LFO waveforms, including the one-sided pluck waveform, based on the
Korg Wavstate LFO

Creates FM LFO waveforms using phase modulation (see Section 16.6)

Low Frequency Oscillators 119

8.10 LFO Core Programming Notes

With the C++ files open, compare the programming notes with the code that you see, starting
with the class descriptions of each core. The LFO cores use the SynthClock as their time-base. The
normal core implements the waveform equations in Figures 8.3 and 8.4. The LFO core implements
two FM algorithms: carrier and modulator in series, and a modulator – modulator – carrier ver-
sion. Compare the code to the details in Section 16.6.

The cores require two registers: one to store the current output value for one-shot mode, which
holds the last value indefinitely, and another for the random sample and hold value. There is also
a renderComplete flag for the one-shot operation. Table 8.2 lists the LFOCore member objects and
their LFO function. See the C++ documentation for object details.

Sections 8.10.1 through 8.10.4 summarize the five operational phases, plus the constructor for
the LFOCore. Make sure to examine the code while digesting their operational phase details. The
FMLFOCore only differs in the render operation.

8.10.1 Construction Phase

The LFO core constructors are super simple as they only expose the module string and mod knob
labels.

• The module strings are the waveform names, and their index values map to the GUI control
selection values

8.10.2 Reset and Note-On Phases

The reset and note-on operations are nearly identical. The only real difference is that the note-on
function branches according to the free-run mode status and does not reset timers for this state.
Setting up the timers is straightforward – note the use of MAX constants:

delay _ mSec = getModKnobValueLinear(parameters->modKnobValue[LFO _ DELAY],
 0.0, MAX _ LFO _ DELAY _ MSEC);

delayTimer.setExpireSamples(msecToSamples(sampleRate, delay _ mSec));

fadeIn _ mSec = getModKnobValueLinear(
parameters->modKnobValue[LFO _ FADE _ IN], 0.0, MAX _ LFO _ FADEIN _ MSEC);

fadeInModulator.startModulator(0.0, 1.0, fadeIn _ mSec,
processInfo.sampleRate);

Table 8.2 LFOCore member objects

LFO Functionality C++ Object Member Name/Notes

Time-base SynthClock lfoClock
Noise Generation NoiseGenerator noiseGen
Sample & Hold Timer sampleHoldTimer
Delay Timer delayTimer
Fade-In RampModulator fadeInModulator
Pluck Waveforms BasicLookupTables lookupTables

120 Low Frequency Oscillators

For sync mode, the phases are adjusted to produce symmetrical waveforms starting and
ending at 0.0.

if (parameters->waveform == LFOWaveform::kTriangle)
lfoClock.addPhaseOffset(0.25);

if (parameters->waveform == LFOWaveform::kRampUp ||
parameters->waveform == LFOWaveform::kRampDown)

lfoClock.addPhaseOffset(0.5);

8.10.3 Update Phase

The LFO core update functions are quite simple as this is a basic modulator.

• BPM sync uses the getTimeFromTempo function and is detailed in Section 6.5. The frequency_
Hz parameter is the sync target

• Bipolar linear FM is applied to the frequency_Hz parameter to calculate the final LFO fre-
quency and is detailed in Section 6.4 using the pre-calculated modulation range

• The SynthClock member is updated with the new oscillator frequency

modValue =
processInfo.modulationInputs[kFrequencyMod]*LFO _ HALF _ RANGE;

modulatedFreq _ Hz = parameters->frequency _ Hz + modValue;

// --- update the phase inc from the frequency
lfoClock.setFrequency(newFrequency _ Hz, sampleRate);

8.10.4 Render Phase

The block diagram in Figure 8.8 shows that the LFO accepts incoming MIDI and modulation val-
ues, and writes its output into the modulationOutputs array. There are two outputs defined: normal
and inverted. The render operation is made up of five steps:

1 Check delay timer; if not expired, set output = 0.0 and return
2 Check one-shot mode: call the lfoClock->wrapClock method, and check the return value; if

wrapped, then the one-shot cycle is completed; set the flag and return the final LFO value
3 Decode the parameters->waveform enumeration and render the waveform according to the

calculations in Figures 8.3 and 8.4. Partial code listing:

if (parameters->waveform == LFOWaveform::kSin)
{

outputValue = parabolicSine(-(lfoClock.mcounter*kTwoPi – kPi));
}
else if (parameters->waveform == LFOWaveform::kRampUp)

outputValue = bipolar(lfoClock.mcounter);

Low Frequency Oscillators 121

else if (parameters->waveform == LFOWaveform::kExpRampUp)
outputValue = bipolar(concaveXForm(lfoClock.mcounter));

else if (parameters->waveform == LFOWaveform::kTriangle)
outputValue = 1.0 - 2.0*fabs(bipolar(lfoClock.mcounter));

etc…

4 Apply post-render processing to output value

• Step quantize: see Section 6.1.3
• Shape: use the concave transform functions to modulate according to distance above/below

center value of 0.5

if (parameters->modKnobValue[LFO _ SHAPE]) >= 0.5)
shapeOut = bipolarConvexXForm(outputValue);

else
shapeOut = bipolarConcaveXForm(outputValue);

Next, use split-bipolar transform on the mod knob value (see Section 6.1), then blend in some
amount of the curved waveform, along with the normal output:

// --- split bipolar for multiplier
double shape = splitBipolar(parameters->modKnobValue[LFO _ SHAPE]);

outputValue = shape*shapeOut + (1.0 - shape)*outputValue;

• Apply fade-in modulation: this is standard fade-in ramp modulation detailed in Section 6.1.4

5 Write normal and inverted outputs into modOutputs

processInfo.modulationOutputs[kLFONormalOutput] = outputValue;
processInfo.modulationOutputs[kLFOInvertedOutput] = -outputValue;

8.11 Exercises

8.11.1 SynthLab-DM: The Pluck Waveform

Implement the basic string pluck waveform in Figure 8.4. The simple version uses a Hann win-
dowing function to produce the one-sided waveform. For the Hann window, you can use the
BasicLookupTables object already declared in the LFOCore. First, you need to add the kPluck
enumeration item to the existing definition in the lfocore.h class definition file.

enum class LFOWaveform { kTriangle, kSin, . . . , kRSH, kPluck };

The lookup table does all the work, and there are no parameters on the pluck waveform to manip-
ulate. In the render() function, you need to decode the LFO waveform and set the output variable
using the lookup table object. See Appendix A for BasicLookupTables details.

// --- use hann table; can experiment

122 Low Frequency Oscillators

else if (parameters->waveform == LFOWaveform::kPluck)
outputValue = lookupTables->readHannTableWithNormIndex(lfoClock.
mcounter);

8.11.2 SynthLab-DM: Korg Pluck Waveform

While the Hann window works reasonably well in short-duration one-shot mode, the Korg version
is more realistic for stringed instrument emulation. Notice that the Korg waveform is a bent or
leaning bell curve that may be fashioned in a variety of manners. Research “skewed distribution,”
and formulate your own version of the Korg pluck waveform. Is there a parameter you can vary to
easily change the skew? If so, you could re-purpose a mod knob to allow user adjustment.

8.11.3 SynthLab-DM: Mod Knob Shape to DC Offset Control

For this exercise, you change the function of the shape control to add or remove a DC offset in-
stead. The shape control defaults to a value of 0.5 so we can set that as the no-offset value, then
increase in the positive or negative direction using the splitBipolar function (see synthfunctions.h).
When the user moves the control above 0.5, you apply a positive DC offset, and when the control
is below 0.5, you apply a negative DC offset.

Figure 8.9 Additional LFO waveforms for your custom object

Low Frequency Oscillators 123

8.11.4 Advanced Module: Create a Novel LFOCore

Finally, make your own LFOCore object using the existing object as a basic template, and keep the
normal modulations. For your personal LFOCore, add the new LFO waveforms from Figure 8.9,
and implement any four mod knob parameters you wish, starting with the suggested modifiers.

Mod Knob A: starting phase
Mod Knob B: pulse-width (for square PWM)
Mod Knob C: DC offset
Mod Knob D: BPM Sync (keep existing)

Bibliography

Korg.com. “Wavestate Owner’s Manual.” https://www.korg.com/us/support/download/product/0/840/, Ac-
cessed October 14, 2020

firstpr.com. “DSP generation of Pink (1/f) Noise.” http://www.firstpr.com.au/dsp/pink-noise/, Accessed Oc-
tober 14, 2020

http://Korg.com
https://www.korg.com
http://firstpr.com
http://www.firstpr.com.au

Wavetable oscillators are pitched oscillators that cycle through a lookup table to generate a wave-
form. These are some of the earliest of the digital oscillators designed for audio use, having been
around since the 1960s. Chowning’s FM synthesis required wavetable oscillators as they are in-
herently stable and can produce the same sequence of output values over and over. Wavetables
were used in the first hybrid synths, such as the Sequential Circuits Prophet VS, as well as fully
digital synths, like the Korg M1 and Yamaha DX7. Wavetable synthesis seems to come and go
in popularity, but right now it is very hot – this may be due to the appearance of more morphing
wavetable synths and tools that allow us to develop scores of wavetables at a time from algorithms
or found-sounds.

9.1 Wavetable Fundamentals: Table Lookup

The traditional wavetable is a pre-calculated array of length N that contains one cycle, minus one
sample, of some waveform. The length is typically a power of two, but that is not strictly required.
The oscillator uses a pointer or an index value to access samples stored in the table. In the most
primitive form shown in Figure 9.1(a), the oscillator outputs these values directly, skipping through
the table at a lookup interval called wtPhaseInc, which is an integer. More advanced versions
use floating point increment values and interpolation to calculate in-between values, as shown in
Figure 9.1(c).

9 Wavetable Oscillators

Figure 9.1 Reading an N = 8 point wavetable with (a) integer lookup and (b) floating point lookup with (c) lin-
ear interpolation and (d) the read index wraps around to the start of the table when the added phase
increment pushes the lookup point past the table’s ending index

Wavetable Oscillators 125

When the table index or pointer passes the last sample in the array by some amount Δ, it wraps
back around to the top of the array with an offset of Δ and continues marching through the buffer,
as shown in Figure 9.1(d). This is simply a scaled version of the modulo counter time-base we use
for the LFO and the other pitched oscillators, and we can use the same basic clocking function-
ality. The wavetable phase increment value is simply the modulo counter value multiplied by the
table size N.

f
wtPhaseInc = N o (9.1)

fs

When the wtPhaseInc value is much less than one, you interpolate multiple values between a pair
of points, then move to the next pair. When the wtPhaseInc is much greater than one, you skip over
multiple table cells and interpolate only between the last set – the number depends on the order of
interpolation.

9.1.1 Wavetable Aliasing

There are two sources of aliasing: first, the wavetable may have been pre-computed with aliasing
components already included. For example, sampling the trivial ramp LFO will produce aliasing
in the resulting wavetable because the original signal was already aliased. Second, when the wt-
PhaseInc is very much greater than one, the index is making large skips through the table, causing
it to appear under-sampled. In practice, if the table contains typical musical sounds with harmon-
ics that decay rapidly or exponentially, then the aliasing will be subtle or perhaps masked by other
harmonic components. Interestingly, to avoid large wtPhaseInc values, as the oscillator frequency
increases, the table length should decrease.

9.1.2 Band-Limited Tables via the Fourier Series

An early approach to preventing aliasing involved pre-calculating the tables as band-limited Fou-
rier series sums. These Fourier series summations have been in the literature for almost two centu-
ries and allow you to easily generate a table of any length, filled with a preset number of harmonics
and in harmonic ratios that generate the desired waveforms. The goal here is to synthesize wave-
forms that do not alias because their spectra are band-limited to the Nyquist frequency. The Fou-
rier series representations for three common synth waveforms are shown in Figure 9.3. Notice that,
for a wavetable, we only need a single cycle of the waveform so that fo = 1 Hz, and k represents the
harmonic number. If you want the fundamental plus 64 harmonics, k would vary from 1 to 64. To
calculate the maximum number of harmonics below Nyquist for a given pitch, use Equation (9.2).

f
numHarmonics = s (9.2)

2(pitchHz)

Figure 9.2 shows the 88-note keyboard with a few pitches and number of harmonics below Nyquist
for fs = 44.1 kHz. There are 128 MIDI notes in total; MIDI note 0 has the pitch of a C, 8.1758
Hz, while MIDI note 127’s pitch is a G, 12.5438535 kHz. Equation (9.2) also shows that for any
harmonic signal above ½ Nyquist can only contain a single harmonic component, or aliasing will
occur. As you play successively higher notes, the waveform gets closer and closer to being a pure
sinusoid.

126 Wavetable Oscillators

Waveform Fouier Series Formula

∑
∞

k+1 1
Y ()n SAW = −(1) sin(k nω T)

Ramp Up k
k=1

Sawtooth 1 1 1
= −sin(ω ωnT) sin(2)nT + −sin(3)ω ωnT sin(4)nT + ...

 2 3 4

Y () ∑
∞

k 1
n TRI = −(1) sin((2k n1)2 + ω T)

()2 1k +Triangle k=0

 1 1 1 (9.3)
= −sin(ω ωnT) sin(3)nT + −sin(5)ω ωnT sin(7)nT + ...

 9 25 49

∞
1

Y ()n SQUARE =∑ sin((2k n+1)ω T)
()2 1k +

Square k=0

 1 1 1
= +sin(ω ωnT) sin(3)nT + +sin(5)ω ωnT sin(7)nT + ... 3 5 7

To generate wavetables on-demand or during synth instantiation, you implement the additive Fou-
rier series equations (9.3) by sampling one cycle minus one sample of the desired waveform. For
example, to synthesize the sawtooth waveform into an array with some number of harmonics
(numHarmonics) and array length of tableLength, you would write this (kPi is the pi constant):

for (int i = 0; i < tableLength; i++)
{

// --- sawtooth: += (-1)̂ g+1(1/g)sin(wnT)
for (int g = 1; g <= numHarmonics; g++)

Figure 9.2 The 88-note piano keyboard starts at A0 (MIDI note 21), with 801 harmonics, and ends at C8
(MIDI note 108), with 5 harmonics; fs = 44.1 kHz and A0, A4, and A7 are shown

Wavetable Oscillators 127

{
double n = double(g);
double phi = 2.0*kPi*i*g / tableLength;
sawTable[i] += pow(-1.0, (g + 1.0)) * (1.0/g) * sin(phi);

}
}

In practice, these summations usually result in values greater than 1.0, so you need to nor-
malize the array after synthesis. Notice that there is no parameter for sample rate in the ac-
cumulation equation. The sample rate is only required to calculate the maximum number of
harmonics. Figure 9.3(a) and (b) show a ramp up (sawtooth) waveform synthesized with 14
harmonics, plus the fundamental; the number of ripples in the waveform and the number of
harmonic spikes in the spectrum are the same (15). The harmonic envelope is shown in the
dotted line and is correct for this waveform. The waveform in Figure 9.3(c) looks more like
an analog sawtooth, with most of the ripples smoothed over, except the bumps at the top and
bottom of the discontinuity.

The waveform and spectrum in Figure 9.3(c) and (d) are the result of applying the Lanczos
correction function. The ripples in the time domain plot are at a maximum in the area immedi-
ately around the waveform discontinuity. Although discovered by Wibraham in 1848, this became
known as the Gibbs Phenomenon (Hewitt & Hewitt). Lanczsos derived a method for smoothing
the ripples in the time domain with the application of correction factors called σ factors. These
are calculated using a sin(x)/x or sinc function, as shown in Equation (9.4). We will revisit Lanczos
when we discuss virtual analog oscillators.

Figure 9.3 (a) Waveform and (b) spectrum of a sawtooth synthesized with 14 harmonics plus the fundamen-
tal and (c) the Lanczos corrected waveform and (d) resulting spectrum; the harmonic envelope is
shown with a dotted line

128 Wavetable Oscillators

nπ sin ()σ
σ N N= =σ N

 (9.4)M σ N

M = number of harmonics
n = harmonic number
σn = Lanczos sigma for harmonic n

Adding the correction factors to the C++ code is not difficult; you simply multiply the factor to
scale the sin() function. To add Lanczos correction to the previous code, you just add the factor
calculation inside the inner loop.

// --- Lanczos Sigma Factor
double x = g*kPi/nHarms;
double sigma = sin(x)/x;
sawTable[i] += pow(-1.0, (g + 1.0))*(1.0/g) * sigma * sin(phi);

9.1.3 Multi-Wavetables

With the exception of the sine or cosine waveforms, which include only a fundamental and no
harmonics, we cannot simply use one table for the entire range of MIDI notes without aliasing.
This means that we will need multiple tables spread across the keyboard with various numbers of
harmonics for a given target waveform/spectrum. In the earliest wavetable synths, when memory
was expensive and limited, designers typically used either one table per octave or one table per
minor third (four tables per octave). The other notes were interpolated between the tables, with
the table limits at the top note, so interpolation was only performed to lower the pitch, and the
wtPhaseInc value was less than 1.0. The 1986 Sequential Circuits Prophet VS had nine wavetables
spread across the keyboard, as shown in Figure 9.4(a). Later, placing tables at minor third intervals
became the industry standard.

With cheap memory today, we may ask: how many tables do we need to cover every MIDI
note such that each has exactly the maximum number of harmonics below Nyquist? The answer
depends on the table lengths, which also dictate the number of harmonics we may calculate with
the Discrete Fourier Transform (DFT). If we hold the table lengths constant at N = 256 and
fs = 44.1 kHz, then there are 54 individual tables needed to cover every note. The first table is valid
for the first 53 MIDI notes. Then, there is a single table for each note up to number 100. The last
few tables are shared across several notes; the last table with only a single harmonic component
will cover MIDI notes 125–127. My wavetable oscillator uses this approach and requires a set of
tables to cover every note. The wavetable data source is set up so you may invent your own varia-
tions; if you like, you can just use one table across the entire keyboard, but be prepared for crispy
aliasing.

9.1.4 Generating Interesting Tables

While the Fourier synthesis equations work for simple waveforms, harmonically rich and inter-
esting waveforms require more work. Many of the wavetables in the Sequential Circuits Prophet
VS were designed in the frequency domain first, then generated with additive Fourier synthesis.
Today, we have numerous tools to allow the development of a practically unlimited number of

Wavetable Oscillators 129

interesting and harmonically rich waveforms. Figure 9.5 shows the flowchart for a typical sound
development tool that starts with a seed waveform that is alias-free up to Nyquist. The FFT is
taken and the harmonic limit calculated from the desired note pitch and the sample rate. Bins

Figure 9.4 (a) Wavetable spacing in the Prophet VS and (b) modern wavetable synth using 54 high-resolution
tables such that every note has every harmonic up to Nyquist

Figure 9.5 F lowchart of a system to generate band limited wavetables from a seed table; the process is re-
peated as many times as you need

130 Wavetable Oscillators

above the limit are zeroed in the real (Re) and imaginary (Im) FFT arrays. The inverse FFT pro-
duces the band-limited waveform. Note that this method of filtering via bin removal will not work
for filtering a continuous stream of data blocks, but for our single waveform, it is fine.

9.2 Wavetable Objects and Database

When using closely spaced, dense multi-wavetables and multiple voices, the sheer number of tables
can grow out of control. When we implement morphing wavetable oscillator cores, we will need
sets of wavetables to morph across. The SynthLab wavetable objects are stored in a database.
Any wavetable core may create and add tables to the database, which has no maximum limit. All
wavetable oscillators can share these wavetables. Simple interfaces are implemented so that you
are not restricted to the SynthLab tables, and you may freely invent your own table readers and
generators. The database is shared across all wavetable oscillators using the std::shared_ptr.

9.2.1 Static and Dynamic Wavetables

Ultimately, the wavetable is accessed as an array of float or double values. Static wavetables are
prefabricated prior to runtime. They may be compiled into the plugin with a header (.h) file or as
a binary resource. They may also be read at run-time out of a binary file that is stored in a known
location. Dynamic wavetables are synthesized at run-time and may need to be re-synthesized if the
sample rate changes. Some software synth plugins and apps that require large numbers of tables
will synthesize them using the algorithm in Section 9.1.4 at startup, populating internal tables or
storing them on disc.

9.2.1.1 StaticWavetable and DynamicWavetable Structures

The StaticWavetable structure is designed for statically declared wavetables. It is also designed to
work with my TableMaker software, which generates wavetable sets that cover every MIDI note
with non-aliasing harmonic content. The StaticWavetable structure includes pointers to either an
array of doubles or an array of 64-bit unsigned integers or uint64_t. When creating the tables and
storing arrays in header files or as binary data, the 64-bit double values are encoded directly as
binary data. When writing to the file as hex encoded values, we get the maximum resolution of the
data without needing the scores of digits that make up the fractional part when writing a double
value as a hex-string. This becomes more important if you use TableMaker, which can also write
binary files of data, including the ability to encrypt the tables. In addition, this structure holds a
pointer to an array of double values so that you may use traditional C++ arrays of doubles as the
wavetables. Both pointers are declared as const and always point to statically declared tables that
do not need to be deleted.

The DynamicWavetable structure is identical to the static version in everything except for the
fact that it holds a pointer to an array of double values that is not declared as const. Both struc-
tures contain additional information that aids in reading the tables. All SynthLab wavetables have
power-of-two table lengths, and therefore, we may wire-and the updated read location to perform
the circular buffer table wrap.

// --- StaticWavetable
const uint64 _ t* uTable;

Wavetable Oscillators 131

const double* dTable;
// --- DynamicWavetable
double* table = nullptr;

// --- common to both
uint32 _ t tableLength = kDefaultWaveTableLength;
uint32 _ t wrapMask = kDefaultWaveTableLength - 1;
double outputComp = 1.0; // --- output scaling factor
double tableFs = 44100.0;
const char* waveformName;

The tableFs is the sample rate used to synthesize the table. It is not used in any of the objects in
SynthLab but is there if you need it. The waveform name is optional, but it is used in SynthLab to
populate the dynamic waveform lists.

9.3 Wavetable Sources and Database

The IWavetableSource interface is used to create a C++ class that provides access to a set of wavet-
able structures. You can think of a “wavetable source” as all of the information needed to synthe-
size one waveform across the range of MIDI notes. This interface allows you to implement your
wavetables however you wish and is one of the central design patterns in SynthLab. There are four
wavetable source objects included as examples in Table 9.1, and studying these will help you see
how the IWavetableSource interface is implemented.

The sine and drum sources shown in Figure 9.6(a) store only one table, which is used for all
MIDI notes. The sine source interpolates the single table across the range of pitches while the
drum source implements pitch-less tables, giving you two examples of simple but useful kinds of
wavetables. The static and dynamic table sources each include an array of 128 SynthLabWavetable
structures, one for each MIDI note, as shown in Figure 9.6(b), and you can see that the wavetable
structures may point to the same table of data: for example, the first 53 structures all point to the
same table because it contains the maximum number of harmonics below Nyquist. The tables
are all read and interpolated the same way, so these sources differentiate between different kinds
of tables. The engine’s wavetable database, shown in Figure 9.6(c), consists of a set of wavetable
sources indexed with unique names.

Table 9.1 The built-in IWavetableSource C++ objects and descriptions

IWavetableSource Object Description

DynamicTableSource Stores dynamically created tables and is used in the example module core
that synthesizes parabola and triangle waveforms at startup; there is one
table per octave of MIDI notes

StaticTableSource Stores the static hex encoded wavetables that TableMaker produces, with
each MIDI note table getting its own table that will not alias

DrumWTSource A special static wavetable source for pitch-less tables, such as drums or
sound effects

SineTableSource Stores a single static sinusoidal table of double values that is used for all
MIDI notes

132 Wavetable Oscillators

The morphing core accesses tables in banks, shown with the dotted line in Figure 9.6(d), but it
is important to understand that the bank is a conceptual idea that is simply a set of unique wave-
form names presented to the user as a single string (name). The SynthLabBankSet is a structure
that contains an array of SynthLabWavetables, and it is only used to store tables and initialize the
wavetable database with a set of tables in one function call. Once the tables are registered, the
database treats them like any other wavetable and is not aware that they are grouped as a bank.

The WavetableDatabase is created in the SynthEngine and shared across all SynthVoices and
their wavetable oscillators. The database is a std::map that stores IWavetableSource pointers via
unique key strings. Your wavetable core object may query the database for table sources, and it
may create and add new table sources at construction time. This means you are free to code your
own object that exposes the IWavetableSource interface functions in Table 9.2 and add it to the da-
tabase. You do not need to use my objects or my structures; you only need to provide the interface
to your own implementation. The database uses unique name strings corresponding to the core
module strings. SynthLab fills the GUI waveform selectors with these unique strings any time a
new core object is loaded.

Figure 9.6 (a) The sine and drum sources only store and read a single wavetable, while (b) the static and
dynamic sources each store an array of wavetables, one per MIDI note, while (c) the Wavetable-
Database contains a dictionary of IWavetableSource pointers whose keys are unique strings that
name the waveforms; (d) a wavetable bank is a name given to a set of wavetables used for wavet-
able morphing

Wavetable Oscillators 133

9.3.1 Reading/Interpolating the Wavetable

The IWavetableSource object needs to implement the readWaveTable function. As an example, the
SineTableSource version is shown here. It performs the following:

• Calculate the read location as N(fo/fs) where N is the table length in samples
• Use the modf function to split the read location into an integer and fractional part (intPart and

fracPart respectively)
• The intPart is the index of the first sample to read
• Increment the intPart by one, then do the circular wrap with the mask to find the second sam-

ple to read
• Read both samples and perform linear interpolation that is the fracPart distance between

them, producing the output value
• The output value is scaled using information saved with each table; this is to help you normal-

ize the loudness of the wavetables, if needed.

// --- read and interpolate, return the audio sample
virtual double readWaveTable(double oscClockIndex)
{

// --- two samples from table
double wtData[2] = { 0.0, 0.0 };

// --- location = N(fo/fs)
double wtReadLoc = sineWavetable.tableLength * oscClockIndex;

// --- split the fractional index into int.frac parts
double intPart = 0.0;
double fracPart = modf(wtReadLoc, &intPart);
uint32 _ t readIndex = (uint32 _ t) intPart;
uint32 _ t nextReadIndex =

(readIndex + 1) & sineWavetable.wrapMask;

// --- two table reads

Table 9.2 The IWavetableSource interface

IWavetableSource Function Argument Description

selectTable midiNoteNumber Instructs the object to select a table and store
it for rendering notes; the table is selected
with the MIDI note number

readWaveTable readIndex, which is a
normalized value

Reads the wavetable using a double read
index with an integer and fractional part;
interpolation is used to find the value
located between samples

getWaveTableLength None Returns the length of the currently selected
wavetable

getWaveformName None Returns the waveform name for GUI

134 Wavetable Oscillators

wtData[0] = sineWavetable.dTable[readIndex];
wtData[1] = sineWavetable.dTable[nextReadIndex];
// --- interpolate the output (0.0 and 1.0 set the distance)
double output = doLinearInterpolation(0.0, 1.0,

wtData[0],
wtData[1],
fracPart);

// --- scale as needed
return sineWavetable.outputComp * output;

}

9.4 WTOscillator and Cores

Figure 9.7 shows the WTOscillator module, along with three of the five module cores.
Table 9.3 lists the GUI parameter structure and core descriptions. The IWavetableSource object

performs the reading and interpolation. The oscillator cores are designed to generate distinctly
different types of waveforms and demonstrate different kinds of tables, including one-shot and
pitch-less tables. The MorphWTCore is a special variation and is used for wavetable morphing in
Section 15.2. It registers sets of wavetables stored as banks and exposes bank names rather than
waveform names. However, the same mechanism is used for the database storage and wavetable
read/interpolate operations.

9.4.1 Wavetable Oscillator Controls, Modulations. and Features

Table 9.4 lists the module controls common to all cores and the GUI calculation section or equa-
tions. The coarse tuning and fine-tuning operate in semitones and cents, respectively, and are part
of the pitch modulation update calculation, while the pan and output controls are common to
almost all other oscillators and allow blending of the quad oscillator render block. Table 9.5 lists
the cores and their special functionality.

Table 9.3 WTOscillator custom parameter structure and cores: (*) downloadable SynthLab-DM core
project (*) downloadable dynamic module projects

Parameter Structure Description
WTOscParameters Used for all cores; includes all oscillator parameters

Example Core Description
ClassicWTCore 16 waveforms based on analog and other classic table waveforms;

demonstrates typical wavetable looping
MorphWTCore The morphing oscillators in Section 15.2 use banks of waveforms instead

of individual tables. This core demonstrates how to create and use these
sets (banks) of waveforms for the morphing oscillators

FourierWTCore* Wavetables generated with Fourier synthesis to demonstrate dynamically
created wavetables whose contents change if the sample rate changes

DrumWTCore* One-shot wavetables with single drum sounds mapped across all keys
using PCM samples of classic electronic drums

SFXWTCore Bonus core of sound effects taken from PCM samples, demonstrating how
to use pitch-less, one-shot wavetables

Wavetable Oscillators 135

9.5 Wavetable Core Programming Notes

With the C++ files open, compare the programming notes with the code that you see, starting
with the class descriptions of each core. The wavetable core objects all use the same time-base,
implemented with a SynthClock modulo counter that is reset and advanced with each note-event.

Figure 9.7 The WTOscillator and the three included cores: classic, morphing, and drums; two special bonus
cores are also included for Fourier synthesis and sound effects

Table 9.4 Module controls shared across cores

Module Control Description GUI Calculation (Section)

Coarse Coarse tuning in semitones Pitch modulation (6.7.1)
Fine Fine-tuning in cents Pitch modulation (6.7.1)
Pan Left/Right pan Constant power panning (6.2.2)
Output Output level in dB dB to raw: 10(dB/20)

Table 9.5 W avetable cores and their special modulation capabilities

Core Features and Special Modulations (Section)

ClassicWTCore Self hard-sync modulation (6.9.1)
FourierWTCore Shape modulation with phase distortion (6.8)

Phase offset that moves initial wavetable read index
MorphWTCore Self hard-sync modulation (6.9.1)

Waveform morphing modulation (15.2) with morph start and morph
intensity controls

DrumWTCore Bare minimum implementation without modulation; best place to start
SFXWTCore when examining the core code

136 Wavetable Oscillators

The cores that support self hard-sync modulation include a Synchronizer object to help implement
that function. All cores except the morphing core include a member that acts as the selected wavet-
able source. The morphing core includes an array of two wavetable sources, which it interpolates
between to create the wave morphing effect. Sections 9.5.1 through 9.5.5 summarize the five oper-
ational phases, plus the constructor for the wavetable cores. Make sure to examine the code while
digesting their operational phase details.

9.5.1 Construction Phase

All cores:

• The module strings are the waveform names, and their index values map to the GUI
control selection values; the strings will be used to query the database for the selected
waveform

• The mod knobs are not used in the drum and sound effect cores
• The cores demonstrate multiple was to assign module strings, from string literals to bank ar-

ray names (morphing core)

9.5.2 Reset Phase

All cores:

• Reset clocks and synchronizer
• Query database for tables and register if not found; this minimizes the number of tables re-

quired for operation
• Each core demonstrates a different way to add tables and recall their name strings

Fourier WT core:

• Recalculate the wavetables when the sample rate changes

To query the database for an IWavetableSource pointer, use the wavetableDatabase interface
pointer and the unique name string:

processInfo.wavetableDatabase->getTableSource(“FMBass-1”);

If the function returns nullptr, you can add the table using a table source and name string. This
code uses an old-fashioned pointer and the new operator rather than shared pointers; this is a
requirement of the dynamic module core loading system, which must implement an API interface
that does not use the standard template library (std::) or other third-party libraries that may cor-
rupt the heap when calling functions and passing pointers across the thunk layer.

StaticTableSource* wt = new StaticTableSource;
wt->addSynthLabTableSet(&fmbass1 _ TableSet);

processInfo.wavetableDatabase->addTableSource(“FMBass-1”, wt);

Wavetable Oscillators 137

9.5.3 Note-On Phase

The note-event begins with a note-on handler that is both similar and quite simple across the cores:

• Store MIDI pitch (except drum and SFX cores)
• Reset the SynthClock modulo counter member to either 0.0 (all cores) or the starting phase

point (classic, morphing, and Fourier cores); notice how the mod knob C value is used to cal-
culate the phase offset for the cores that support it

• NOTE: there is nothing to do in the note-off phase

// --- parameters
midiPitch = processInfo.noteEvent.midiPitch;

// --- reset to new start phase
if(processInfo.unisonStartPhase > 0.0)

oscClock.reset(processInfo.unisonStartPhase / 360.0);
else

oscClock.reset(parameters->modKnobValue[MOD _ KNOB _ C]);

9.5.4 Update Phase

The pitched core update phases follow the same four steps that you will find on the other pitched
oscillators. The update function’s main goal here is to have the correct wavetable selected and the
correct interface pointer stored for the render phase that will immediately follow.

1 Calculate the pitch modulation value based on GUI controls and pitch modulation sources
2 Select the wavetable source based on the user’s waveform selection string; the morphing core

selects two sources
3 Select the wavetable based on the final modulated pitch value
4 Set up hard synchronizer, shape, or other modulation variables

The classic core wavetable selection code follows, starting with the final oscillator frequency cal-
culation that sets the oscillator time-base – this is identical across all pitched oscillators that use
the SynthClock time-base object.

// --- calculate the modulated pitch value
double oscillatorFrequency = midiPitch*pitchShift;

// --- BOUND the value to our range
boundValue(oscillatorFrequency, WT _ OSC _ MIN, WT _ OSC _ MAX);

// --- phase inc = fo/fs
oscClock.setFrequency(oscillatorFrequency, sampleRate);

The next step is to select the table source using the user’s GUI selection index value, which cor-
responds to the GUI control that holds the 16 waveform strings. The old-fashioned const char* is
used due to the same dynamic core and thunk issues, as described in the previous section.

138 Wavetable Oscillators

// --- select the wavetable source
const char* wave = coreData.moduleStrings[parameters->wavetableIndex];

selectedTableSource =
processInfo.wavetableDatabase->getTableSource(wave);

Finally, the exact table is selected based on the MIDI note number of the modulated pitch value.
Check the morphing core code to see how it selects two tables based on the morphing index, as
detailed in Section 15.4.3.

// --- select table
uint32 _ t midiNote = midiNoteNumberFromOscFrequency(oscillatorFrequency);

selectedTableSource->selectTable(midiNote);

The rest of the update phase involves only simple gain and pan calculations or storing mod knob
values for later.

9.5.5 Render Phase

All pitched oscillators must render samples one block at a time and write stereo audio data to
their output buffers. A simple for-loop sets up the block render operation. All wavetable cores use
a separate renderSample function so you can easily modify them without changing the for-loop
code. The drum and sound effect cores have the minimum implementation, and both operate
in one-shot mode so the oscillator only renders the table once, then outputs zeros thereafter.
The SynthClock time-base advanceWrapClock function returns true if the modulo counter has
wrapped, indicating that the one-shot event is complete. The drum and sound effect cores store
this value.

double DrumWTCore::renderSample(SynthClock& clock)
{

// --- read source
double oscOutput =

selectedTableSource->readWaveTable(clock.mcounter);

// --- advance and wrap clock; save wrap notice for one-shot
oneShotDone = clock.advanceWrapClock();

return oscOutput;
}

The other three cores implement the same function plus an additional method for the self hard-
sync operation; make sure you compare the hard-sync function with the code and modulation
description in Section 6.9. First, the buffers are accessed, and the for-loop is set up:

float* leftOutBuffer = processInfo.outputBuffers[LEFT _ CHANNEL];
float* rightOutBuffer = processInfo.outputBuffers[RIGHT _ CHANNEL];

Wavetable Oscillators 139

for (uint32 _ t i = 0; i < processInfo.samplesToProcess; i++)
{

Next, the hard sync ratio value is checked, and the corresponding function calls are made. These
oscillators use phase distortion for shape modulation so the oscillator shape parameter is a func-
tion argument:

// --- render the saw
double oscOutput = 0.0;
if (parameters->hardSyncRatio > 1.0)

oscOutput = renderHardSyncSample(oscClock,
parameters->oscillatorShape);

else
oscOutput = renderSample(oscClock,

parameters->oscillatorShape);

Lastly, gain and panning are applied; notice that the glide modulator is advanced outside the loop
as it is a granulized, slow-moving modulation source.

// --- scale by gain control
oscOutput *= outputAmplitude;

// --- write to output buffers
leftOutBuffer[i] = oscOutput * panLeftGain;
rightOutBuffer[i] = oscOutput * panRightGain;

}

// --- advance the glide modulator
glideModulator->advanceClock(processInfo.samplesToProcess);

9.6 Exercises

9.6.1 SynthLab-WTDM Drum Core: Mod knob D to Reverse Playback

Mod knob D is unassigned in the all of the wavetable cores. Download the drum core sample dy-
namic module code, then compile and load it to test. When you are satisfied that it generates drum
sounds correctly, add functionality such that when mod knob D has a value that is greater than 0.5,
the tables play in reverse. HINT: the SynthClock time-base is fully capable of running backwards.

9.6.2 SynthLab-WTDM: Pan Modulation

The classic wavetable core implements shape modulation as its unique modulation destination
and is set up in the modulation matrix. Set up a dynamic module project that implements the
classic wavetable core, then change the module name so you can differentiate between them in the
 SynthLab-WTDM project. Test the shape modulation using an LFO as the modulation source and
the OSC1, 2, 3, or 4 “mod” destinations. Next, alter the code to replace the shape modulation with
pan modulation, using the existing panning code as a basis. Test the pan modulation with the same
LFO. Shape and pan are both examples of bipolar modulation destinations.

140 Wavetable Oscillators

9.6.4 Advanced Module: Create a Wave Scanning Oscillator

Wave scanning is a wavetable variation that generates a new and interesting set of sounds from the
existing tables without needing to create or modify new tables. It works by reversing the wavet-
able read direction each time the read index wraps around the table boundary. This forwards-
backwards-forwards scanning motion produces a kind of double-waveform where every other
waveform is reversed in time, as shown in Figure 9.8(a). A more complex table, such as the one-shot
drum tables in Figure 9.8(b), usually results in very strange and interesting sounds. Note that this
operation can cause kinks or discontinuities in the output waveform that may produce aliasing
components. Create your own novel wavetable core that implements wave scanning in the table
source. Use mod knobs to control aspects of the scanning, such as the re-scan threshold index – the
table index that signifies the direction reversal.

Bibliography

Hewitt, Edmund & Hewitt, Robert. 1979. “The Gibbs-Wilbraham Phenomenon: An Episode in Fourier
Analysis.” Archive for History of Exact Sciences, vol. 21, no. 2, pp. 129–160. New York: Springer.

Kleimola, Jari. 2005. “Design and Implementation of a Software Sound Synthesizer,” Master’s Thesis, Su-
pervised by Välimäki, Vesa. Helsinki University of Technology. http://lib.tkk.fi/Dipl/2005/urn007886.pdf,
Accessed October 14, 2020

Lanczsos, C. 2010. Applied Analysis. New York: Dover.
Moore, Richard. 1990. Elements of Computer Music, Chap. 3. Eaglewood Cliffs: Prentice-Hall.
Moorer, James. 1976. “The Synthesis of Complex Audio Spectra by Means of Discrete Summation Formu-

lae.” Journal of the Audio Engineering Society, vol. 24, no. 9, pp. 717–727.
Roads, Curtis. 1996. The Computer Music Tutorial, Chap. 3. Cambridge: The MIT Press.
Stilson, Tim & Smith, Julius O. 1996. “Alias-Free Digital Synthesis of Classic Analog Waveforms.” Proceed-

ings of the 1996 International Computer Music Conference.

Figure 9.8 W ave scanning may be used with simple waveforms (a) or more complex one-shot drum tables
(b) to produce new sounds

9.6.3 SynthLab-WTDM: Modify the Wavetable Source

The DrumWTSource C++ object implements the pitch-less, one-shot drum wavetable sources. Ex-
amine the drum core’s constructor, and note the first few lines where the tables are added to the
source with addWavetable. Trace this code into the DrumWTSource, and you will see that each
table is stored as a separate waveform that is mapped across the keyboard. Alter the source so that
the drum tables map chromatically to the first 16 MIDI keys, starting with middle C (60).

http://lib.tkk.fi

Virtual Analog (VA) oscillators are interestingly named. They have nothing to do with analog cir-
cuits, components, block diagrams, or signal flow. They do not model the physical characteristics
of any kind of analog oscillatory system, like pendulums or springs with attached masses. Analog
oscillators have no Nyquist limit and cannot alias. Their waveform shapes look identical to those
of trivial oscillators, no matter what the frequency of oscillation. One of the goals for VA oscilla-
tors is to preserve that perfect shape as much as possible. The applications of VA oscillators tend
to take two directions. One is to retain the perfect analog oscillator waveform and harmonic spec-
trum with either no aliasing or with aliased components so low in amplitude that they are either
inaudible or masked by other non-aliased components. Another direction is to create waveforms
that are cheap to render on low-CPU and memory-starved devices, such as mobile phones, tablets,
and toys/games. In these cases, aliasing is allowed, even if it is audible, because of the tradeoff in
CPU and memory savings.

10.1 VA Oscillator Fundamentals

VA oscillator analysis starts with the notion that discontinuities in a waveform are the pri-
mary cause of aliasing. The trivial ramp LFO waveform exhibits massive aliasing, as shown in
Figure 10.1(a) and (b). The lower limit for the plot in Figure 10.1(b) is −96 dB, the theoretical noise
floor for 16-bit PCM digital audio, while it is −60 dB in Figure 10.1(a), which is used throughout the
text. Lowering the measurement floor reveals more aliasing, though aliased spectral amplitudes
below −60 dB are extremely suppressed, and I usually use −60 dB as a ballpark threshold on the
tolerable aliasing amplitudes.

Figure 10.1(c) and (d) show the same trivial oscillator output whose waveform has been altered
in the time domain to suppress the aliased components. The VA oscillator attempts to filter the
aliased components out by manipulating the points around the discontinuity.

10.1.1 Saw and Square Continuities

Traditionally, a discontinuity in a function is a point in the domain where the function instantane-
ously jumps from one value to another, with no time or space between the level shift. Some say that
the function takes on both values at once. But according to a less rigorous definition, a discontin-
uous edge is a place where two geometrical entities – lines or curves – meet up. It can also describe
a single function that contains a glitch. Types of discontinuity are named “continuities” as they
relate to how continuous a function may be. In Figure 10.2(a), you see a smooth and continuous

10 Virtual Analog Oscillators

142 Virtual Analog Oscillators

Figure 10.1 A trivial sawtooth waveform spectrum with (a) −60 dB and (b) −96 dB lower limits, and a VA
oscillator spectrum with (c) −60 dB and (d) −96 dB lower limits

Figure 10.2 (a) A smooth continuous function, (b) a ramp discontinuity, and (c) square discontinuity both
have similar mathematical traits – identical slopes on each side of the edge, while the triangle in
(d) has two different slopes on each side of the discontinuity

function. The sawtooth and square discontinuities have the same slopes (m1 and m2) on either side
of the discontinuity and are said to be C1 continuous (the 1 stands for first derivative or slope). The
triangle in Figure 10.2(d) is not C1 continuous.

If we limit the discussion to the C1 continuity, we can use some clever math to adjust the points
around the discontinuity so as to smooth over the offending edge of a trivial oscillator. We applied
a naïve version of this idea with the linear crossfading technique for hard sync in Section 6.10,
smoothing over a discontinuity to reduce aliasing. There are a few approaches to VA oscillator
design. Perhaps the earliest attempt is Lane’s distorted and filtered sinusoids, which was followed
up by Stilson and Smith’s Band Limited Impulse Train (BLIT) method.

10.2 Band Limited Impulse Train (BLIT)

The idea behind BLIT is to generate a softened or rounded discontinuity that would have re-
sulted in lowpass filtering an impulse and then produce a stream of filtered impulses. Equation

Virtual Analog Oscillators 143

(10.1) produces a stream of sinc function-shaped pulses, as shown in Figure 10.3(a). If you invert
every other sinc pulse, you arrive at the bipolar BLIT waveform of Figure 10.3(b). With the pulse
train established, synthesizing the three basic waveforms of sawtooth, square, and triangle are all
performed with integration (these are fundamental relationships you can find in many math and
engineering texts), as shown in Figure 10.3(c). The integration is performed in the digital domain
using reverse Euler or bilinear integrators.

M M
y n() = SincM nP P

sin(πx) (10.1)
Sinc xM ()

M xsin(π /M)

BLIT has problems that make it one of the more difficult algorithms to implement. First is the
generation of the BLIT sequence itself. Using the sinc function requires two calls to the sin func-
tion. Another idea is to sample a sum of windowed sinc functions and store them in a set of tables
corresponding to different fractional shifts of the impulse. This is necessary because the period
of the desired waveform may not be an integer multiple of the sample rate. Thus, the tables would
need to be interpolated at runtime. This is known as BLIT-SWS. A larger issue is that the band-
limited impulses overlap, and the tail of one must be mixed with the head of the next. This requires
knowing when the next discontinuity is going to occur as well as look-ahead information. This can
be problematic because we would like to have zero delay in synthesizing the waveform. The band-
limited impulse has to be generated for each discontinuity, so, as the frequency becomes higher,
the CPU usage increases. As Andy Leary points out, another issue with these methods is that the
integration steps in BLIT and BLIT-SWS introduce an unwanted and undesirable DC offset into
the signal at oscillator startup time.

10.3 Band Limited Step (BLEP)

Eli Brandt improved on the idea by performing the integration on a single sinc function in
Figure 10.4(a), then storing that pre-integrated waveform in Figure 10.4(b). This removes the

Figure 10.3 (a) Unipolar and (b) bipolar BLIT signals, and (c) algorithms for converting them into tradi-
tional waveforms

144 Virtual Analog Oscillators

Figure 10.4 (a) A sinc function and (b) its integration produces a wavy step; (c) to use the BLEP, superimpose
it on top of the discontinuity; notice that only a small section of the BLEP waveform is used

requirement for integration on the fly. This is called a Band Limited stEP function or BLEP. In
this method, there is no generation of an impulse train. Instead, you start with a trivial oscillator,
then use the stored BLEP waveform to make corrections to points that are on either side of the
discontinuity. One way to imagine this is to take a piece of the BLEP step edge and superimpose
it on the offending discontinuity, as shown in Figure 10.4(c). You can see that only a small piece of
the BLEP function has been applied to the step edge; in practice, you will only need to alter a few
points on each side so you don’t need the complete BLEP. This also preserves that perfect analog
shape for most of the waveform. In my BLEP oscillators, I allow correction of one, two, or four
points on each side of the discontinuity, depending on the oscillator’s frequency.

For implementation, a preferable solution to superimposing the BLEP edge involves windowing
the sinc pulse to a certain width, performing the integration, and subtracting out the unit step to
create a residual signal of correction factors that are simply added or subtracted from the wave-
form. The windowing is performed on the sinc function zero-crossing boundaries. Figure 10.5
shows two different windowed sinc functions; in Figure 10.5(a), only the center pulse of the sinc
function is windowed and integrated. This produces a residual for correcting one sample on each
side of the discontinuity. In Figure 10.5(b), the windowed sinc function is widened to include the
next lobe zero-crossings. This produces a residual for correcting up to four samples on each side
of the discontinuity (when doubling the window size while keeping the same table length, the zero
crossings fall on two-sample boundaries).

10.3.1 Using the BLEP Residual

Figure 10.6 shows the idea behind the residual method, starting with the isolated rising edge of a
trivial square-wave oscillator in 10.6(a) and deciding to alter two points on each side of the discon-
tinuity. Lining up the residual so its discontinuity is on top of the trivial oscillator discontinuity
is shown in Figure 10.6(b). The arrows line up exactly with the sample locations, and the residual

Virtual Analog Oscillators 145

Figure 10.5 T wo sets of windowed BLEP waveforms, where (a) the central pulse is truncated and windowed
and (b) the central pulse is combined with the next pair of zero-crossings to form a wider win-
dowed function; the integrated windowed signals, and the rising and falling residuals are shown
for each case

Figure 10.6 (a) A rising discontinuous edge showing the two samples on each side (b) superimposing the
residual over the discontinuous edge (c) adjusting these four points based on the residual and (d)
the BLEP corrected discontinuity

curve shows how much to alter each point in Figure 10.6(c). After only four points have been al-
tered, we arrive at Figure 10.6(d), which mimics the result of superimposing the BLEP edge onto
the waveform, as shown in Figure 10.4(c).

10.3.1.1 Strategy: One Large BLEP Table

In BLEP table-based approaches, you store the BLEP residual and use it accordingly. One strategy
that I use for the SynthLab-VA project involves storing a single, finely sampled version of the BLEP
residual in a 4,096-point table. There are two sets of tables: one for the correction of one point per
side and the other for the correction of one, two, three, or four points per side of the discontinuity.
They are generated with two different window widths. Within the second set of tables are more
tables, all the same length but processed with different windows during table creation. Figure 10.5
uses simple rectangular windowing of the BLEP central pulse and its side pulses. But there are
numerous other windows that may be used. The sythconstants.h file includes these tables:

• A single table using rectangular windowing on the central sinc pulse, which allows for the
correction of one point per side; the table is named dBLEPTable

146 Virtual Analog Oscillators

• Seven (7) tables for correcting one to four points per side, with the window name coded in
the table name, e.g. dBLEPTable_8_HANN for the Hanning window and dBLEPTable_8_
BLKHAR for the Blackman-Harris window

10.3.1.2 Strategy: Many Small BLEP Tables

Another approach involves storing many small tables of residual samples. In 2009, Andy Leary
and Charlie Bright of Korg Research and Development were awarded US Patent 7,589,272, as-
signed to Korg, Inc. for Bandlimited Digital Synthesis of Analog Waveforms, which describes both
a method for generating the band-limited signals with BLEP and a method for hard-syncing two
oscillators with discontinuous waveforms. This patent describes an implementation in a hardware
format with shift registers and accumulators (there is no code in the patent), and is certainly worth
reading and experimenting.

Instead of consuming memory for large, finely sampled tables, another approach may be taken,
noting that, at any given time, you are only correcting a handful of points around the edge – why
store gigantic tables to process only a few points? Suppose you want to correct two points per side
of the discontinuous edge. Instead of one giant table, you can implement a set of very small tables
of only four points each, two points per side. Then, you can use interpolation between the tables to
generate the missing data you would normally get with a large table. This approach saves memory
but requires inter-table interpolation. As a point of reference, the BLEP functions in SynthLab will
allow you to interpolate the 4,096-point table if you like – I’ve found that interpolation is inaudible
because the table is so finely sampled. You can find much more information about optimal table
sizing and BLEP approaches in Pekonen et al. (2011)

10.3.2 BLEP Correction Calculation

Regardless of whether you are using a single large table or many small tables, one common prob-
lem exists: you need to know how far away you are from the edge of the discontinuity, and this
implies that you need to look ahead when evaluating the modulo counter’s value. Once you have
that edge distance, you can look up the correction value however you wish. The Leary-Bright pat-
ent demonstrates short transversal delay lines to facilitate looking ahead in the signal. Since we are
using C++, we have another option:

Monitor the value of the trivial oscillator output (the modulo counter), and detect when you
are one, two, three, or four samples away from the edge – this is possible because you know the
clock’s phaseInc value: for example, if the current modulo counter plus the phaseInc is greater than
1.0, then you know you are within one sample of the discontinuity. In Figure 10.7(a), you can see
how this works diagrammatically. The discontinuous edge occurs in the center when the modulo
counter rolls over from 1.0 back to 0.0, and the distance from the point on the left side is t(−), while
that on the right is t(+).

There is a final issue involved that is inescapable: the oscillator’s desired frequency. It is simple
to calculate the number of points per waveform cycle, which will then determine how many points
per side of a discontinuity we may correct. This may be BLEP’s main drawback for high fidelity
synthesis. Therefore, we need to follow the rules in Table 10.1, correcting either one, two, or four
points per side.

Virtual Analog Oscillators 147

10.4 Polynomial BLEP Approximation

Välimäki proposes implementing the BLEP residual by approximating the original sinc function
with a polynomial and names it PolyBLEP. Different polynomials of different orders may be cho-
sen, but a simple solution is to use a unipolar triangular pulse, shown in Figure 10.7(b); this is
the linear approximation of the windowed sinc pulse in Figure 10.5(a). Integrating this triangle
produces the sigmoid (s-shaped) curve in Figure 10.7(b), which can be expressed in closed form
and thus requires no table. Subtracting out the perfect step and then converting to bipolar results
in the following two-part residual, shown in Figure 10.7(c). Equation 10.2 shows the polynomials
used to compute each of the curves in Figure 10.7(c). The independent variable is t (time) as this
was Välimäki’s notation. For our purpose, t is the distance from a point to the discontinuous edge.

 t t2 + +2 1 − ≤1 0t ≤PolyBLEP()t =
 2 1t t− −2 (10.2)

0 1< ≤t

The one-point-per-side PolyBLEP produces only a tiny bit more aliasing than you see in
Figure 10.1(c), so when only correcting one point per side, it comes close enough to the

Figure 10.7 (a) Geometrically determining the distance from the discontinuity to points on either side of the
edge; (b) a triangle pulse integrates to a smooth sigmoid, similar to that of Figure 10.5(a); and
(c) the BLEP rising edge residual is approximated with two second order polynomials, one for
each side of the edge

Table 10.1 Number of BLEP correction points per
side versus oscillator frequency

Oscillator Frequency Number of Points
Corrected per Side

fo < fs/8 (1/4 Nyquist) 4
fo < fs/4 (1/2 Nyquist) 2
fo > fs/8 1

148 Virtual Analog Oscillators

rectangular-windowed sinc pulse that I use it for the VAOscillator core object. For two or more
points per side, I use the wider windowed tables instead.

10.5 Choosing the BLEP sinc Source

Interestingly, using the perfect sinc pulse as the basis for the BLEP correction does not necessar-
ily produce the best results. There are numerous factors and tradeoffs involved. One approach
involves trying different windows on the ideal sinc pulse, while another involves starting with tra-
ditional FIR lowpass filter design and then varying design parameters, such as pass-band ripple,
stop-band attenuation, or transition width. The results of variations upon these approaches can be
found in Otalvara et al. (2016), in which the psychoacoustic masking curves are used as evaluation
criteria for determining the audibility of aliased components, with preservation of harmonic enve-
lope and significant aliasing reduction acting as the dual design targets.

SynthLab includes a set of windowed sinc pulses, as listed in Section 10.3.1.1. If we focus only on
four points per side correction, we may glean insight from the full range spectral plots in Figure 10.8.
The majority of aliasing occurs below the −60 dB line. In addition, we observe that there is a tradeoff
between preserving harmonic envelope and aliasing; the Hann windowed spectrum has the least
aliasing but the poorest preservation of harmonic envelope. Where have we seen this before?

10.5.1 BLEP and Lanczos

Compare the plots in Figure 10.8(c) and (d) to the Lanczos sigma corrected Bandlimited wavetable
in Figure 9.3(c) and (d). Notice also how the Lanczos sawtooth waveform (9.3c) has small wavy

Figure 10.8 S awtooth waveforms using 8-point BLEP correction with (a) rectangular (b) triangular (c) Ham-
ming and (d) Blackman-Harris windowed sinc BLEP residuals; the dotted line represents the
harmonic envelope of a perfect sawtooth waveform; note the location of the −60dB level

Virtual Analog Oscillators 149

humps just before and just after the discontinuity, and a flat “perfect” waveform between. In the
frequency domain, we observe the same issue with the lack of harmonic envelope preservation. It
appears that BLEP and Lanczos may be related. In 2016, Singh and Pirkle (2016) proved that BLEP
correction is mathematically identical to Lanczos sigma correction. All along, we’ve really been
trying to convert a trivial waveform into an equivalent, band-limited, Lanczos sigma corrected
waveform. The fundamental difference is that, for BLEP, the correction is on-the-fly as the wave-
form is being rendered, whereas Lanczos applies to pre-calculated wavetables.

10.6 Other VA Algorithms

A drawback with BLEP is that technically, it will only adequately correct a waveform with a C1
continuity, which, for synthesizers, is generally sawtooth (ramp) and square wave, but even in
non-C1 cases, you can still obtain a massive reduction in aliasing in other trivial oscillators using
PolyBLEP alone. There are more approaches to synthesizing the traditional waveforms without
Fourier wavetables including Lane’s original distorted sinewaves and Välimäki’s Differentiated
Parabolic Waveform (DPW) algorithm.

10.6.1 Differentiated Parabolic Waveform (DPW) Oscillators

Välimäki (2005) observed that differentiating a parabolic waveform produced an output that
was similar in shape to a trivial sawtooth but with greatly reduced aliasing. Squaring a ramp or
sawtooth waveform generates a parabolic waveform. Differentiating it produces the parabolic
waveform. The DPW oscillator algorithms synthesize the sawtooth and triangle waveforms but
tend to produce more aliasing than BLEP, and I do not use them for high-quality synthesis.
One advantage is that the triangle wave is available since the algorithm does not depend on
continuity type.

10.7 BLEP Square Wave

Since the square wave has a C1 continuity, we are also able to use BLEP to correct its edges and
produce alias suppressed waveforms. The only thing you need to keep track of is the direction of
the discontinuity (rising or falling). The fundamental issue that makes this difficult occurs when
you use an extreme pulse width setting. If the frequency of oscillation rises high enough, the edges
come within a sample interval of one another. At a 1% pulse width, this occurs at about 2 kHz for
a 44.1 kHz sample rate. This would require using BLEP at least twice since we have overlapping
BLEP transition regions. For BLEP with a wider transition region, it becomes tricky since there
are more points to overlap. These may need to be corrected more than twice.

But there is another way to generate square waves using a synth programming trick that was
used on older digital synths that did not offer a PWM square wave oscillator. The sum-of-saws
method uses two sawtooth waveforms to synthesize a square wave with an adjustable duty cycle.
The idea, shown in Figure 10.9(a), consists of summing two sawtooth waveforms together where
one waveform has been inverted and phase shifted. Because the waveforms consist of straight lines
(ramps), they will sum to 1.0 or −1.0, depending on the crossover point between them, as shown in
Figure 10.9(b). And, with the modulo counter approach, shifting the phase means simply adding
an offset between 0.0 and 1.0 to the existing value, then wrapping as needed.

150 Virtual Analog Oscillators

10.8.1 VA Oscillator Controls, Modulations, and Features

Table 10.3 lists the module controls common to all cores and the GUI calculation section or equa-
tions. The coarse tuning and fine-tuning operate in semitones and cents, respectively, and are part
of the pitch modulation update calculation, while the pan and output controls are common to
almost all other oscillators and allow blending of the quad oscillator render block.

10.9 VA Core Programming Notes

With the C++ files open, compare the programming notes with the code that you see, starting
with the class description of the core. As with the wavetable oscillator, the VA core uses the same
time-base, implemented with a SynthClock modulo counter that is reset and advanced with each
note-event. Sections 10.9.1 through 10.9.5 summarize the five operational phases, plus constructor
for the wavetable cores. Make sure to examine the code while digesting their operational phase de-
tails. The VA core is blissfully simple because it is purely algorithmic and does not require tables,
files, databases, or other external components for rendering its output. This makes it a very lean
object and ideal for use in mobile devices.

Figure 10.9 (a) Two sawtooth waveforms are combined to generate a square wave (b) shows how the ramps
add or subtract to produce values of −1.0 or +1.0

10.8 VAOscillator and Core

The VAOscillator is shown in block diagram form in Figure 10.10(a), while Figure 10.10(b) shows
the SynthLab diagram and the one and only VAOCore. The custom module strings are the three
output waveform names, and the mod knobs are chosen for mixing the waveforms and applying
pulse-width for the square wave output. Unlike the other oscillators, the VAOscillator and core are
designed to render two waveforms at once, saw and square; then, the user may mix them in any
ratio with the WaveMix mod knob. This is actually borrowed from the Oberheimm SEM®, which
allowed mixing of square and sawtooth waveforms only.

Table 10.2 lists the GUI parameter structure and core description. Notice that the VA oscillator
and core are the simplest of the oscillator objects; their five operational phases and functions are
the simplest of those in SynthLab.

Virtual Analog Oscillators 151

10.9.1 Construction Phase

• The module strings are the waveform names, and their index values map to the GUI control
selection values; the strings will be used to query the database for the selected waveform

• The mod knobs implement the wave mixing and pulse width

Figure 10.10 T he VAOscillator (a) internal block diagram and (b) SynthLab diagram; there is only one core,
which is also available for download as a SynthLab-DM project

Table 10.2 VAOscillator custom parameter structure and cores: (*) downloadable SynthLab-DM core
project

Parameter Structure Description
VAOscParameters Includes the pulse-width parameter that is exclusive to the VA oscillator

Example Core Description & Special Features
VAOCore* Simple VA oscillator core that demonstrates the sum-of-saws method for

generating square waves and uses the Blackaman-Harris windowed BLEP table.
This is the only oscillator that features pulse-width modulation, which is used as

its unique osc mod.

Table 10.3 VAOscillator module controls

Module Control Description GUI Calculation (Section)

Coarse Coarse tuning in semitones Pitch modulation (6.7.1)
Fine Fine-tuning in cents Pitch modulation (6.7.1)
Pan Left/Right pan Constant power panning (6.2.2)
Output Output level in dB dB to raw: 10(dB/20)

152 Virtual Analog Oscillators

10.9.2 Reset & Note On Phases

The only detail here involves the starting phase for the sawtooth versus square wave, which is also
repeated in the note-on handler. The SynthLab-VA project implements four of these oscillators,
and the waveform starting-phase is important if the user mixes different waveforms. To phase
align the saw and square waveforms, you need to offset the sawtooth by half a period so the first
output sample is 0.0 in the center of the ramp, which is accomplished by offsetting the SynthClock’s
starting point.

if (parameters->waveform == VAWaveform::kSawtooth)
oscClock.reset(0.5); // --- 0.5 for saw

else
oscClock.reset(0.0);

10.9.3 Note-On Phase

The note-event begins with the note-on handler that is both similar and quite simple across the
cores:

• Store MIDI pitch (except drum and SFX cores)
• Reset the SynthClock modulo counter member to either 0.0 (all cores) or the starting phase

point (classic, morphing, and Fourier cores); notice how the mod knob C value is used to cal-
culate the phase offset for the cores that support it

• NOTE: there is nothing to do in the note-off phase

10.9.4 Update Phase

The VA core update phase is simpler than the rest as there are no table or sample selections, just a
simple update of the oscillator time-base that is identical to the other oscillators.

1 Calculate the pitch modulation value based on GUI controls and pitch modulation sources
(Section 6.8.1)

2 Set the oscillator time-base with the new frequency
3 Calculate the output gain and pan
4 Store the pulse-width for the render phase

What is interesting here is the pulse width control since the VAOscillator is the only SynthLab os-
cillator that is capable of PWM. The core stores a pulseWidth variable for the render operation and
recalculates it during the update phase, starting with getting the value from the mod knob – the
percent is converted to a fraction.

// --- pulse width from ModKnob
// note the way this works 0.0 -> 50% PW 1.0 -> 95% PW
pulseWidth = getModKnobValueLinear(

parameters->modKnobValue[MOD _ KNOB _ B], 0.5, 0.95);

Next, the bipolar modulation value is acquired from the kUniqueMod input value.

Virtual Analog Oscillators 153

// --- this value is modulated and then bound
double pwModulator =

processInfo.modulationInputs->getModValue(kUniqueMod);

To use this value effectively, call the bipolar modulation function and cut the return value in half
so that bipolar modulation will revolve around the center point that the user chooses with the mod
knob. Lastly, the value is bounded to 5% and 95% (feel free to modify these limits).

pulseWidth += 0.5 * doBipolarModulation(pwModulator, 0.5, 0.95);

// --- bound it
boundValue(pulseWidth, 0.5, 0.95);

10.9.5 Render Phase

The VA core renders both the sawtooth and square wave at the same time, using the same func-
tion, then outputs the desired waveform or blends with the wave mix control for the saw/square
combination waveform. The VAOCore uses two helper functions for rendering, each producing
one sample per sample interval. The renderSquareSample uses the sum of saws method, calling
the renderSawtoothSample twice and returning the sawtooth value via a pass by reference output
parameter.

double renderSawtoothSample(SynthClock& clock);
double renderSquareSample(SynthClock& clock, double pulseWidth _ Pct,

double& sawtoothSample);

The renderSawtoothSample function consists of three parts. First, check the oscillator frequency,
and determine the maximum points per side to adjust; see Table 10.1.

double pointsPerSide = 0;
if (clock.frequency _ Hz <= sampleRate / 8.0) // Fs/8 = Nyquist/4

pointsPerSide = 4;
else if (clock.frequency _ Hz <= sampleRate / 4.0) // Fs/4 = Nyquist/2

pointsPerSide = 2;
else // Nyquist

pointsPerSide = 1;

Next, create the trivial oscillator output, and call the BLEP function, which returns the BLEP
correction factor.

double sawOut = bipolar(clock.mcounter); // create triv saw
double blepCorrection = 0.0;

// --- get the correction factor
blepCorrection = doBLEP _ N(4096, /* BLEP table length */

clock.mcounter, /* mod count */
fabs(clock.phaseInc),
1.0, /* edge height = 1.0 */
false, /* falling edge */

154 Virtual Analog Oscillators

pointsPerSide, /* N points per side */
false); /* no interpolation */

Lastly, add the correction factor to the trivial sawtooth value and advance the clock time-base.

// --- add the correction factor
sawOut += blepCorrection;

// --- setup for next sample
clock.advanceWrapClock();

The renderSquareSample function calls the sawtooth render function twice. Notice the use of the
SynthClock::saveState and restoreState functions, which are used to provide the temporary phase
offset needed for the current pulseWidth value.

// --- sum-of-saws method
// --- set first sawtooth output
sawtoothSample = renderSawtoothSample(clock);

// --- save clock state
clock.saveState();

// --- phase shift on second oscillator
clock.addPhaseOffset(pulseWidth);

// --- generate 2nd saw
double saw2 = renderSawtoothSample(clock);

// --- subtract = 180 out of phase
double squareOut = 0.5*sawtoothSample - 0.5*saw2;

// --- restore original clock state
clock.restoreState();

return squareOut;

The DC correction function uses my formula for adjusting the DC offset based on the
pulse width; as the pulse width becomes wider at the top, the DC offset needs to shift down-
ward to make up for the added area under the curve. This may also be accomplished with a
high-pass filter.

// --- apply DC correction
double dcCorrection = 1.0 / pulseWidth;

// --- modfiy for less than 50%
if (pulseWidth < 0.5)

dcCorrection = 1.0 / (1.0 - pulseWidth);

Virtual Analog Oscillators 155

// --- apply correction
squareOut *= dcCorrection;

The render function first acquires the output buffers, like the other oscillators, then sets up the
block processing loop:

float* leftOutBuffer = processInfo.outputBuffers[LEFT _ CHANNEL];
float* rightOutBuffer = processInfo.outputBuffers[RIGHT _ CHANNEL];

// --- render square and saw at same time
for (uint32 _ t i = 0; i < processInfo.samplesToProcess; i++)

The loop code calls the rendering function that produces both outputs, which are output or line-
arly blended according to the user’s waveform selection.

double oscOutput = 0.0;
// --- render both saw and square always, choose output with param
double sawOutput = 0.0;
double sqrOutput = renderSquareSample(oscClock, sawOutput);

if (parameters->waveform == VAWaveform::kSawAndSquare)
{

// --- blend with mod knob
double mix = parameters->modKnobValue[VAO _ WAVE _ MIX];

oscOutput = sawOutput*mix + sqrOutput*(1.0 - mix);
}
else if (parameters->waveform == VAWaveform::kSawtooth)

oscOutput = sawOutput;
else if (parameters->waveform == VAWaveform::kSquare)

oscOutput = sqrOutput;

// --- scale
oscOutput *= outputAmplitude;

// --- write to output buffers
leftOutBuffer[i] = oscOutput * panLeftGain;
rightOutBuffer[i] = oscOutput * panRightGain;

10.10 Exercises

10.10.1 SynthLab-VADM: Mod Knob C to Shape Control

You can create a simple oscillator shape control with one of the spare mod knobs using the phase dis-
tortion shaping technique (Section 6.9) utilized in the wavetable cores. Add a waveform shape control
that applies phase distortion to generate different sounds. Apply the phase distortion to the synth clock
mcounter value prior to use. How does this affect the BLEP correction’s ability to suppress aliasing?

156 Virtual Analog Oscillators

10.10.2 SynthLab-VADM: Shape Modulation

The VA oscillator’s unique modulation capability produces PWM; however, this only applies to
the square waveform. Modify the core code to implement shape modulation when the user has
selected the sawtooth-only waveform.

10.10.3 Advanced Module: Implement Välimäki’s DPW

Download the Välimäki’s DPW algorithms for generating sawtooth and triangle waves. Imple-
ment the algorithm as your own dynamic module core.

Bibliography

arizona.edu. 2020. “Continuity.” http://www-isl.ece.arizona.edu/ACIS-docs/HTM/DATA/ACIS/FCG/
03MATH/0003.HTM, Accessed October 14, 2020

Brandt, Eli. 2001. “Hard Sync without Aliasing.” Proceedings of the International Computer Music Confer-
ence, Havana, Cuba.

Dattorro, Jon. 2003. “Effect Design Part 3 Oscillators: Sinusoidal and Pseudonoise.” Journal of the Audio
Engineering Society, vol. 50, no. 3. pp. 115–146.

Kleimola, Jari &Välimäki, Vesa. 2012. “Reducing Aliasing from Synthetic Audio Signals using Polynomial
Transition Regions.” IEEE Signal Processing Letters, vol. 19, no. 2.

Lane, J., et al. 1997. “Modeling Analog Synthesis with DSPs.” Computer Music Journal, vol. 21, no. 4,
pp. 23–41.

Leary, Andrew & Bright, Charles. 2009. “Bandlimited Digital Synthesis of Analog Waveforms.” United
States Patent 7,589,272.

Moore, Richard. 1990. Elements of Computer Music. Eaglewood Cliffs: Prentice-Hall.
Moorer, James. 1976. “The Synthesis of Complex Audio Spectra by Means of Discrete Summation Formu-

lae.” Journal of the Audio Engineering Society, vol. 24, no. 9, pp. 717–727.
Nam, Juhan & Välimäki, Vesa, Abel, Jonathan & Smith, Julius O. 2010. “Efficient Antialiasing Oscillator

Algorithms using Low-Order Fractional Delay Filters.” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 18, no. 4. pp. 733–785.

Otalvara, Francisco, Behura, Samarth & Pirkle, Will. 2016. “Perceptually Alias-Free Waveform Generation
using the Bandlimited Step Method and Genetic Algorithm.” Presented at the 141th Audio Engineering
Society Convention, New York.

Pekonen, Jussi, Lazzarini, Victor, Timoney, Joseph, Kleimola, Jari & Välimäki, Vesa. 2011. “Discrete-Time
Modeling of the Moog Sawtooth Waveform.” EURADISP Journal on Advances in Signal Processing, Ar-
ticle ID 10.1155/2011/785103.

Singh, Akhil & Pirkle, Will. 2016. “The Relationship between the Bandlimited Step Method (BLEP), Gibbs
Phenomenon, and Lanczos Sigma Correction.” Presented at the 141th Audio Engineering Society Con-
vention, New York.

Stilson, Tim & Smith, Julius O. 1996. “Alias-Free Digital Synthesis of Classic Analog Waveforms.” Proceed-
ings of the 1996 International Computer Music Conference.

Välimäki, Vesa. 2005. “Discrete-Time Synthesis of the Sawtooth Waveform with Reduced Aliasing.” IEEE
Signal Processing Letters, vol. 12, no. 3, pp. 214–217.

Välimäki, Vesa & Huovilainen, Antti. 2006. “Oscillator and Filter Algorithms for Virtual Analog Synthe-
sis.” Computer Music Journal, vol. 30, no. 2, pp. 19–31, Cambridge: MIT Press.

Välimäki, Vesa, Nam, Juhan, Abel, Jonathan & Smith, Julius O. 2010. “Alias-Suppressed Oscillators Based
on Differential Polynomial Waveforms.” IEEE Transactions on Audio, Speech and Language Processing,
vol. 18, no. 4, pp. 786–798

http://arizona.edu
http://www-isl.ece.arizona.edu
http://www-isl.ece.arizona.edu

Early sampler instruments were capable of recording sounds – single musical tones (note-events)
from acoustic instruments, short audio clips, or sound effects – and playing them back with the
ability to speed up or slow down the playback so as to generate proper musical pitches when de-
sired. This idea led to sample playback synthesizers, which played banks of pre-recorded musical
instrument sounds or sound effects. Due to confusion regarding the terms “sample” and “wave”
and “wave file,” I use the term “PCM sample” to specifically refer to a recorded event that is not
a wavetable. PCM stands for Pulse Code Modulation, the technique of encoding voltage levels as
numbers. In contrast to the early samplers, the newer sample playback synths used sets of samples
called “multi-samples,” made of recordings of note-events at different pitches across the range of
an acoustic instrument. These PCM samples were mapped to different keys on the keyboard and
followed a paradigm similar to the wavetable synths, in which a single PCM sample is used for a
range of playback notes via interpolation. Typically, intervals of a minor third or octave were used.

11.1 PCM Sample Playback Modes

Figure 11.1 shows the four commonly used playback modes: one-shot; loop; transient plus loop;
and transient, loop, and release. Pitch-less PCM samples are designed to playback at the speed
they were recorded, while the pitched versions are designed to map to the keyboard with proper
musical note playback. As in the wavetable, when PCM sample data is read out using an increment
value greater than one, aliasing may occur. Early samplers had no way of generating alias-free
multi-samples from a single recording, so the effect of aliasing is sometimes associated with them
and is sometimes seen not as a problem but rather as a kind of personality of the device.

11.1.1 One-shot Mode

In one-shot mode, shown in Figure 11.1(a), the PCM data is played from beginning to end exactly
once, and then playback stops, even if the key is still being held. Latching one-shot allows the user
to trigger the playback with a single press and release of a key or button. One-shot PCM samples
are usually used for drum hits or sound effects and may or may not be pitched.

11.1.2 Loop Mode

In looping mode, shown in Figure 11.1(b), the entire PCM sample is looped from beginning
to end and then repeated. These loops are often pitch-less, implementing drum beats or

11 PCM Sample Playback Oscillators

158 PCM Sample Playback Oscillators

background pads. When using loops of musical material, playback at speeds other than normal
often sounds artificial.

11.1.3 Transient + Loop Mode

Figure 11.1(c) depicts the transient plus loop operation and is the most common mode for PCM
sample playback synths. In this mode, the PCM sample recording contains the initial transient
sound plus a section of the waveform containing the steady state portion that is looped, while the
key is held. When the key is released, the sustain loop continues, and an artificial release envelope
is applied via the DCA and its EG. This is the most common kind of PCM sample playback as it
has been used in numerous synths, like the Korg M1 and Kurzweil K2000/2500. The Legacy PCM
core object implements 16 sets of these multi-samples to generate its 16 different waveforms.

11.1.4 Transient + Loop then Release Mode

Figure 11.1(d) shows the transient plus loop then release mode in which the transient and release
portions of the waveform are preserved, with the transient loop section positioned between them.
This allows a very accurate synthesis of the original instrument waveform that includes both the
attack and the release information. The release portion may also be further shaped with the DCA
and EG.

Figure 11.1 T he four common modes of PCM sample playback include (a) one-shot; (b) loop; (c) transient
plus loop; and (d) transient, loop, and release

PCM Sample Playback Oscillators 159

11.2 PCM Sample Storage

PCM samples are usually much longer than the few hundred or thousand sample points of a
wavetable, and this may be problematic. Unlike the wavetables that can be compiled into the
synth, PCM samples are almost always packaged in a separate file or set of files; this necessitates
the opening and parsing of the files in order to populate buffers for playback. One simple way to
package the PCM samples is in a “wave” file (with the extension .wav). This is especially attrac-
tive since the wave file format includes the ability to store one or more sample loop points along
with the audio data. However, it also exposes the raw material to the user, who may then copy
or move the data into another device. Typically, only one PCM sample is stored in a wave file, so
this generates numerous files to maintain. For this text, the wave file format works well and will
allow you endless experimentation with PCM samples, which you can buy, get for free, or even
generate yourself.

11.2.1 Packaging Samples in Wave (.wav) Files

The wave file format was conceived to store more information than just the audio data and relevant
information about it, such as channel count, number of samples, and samples per data word. The
wave file format consists of chunks of information named riff-chunks, along with the raw audio
data encoded as bytes. Audio samples may be encoded as 8-, 16-, or 24-bit integers, or 32- or 64-bit
floating point values.

In particular, the wave file format also includes the option to store the

1 Sample period (T = 1/fs)
2 Loop count (may have more than one loop, though we use single-loop files exclusively)
3 Starting and ending sample indexes for each loop in the file
4 SMPTE time code information
5 MIDI Unity Note
6 MIDI Pitch Fraction

11.2.1.1 MIDI Unity Note Information

In addition to being able to store multiple loop points, the wave file format also includes the MIDI
unity note and MIDI pitch fraction, which are important for PCM samples. The MIDI unity note
represents the MIDI note number of the pitch that will occur if the PCM samples are read out with
a phase increment of 1.0 – in other words, the note that was originally recorded for the sample.
If the pitch of the note is not a standard MIDI pitch (e.g. instruments that do not use Western
intonation, such as sitar), then the MIDI pitch fraction may contain the additional pitch offset
information.

In the past, it was common for professional sample and loop generating companies to encode the
MIDI unity note information in the wave file, making it simple to decode and calculate the phase
increment lookup value. More recently, this paradigm has been mostly ignored, with the note
number and name encoded into the name of the wave file, e.g. flute_A#4.wav. Clearly, encoding
the unity note like this is problematic as there is no standard whatsoever. However, searching for
the note string within the filename is not unreasonable, and the Mellotron ® PCM samples in the
Mellotron core are encoded this way.

160 PCM Sample Playback Oscillators

11.2.2 Calculating the PCM Phase Increment

For pitch-less samples and loops, the phase increment is simply set to 1.0, and the loop or sample
will play at the same rate and pitch, no matter which key is used to trigger the event. To mimic the
early samplers, the pitch can be adjusted for interesting effects, but for musical pitches to be accu-
rate, the original pitch of the sample must be known either from the embedded unity note number
or from a lookup table once the filename has been decoded. The phase increment value (called the
playback ratio) may be calculated in two different manners. Equation (11.1) uses the MIDI note
number:

M U−

phaseInc = 2 12

M = MIDI note number of note being played (11.1)
U = MIDI unity note number

To avoid the power-of-two operation, Equation (11.2) can be derived easily, using the equivalent
length of a wavetable with the same MIDI unity note pitch.

f
phaseInc = o

fU
f = frequency of note being played (11.2)
o

fU = frequency of unity note (original sample pitch)

11.2.3 Multi-Samples and the Keyboard

Multi-samples are generated for multiple pitches across the keyboard and are distributed across
the range of notes in a similar manner to the wavetables in Figure 9.4. These include but are not
limited to:

1 One PCM sample per octave
2 One PCM sample per minor third interval (four samples per octave)
3 One PCM sample per note

For the Mellotron samples used in the MellotronCore, the original keyboard had a limited range of
35 keys from G2 to F5, so the samples in that set are likewise limited in range.

11.3 Loading PCM Samples

The early PCM sample-based synths usually incorporated ROM (read only memory) chips, with
samples that were permanently burned into them. These devices, and the method of encoding the
audio information in them, were proprietary and part of an embedded audio system specific to
each manufacturer. To offer more PCM samples for the user after the unit was purchased, some
manufacturers made expansion cards with still more ROM, which could be inserted into dedicated
hardware ports on the synth. Later, PCM samples were distributed on CD-ROM and loaded via
SCSI data ports onto synths that had this capability. The ability to load new sample sets is attrac-
tive for end users, while disc or CD-ROM-based storage is attractive for the manufacturers as they
have control over distribution. However there is one sticky point that needs to be addressed, no

PCM Sample Playback Oscillators 161

matter what sample delivery system is used: when should this new, non-factory data be read and
loaded into ROM? There are two basic options:

1 Pre-load the data into RAM (random access memory) when the synth starts up or when a new
expansion card, hard disc, or CD-ROM is attached

2 Load the PCM data from hard disc or CD-ROM on-the-fly as the user depresses each key

If the PCM sample data is loaded all at once and placed into RAM, the synth engine and synth
voices will have instant access to the data via simple pointers or table index values, and the PCM
oscillators will begin rendering their outputs immediately. However, if the synth loads significant
amounts of data, this forces the user to wait for the data to load. In addition, this is not memory-
efficient since many samples may be loaded into memory but never actually played. In the all-
at-once paradigm, the user must wait for the data to load, but the programming code is very simple
for both reading the data into RAM and rendering the audio output.

On the other hand, if the data is loaded from a disc as the user plays the notes, you need to create
a file input stream from the disc and begin accessing the data, which is far too slow for real-time
operation. But processing threads can be used to allow each note-event to optimize the parallelism
inherent in polyphonic playing, and data can be read in chunks. In this on-demand system, multiple
threads can be used for more efficiency, but the code will be much more complex because it will need
to include: setting up and waiting for disc access, creating a worker thread to fetch data from the
disc, and synchronizing that thread so it does not interfere with the synth’s native processing threads.

In the on-demand paradigm, the time it takes to access the disc and begin fetching data to render
is prohibitive and will cause a noticeable tactile and audible delay. This brings up a third, hybrid
option that combines both ideas. At load-time, you only read out the first chunk (say, 4096 sam-
ples) of each PCM sample, and you save that in RAM. This significantly reduces the load time and
memory required. Then, when the user plays a note, you begin reading from that data in RAM for
the beginning of the note-event and launch the thread that performs disc accesses for the rest of the
data. From that point on, the code involves synchronizing the disc accesses and fetching chunks
of data as needed for the rendering operation. Clearly, this is a significant coding challenge and in-
volves heuristic problems, such as switching PCM sample sets on-the-fly while notes are being held.

11.3.1 Data Brick Files

Another way to package the samples sets is in one giant contiguous data “brick” file that contains all
of the sample information, loop points, etc. but is compacted into a sequential data file. This hides
the data from the user and even with simple encryption techniques can make the data very difficult
to steal. In the hybrid approach, the brick file might contain an array of just the starting portions of
the waveforms. For educational purposes, I am delivering the data in wave files stuffed into folders.
However, if you would like to experiment with using the brick files or reading samples on-demand,
you can find tools to extract the wave samples and loop points at www.willpirkle.com/synth-tools.

11.3.2 Sample Slicing

In sample slicing, you start with a wave file that contains multiple musical events. Then, an al-
gorithm is used that finds the transient edges of these musical events and creates slice points.

http://www.willpirkle.com

162 PCM Sample Playback Oscillators

The wave file can then encode these multiple loop points or else be split into individual wave files,
each containing a slice. These loops can then be mapped to the keyboard or touch-screen display,
and the user plays the loops as if they were musical notes. The methods for finding the transient
edges involves math that is interesting and deep. Usually, multiple methods are used, including
finding time-based transients and locating energy or spectral bursts that indicate a transient edge.
A free, open-source library of tools named aubio is available at https://github.com/aubio/aubio
and includes a command line utility called aubiocut that detects transient edges in a wave file, then
slices it into a set of smaller wave files. You have control over several factors used in the detection
operation. The wave files are named according to the time location of the starting slice. The Wave-
Folder object in the next section can decode the aubio filenames to create sets of pitch-less loops
that can be mapped to the keyboard and is included as the WaveSliceCore.

11.3.3 PCMSample and WaveFolder C++ Objects

To facilitate PCM sample loading and rendering, I’ve designed two helper objects that do most
of the work. The PCMSample object is used to open a wave file and extract its information, and
works for both Windows and MacOS. The audio data is loaded and stored in an array of floating
point values. The PCMSample object also parses and saves the loop start and end points, and the
MIDI unity note number. The object works with mono or stereo uncompressed 8-, 16-, or 24-bit
integer wave files as well as 32- and 64-bit floating-point files – in all cases, the final data is available
in 32-bit floating-point form only, which is also the synth’s preferred audio data type. Each wave
file will have its own associated PCMSample object.

In the SynthLab-PCM synth, each set of multi-samples that generates one waveform is stored
in its own directory, as shown in Figure 11.2(a). The name of the directory is the name of the se-
lected sample in SynthLab (though that is easy to change). At startup, the PCM samples are loaded
from the wave files and stored in PCMSample objects, organized in an array of 128 slots, each
corresponding to the MIDI note number for that sample’s pitch. Each SynthLab PCM core object
implements an instrument with up to 16 patches. You can see that for the Mellotron, there is one
wave file per note for all 35 keys on the instrument, from G2 through F5, as shown in Figure 11.3(b).
Each file is extracted into a dynamically created PCMSample object whose pointer is stored in the
array. Since the sample set is incomplete for all 128 MIDI notes, the bottom G2 data is used for all
notes below it, while the F5 data is used for all keys above it. Another option would be to simply
not render the notes outside the original range, but that may confuse the user. For the legacy core
samples, there are missing samples at the top and bottom of the range as well as within the exist-
ing samples that are placed on minor-third boundaries from A1 through C4, as shown in Figure
11.3(c). All of the legacy samples are designed for bass sounds – thus the limited range – and were
taken from free samples appearing in Future Music and Computer Music magazines. In addition
to the member functions in Table 11.1, the PCMSample object also stores information as member
variables, including:

numChannels: number of audio channels; SynthLab supports mono or stereo files
loopCount: number of loops in the file; SynthLab only parses the first loop
loopStartIndex: starting index of loop (absolute index)
loopEndIndex: ending index of loop (absolute index)
unityMIDINote: MIDI note number for unity note

https://github.com

PCM Sample Playback Oscillators 163

The WaveFolder object extracts all of the PCM samples from the wave files present in a patch
folder and builds the array of pointers to the corresponding PCMSample objects. The MIDI unity
note number may be encoded in the wave file or may exist as character strings in the file names,
as shown in Figure 11.2(a). In the latter case, the WaveFolder object will attempt to intelligently
extract the note number from the file name (names with both “#” and “b” are supported) and will
embed the corresponding MIDI note number in the PCMSample object. Once all the files have
been parsed, the WaveFolder object will perform a second pass over the array of pointers, copying
each pointer to fill the slots that may be missing due to incomplete sample sets. This simplifies
the note rendering operation, giving us access to each sample using the MIDI note number as
the array look-up index. The WaveFolder object has only two main functions: the constructor,
which stores the outer directory, and the sample folder (e.g. M300 Brass in Figure 11.2). Once con-
structed, the IPCMSampleSource object calls the parseFolder method to extract and set up the 128
PCMSample pointers in Figure 11.2. The prototype and variable descriptions are below; notice the
flag that indicates a folder of aubiocut wave slices from Section 11.3.2.

parseFolder(PCMSample** sampleSet, /* pointer to array of pointers */
bool pitchlessLoops, /* pitchless loop flag */
bool aubioSlices) /* aubio slices flag */

The details of the folder parsing are in the function and perform the operations in Figure 11.2. For
aubiocut pitch-less loops, the WaveFolder is set up to map these loop slices to the C-major scale
notes (all white keys), starting with middle-C (MIDI note 60) and mapping upwards. You may
easily modify this code for your own mappings.

11.4 PCM Sources and Database

The IPCMSampleSource interface is used to create a C++ class that provides access to a set of
PCM multi-samples arranged in an array. You can think of a “sample source” as all of the infor-
mation needed to synthesize one PCM multi-sample across the range of MIDI notes. This inter-
face allows you to implement your PCM sample sources however you wish and is one of the central
design patterns in SynthLab. As long as your sample source object implements the interface func-
tions, it will work seamlessly with the PCM core objects. The SynthLabPCMSource object exposes
this IPCMSampleSource, and you may use it as an example to design your own. Figure 11.3(a)
shows the arrangement of IPCMSampleSource objects in the database. This is identical to the
WavetableDatabase construction and follows the same paradigm.

Table 11.1 The PCMSample object’s functions

PCMSample Function Argument Description

loadPCMSample filePath Opens, decodes, and extracts the audio data from
a wave file located at the filePath argument; also
extracts loop and unity note information

getSampleBuffer None Returns a const float (read-only) pointer to the audio
data array for rendering

setPitchless _pitchlessSample Sets the pitch-less sample flag on the object, forces read
phase increment to 1.0 always

164 PCM Sample Playback Oscillators

The PCMSampleDatabase is created in the SynthEngine and shared across all SynthVoices
and their PCM oscillators. The database is a std::map that stores IPCMSampleSource point-
ers via unique key strings. Your PCM core object may query the database for sample sources,
and it may create and add new PCM sample sources at construction time. The database uses
unique name strings because, ultimately, the user will need to select the waveform from a list
of unique names. SynthLab fills the GUI waveform selectors with these unique strings any
time a new core object is loaded. Table 11.2 lists the IPCMSampleSource functions and their
descriptions.

11.4.1 Reading/Interpolating the PCM Sample

The IPCMSampleSource object implements the readSample function that does the work in reading
and linearly interpolating the audio samples. This code is actually quite simple. The SynthLab
sample playback oscillator cores are the only oscillators that do not use the SynthClock object for a
time-base. Instead, the sample phase index value is calculated and stored along with a read index.
The IPCMSampleSource performs the read and interpolate operation, then updates the read index
and returns it to the core for storage via pass-by-reference:

PCMSampleOutput readSample(double& readIndex, double inc)

Figure 11.2 T he Mellotron core directory contains subdirectories for each patch, which, in turn, contains
a set of wave files; each of these is extracted into a PCMSample object and stored in an array of
pointers in an IPCMSampleSource object

PCM Sample Playback Oscillators 165

The code for finding the fractional sample location is identical to that of the wavetable oscillator
cores, and the only real difference is the data source that provides the sample values. The PCM
oscillator cores output into a very simple structure that contains the audio data (mono or stereo)
and an active channel count.

struct PCMSampleOutput
{

double audioOutput[STEREO _ CHANNELS] = { 0.0, 0.0 };
uint32 _ t numActiveChannels = 0;

};

For a single channel wave file, the read code is below; the variable called selectedSample is an IP-
CMSampleSource* that is parsed when the user chooses a new PCM sample patch. This interface
is used to access the data in the sample buffer via the getSampleBuffer function. The linear inter-
polation uses the fractional part (thus, the first arguments, 0 and 1) and the two adjacent samples
from the buffer.

Figure 11.3 (a) The sample sources are arranged in a database and accessed via a unique name string; (b)
the shaded keys show the included wave files for the Mellotron, sampled on every note from
G2 through F5, while the (c) legacy files include samples on minor third boundaries from A1
through C4

Table 11.2 The IPCMSampleSource interface

IPCMSampleSource Function Argument Description

selectSample oscFrequency Selects a PCMSample object based on the
oscillator frequency and the MIDI unity note
frequency in Equation (11.2)

readSample readIndex
inc

Reads the PCM data using a read- readIndex and
increment (inc) value, then returns the output
data in a structure

setSampleLoopMode SampleLoopMode Sets the loop mode: one-shot, loop, or sustain
deleteSamples None Used during destruction

166 PCM Sample Playback Oscillators

// --- split the fractional index into int.frac parts
double dIntPart = 0.0;
double fracPart = modf(readIndex, &dIntPart);
uint32 _ t nReadIndex = (uint32 _ t)dIntPart;

// --- mono file
if (selectedSample->numChannels == 1)
{

// --- check for end of file (theoretically won’t happen)
int nReadIndexNext = nReadIndex + 1 >

selectedSample->sampleCount - 1 ? 0 : nReadIndex + 1;

// interpolate between the two
output.audioOutput[LEFT _ CHANNEL] =

doLinearInterpolation(0, 1,
selectedSample->getSampleBuffer()[nReadIndex],
selectedSample->getSampleBuffer()[nReadIndexNext],
fracPart);

output.audioOutput[RIGHT _ CHANNEL] =
output.audioOutput[LEFT _ CHANNEL];

readIndex += inc;
}

11.4.2 Looping the PCM Sample

Looping the PCM sample is a bit more involved than the wavetable. First, the sample loop type is
identified which sets the looping logic. For one-shot samples, once the end is reached, the readIn-
dex variable is set to −1, which indicates that the loop is finished, and the output will be silent after
that. For ordinary loops from start to end, once the readIndex crosses the end point, it is wrapped
back to the head of the buffer. For transient plus loop, when the loop end point is crossed, you
wrap back to the loop start point. That logic is fairly simple, and you may find the details in the
SynthLabPCMSource::readSample method.

11.5 PCMOscillator and Cores

The PCMOscillator and core objects are shown in block form in Figure 11.4. There are three
cores for you to use as examples or for modification. The legacy core contains the original sam-
ples from the first edition of the book, with transient plus loop and MIDI notes embedded in
the wave files. The Mellotron core’s samples are free and available at https://sonicbloom.net/
en/free-sb-mellotron-samples/; note that they are set up as long (five- to eight-second) one-shot
waveforms, and embed the note name and number in the filename. The wave slice core uses mul-
tiple sources for loops and aubiocut to slice them up – see the readme.txt file in each folder for
information about the free loop source URL and notes about slicing.

Table 11.3 lists the GUI parameter structure and core descriptions.

https://sonicbloom.net
https://sonicbloom.net

PCM Sample Playback Oscillators 167

11.5.1 PCM Oscillator Controls, Modulations, and Features

Table 11.4 lists the module controls common to all cores and the GUI calculation section or equa-
tions. The coarse tuning and fine-tuning operate in semitones and cents, respectively, and are
part of the pitch modulation update calculation, while the pan and output controls are common

Figure 11.4 The PCMOscillator block diagram and module strings; none of the mod knobs are assigned in
these cores

Table 11.3 PCMOscillator custom parameter structure and cores: (*) downloadable SynthLab-DM core
project

Parameter Structure Description
PCMOscParameters Used for all cores, includes all oscillator parameters

Example Core Description
LegacyCore 16 samples on minor third intervals covering the lower half of the keyboard,

mainly for bass sounds
MellotronCore Long Mellotron samples, one per note across the original keyboard range
WaveSliceCore* Demonstrates mapping wave-slices to individual keys to create a slicer-rompler

style instrument; aubiocut was used to create the individual wave slice .wav files

168 PCM Sample Playback Oscillators

to almost all other oscillators and allow blending of the quad oscillator render block. The PCM
oscillator cores do not have any mod knob mappings, so you are free to experiment. The PCM core
unique modulation is pan modulation (Section 6.2.2).

11.6 PCM Core Programming Notes

With the C++ files open, compare the programming notes with the code you see, starting with
the class descriptions of each core. The PCM cores do not use the SynthClock as their time-base;
instead, they keep track of their own phaseInc value, which helps calculate the current readIndex
variable used to read from the .wav file data. Each core obtains an IPCMSampleSource interface
pointer that is used to query and load samples into the database in a very similar manner as the
IWavetableSource objects.

Sections 11.6.1 through 11.6.5 summarize the five operational phases plus constructor for the
wavetable cores. Make sure to examine the code while digesting their operational phase details.

11.6.1 Construction Phase

All cores:

• The module strings are the PCM sample file names, and their index values map to the GUI
control selection values; the strings will be used to query the database for the selected
waveform

• The mod knobs are not assigned
• The cores demonstrate multiple was to deal with samples: the legacy files use transient plus

loop, the Mellotron samples are long one-shot files, and the wave slices play in their original
pitches and are mapped to individual keys for sample playback

11.6.2 Reset Phase

The reset function queries the PCM sample database and adds the sources as needed. The IP-
CMSampleSource object handles parsing the PCM data from the wave files. For SynthLab, the
samples are located within a special folder that will sit in the same folder as your plugin DLL. The
DLL folder is acquired when the plugin loads and is available in the processInfo.dllPath variable.
You only need to provide the outer containing folder name and the sub-directories with the instru-
ment samples – these are your coreData.moduleStrings[] values that you set in the constructor.
You may also set a simple hard-coded location for the samples (e.g. C:\samples). This code demon-
strates the legacy core operation.

Table 11.4 M odule controls shared across cores

Module Control Description GUI Calculation (Section)

Coarse Coarse tuning in semitones Pitch modulation (6.7.1)
Fine Fine-tuning in cents Pitch modulation (6.7.1)
Pan
Output

Left/Right pan
Output level in dB

Constant power panning (6.2.2)
dB to raw: 10(dB/20)

PCM Sample Playback Oscillators 169

// --- initialize samples
std::string sampleFolder = concatStrings(processInfo.dllPath,

“\\SynthLabSamples\\Legacy\\”);

for (uint32 _ t i = 0; i < MODULE _ STRINGS; i++)
{

std::string sampleFile =
concatStrings(sampleFolder, coreData.moduleStrings[i]);

checkAddSampleSet(sampleFile.c _ str(),
coreData.moduleStrings[i], processInfo);

}

11.6.3 Note-On Phase

The note-on event is easily serviced; you save the incoming MIDI pitch to use for update calcula-
tions and reset the readIndex variable.

// --- save pitch
midiPitch = processInfo.noteEvent.midiPitch;

// --- reset to new start phase
readIndex = 0.0;

11.6.4 Update Phase

The pitched core update phases follow the same three steps that you will find on the other pitched
oscillators. The update function’s main goal here is to have the correct PCM sample selected and
its interface pointer stored for the render phase that will immediately follow.

1 Calculate the pitch modulation value based on GUI controls and pitch modulation sources
2 Select the PCM source based on the user’s waveform selection string
3 Select the sample based on the final modulated pitch value

To get the sample source, you use the GUI control index value:

// --- get the wave string
const char* wave = coreData.moduleStrings[parameters->sampleIndex];

// --- select the source
selectedSampleSource =

processInfo.sampleDatabase->getSampleSource(wave);

With the PCM source selected, you can get the phaseInc value by calling the selectSample function,
which also chooses the PCMSample object for rendering. It returns the phaseInc value to use in
the next phase.

170 PCM Sample Playback Oscillators

phaseInc = selectedSampleSource->selectSample(oscillatorFrequency);

11.6.5 Render Phase

The PCM rendering is efficient and simple. The sample source object will handle reading and in-
terpolating the buffer. The render function first acquires the audio buffers, then runs a loop over
the block, rendering both left and right channels using the readSample method, which also updates
the phaseInc value:

float* leftOutBuffer = processInfo.outputBuffers[LEFT _ CHANNEL];
float* rightOutBuffer = processInfo.outputBuffers[RIGHT _ CHANNEL];

for (uint32 _ t i = 0; i < processInfo.samplesToProcess; i++){

// --- read sample
PCMSampleOutput output = selectedSampleSource->readSample(readIndex,

 phaseInc);
leftOutBuffer[i] = output.audioOutput[LEFT _ CHANNEL];
rightOutBuffer [i] = output.audioOutput[RIGHT _ CHANNEL];

11.7 Exercises

11.7.1 SynthLab-PCMDM Mellotron Core: Loop Points

Mellotron samples are taken from the beginning to the end of the note-event and do not include
loop points. In this state, this creates a one-shot sample playback synth, but the samples are six to
ten seconds in length. Using software such as Wavosaur (free), you can set the loop points for the
sustain sections and embed the MIDI unity note. Create a set of transient plus loop samples from
the original Mellotron files. There are 35 files per patch, so you will become very good at identify-
ing the transient loop points, and you will find that it is quite challenging to get a click-free loop.
You might also investigate software such as SampleRobot that can find loop points for you.

11.7.2 SynthLab-PCMDM Mellotron Core: Start Point Mod Knob

All mod knobs are unassigned for the PCM cores. The Mellotron samples are delivered in long
one-shot un-looped form. Use two mod knobs to set the loop start and end points on-the-fly.
HINT: You will need to modify the IPCMSampleSource object to set the loop points.

11.7.3 SynthLab-WTDM: Hard Sync

PCM samples are usually not hard-sunk as their information is often instrument-specific. Use a
mod knob and implement the same self hard-sync as the wavetable cores. Then, implement shape
modulation using a mod knob as the controller and using a similar waveshaping technique.

PCM Sample Playback Oscillators 171

11.7.4 Advanced Module: Create a PCM Split Core

Splitting a synth keyboard involves mapping one patch (PCM sample set) to one range of notes and
another patch to the remaining notes. Middle-C is often chosen as the split note. Create a core that
splits the keyboard and chooses from two different patches depending on the key being depressed.

11.7.5 Advanced Interface: On-Demand PCM Sample Access

If you are already knowledgeable about multi-threaded applications, propose and implement a
system for loading PCM samples on-demand from the disc. This will require numerous heuristic
options regarding how a worker thread that accesses the disc can add data to a growing audio
buffer (HINT: see the lock-free ring buffers, as described in Chapter 20 of Designing Audio Effects
Plugins in C++ 2nd Ed.).

Bibliography

Braut, Christian. 1994. The Musician’s Guide to MIDI, Chap. 5–7. Alameda: SYBEX.
MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 1. https://www.midi.org/specifications-

old/item/dls-level-1-specification, Accessed October 14, 2020
MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 2. https://www.midi.org/specifications-

old/item/dls-level-2-specification, Accessed October 14, 2020

https://www.midi.org
https://www.midi.org
https://www.midi.org
https://www.midi.org

Filters play a critical role in most synthesizer algorithms, from simple damping in the
 Karplus-Strong algorithms to searing filter sweeps in analog modeling synths. Interestingly,
many classical DSP textbooks explain the design theory, but they rarely reveal the implemen-
tations that we need in audio applications: independent controls for cutoff frequency (fc) and
quality factor (Q) and stability over the audio spectrum from 20 Hz to ~20,480 Hz (10 octaves).
Early digital synth filters, designed directly in the z-plane, can be found in Chamberlain, F.R.
Moore, and Dodge and Jerse. In the late 1980s, Motorola introduced a set of DSP application
notes that demonstrated algorithms with independent controls and which were implemented
as IIR filters. More recently, Zavalishin’s excellent and free book The Art of VA Filter Design
has added a new set of synth filter designs to our repertoire. In fact, this chapter is devoted
entirely to these virtual analog designs because they work well for modulation and are simple
to implement. In addition, you can find almost all of the other audio filter design types in my
FX plugin book.

12.1 Design Summary

As with analog filters, digital filter design has multiple approaches. These include:

1 Direct z-plane design: early synth filters, including resonator and all-pole designs
Pros: simple to design and implement; CPU friendly
Cons: limited design flexibility
Sources: Moore, Dodge and Jerse, Chamberlain

2 Bilinear z-Transform IIR (BZT): classical analog-to-digital filter designs via the bilinear
z-transform
Pros: maps analog s-plane to digital z-plane, preserving the frequency axis
Cons: does not preserve impulse response, and LPF edges have errors due to incorrect map-
ping of zeros at infinity
Sources: numerous, including Pirkle (2018)

3 Impulse invariant filters: classical filter design that preserves the impulse response of the analog
filter prototype
Pros: impulse response preserved
Cons: can alias but only useful for lowpass types; filter fc has errors that get worse as the fre-
quency increases
Sources: Ifeachor and Jarvis, Pirkle (2018)

12 Synthesizer Filters

Synthesizer Filters 173

4 Wave Digital Filters (WDF): model the analog circuit components directly using scattering
parameter theory
Pros: design techniques are well documented and may include passive or active components
Cons: advanced circuits with multiple loops and nodes may be difficult to implement
Sources: Fettweis, Smith: RT-WDF, Pirkle (2018)

5 SPICE modeled filters: uses a real-time SPICE engine and SPICE scripts for circuit simulation
Pros: exact modeling of components with a long history and thousands of existing models
Cons: CPU intensive
Sources: usually a trade secret

6 Virtual Analog filters (VA): model analog filter block diagrams or analog signal flow graphs at
a conceptual level, instead of circuit components
Pros: excellent sound quality and ability to tolerate intense fc modulation; simple to implement
Cons: ultimately, these are bilinear transform variants and suffer from the same errors with
LPF edges and zeros at infinity; it is still possible to produce harsh or erroneous filter output
with extreme fc modulation
Sources: Zavalishin, Pirkle (2018)

12.2 Q and Self-Oscillation

One aspect of synth filter design that differs from FX and other applications is that self-oscillation
is generally desirable. The filter will self-oscillate when its Q (resonant peaking) value becomes in-
finite. For our synth filters, this will always be based on a feedback loop gain value that represents
a 100% feedback. However, this value is different for every filter, and in one case, the value is 0.0.
To create filters that can use the same pair of GUI controls for fc and Q, I am using a single scale of
1 to 10 for the Q control. Each filter will take this value and map it to a range of values that works
for its design. The maximum setting will produce self-oscillation. Self-oscillation becomes par-
ticularly interesting when key-track modulation is used; the filter can act as a secondary oscillator
and may be tuned to musical intervals based on the MIDI note that is playing.

12.3 Analog Magnitude Matching at Nyquist

One annoyance with bilinear z-transformed filters is that lowpass and bandpass filters do not
have a matched analog frequency response due to the zero at Nyquist – this is discussed in detail
in my FX plugin book. Each of my synth filters includes a modification to produce a finite gain
at Nyquist in order to more closely mimic the analog counterparts. As with the MMA, impulse
invariant, and Vickanek analog matched filters in the FX book, there is some error from the true
analog magnitude, and it varies from −12.4% to +1.1%. Even with the error, I feel that these are
superior to the BZT versions because of the added top-end to the response. In this chapter, the
option is named “analog FGN” (Finite Gain at Nyquist). All filters produce both standard and
analog FGN outputs, so you are free to choose whichever you like.

12.4 Zavalishin’s Virtual Analog Filters

Zavalishin’s VA design technique (2012) simulates analog filters by implementing the analog block
diagrams, consisting of summers, multipliers (amplification or attenuation), and integrators, with
their digital versions. The summers and multipliers translate easily into their corresponding DSP

174 Synthesizer Filters

structures, and there are more than two-dozen different digital integrators that may be considered.
This idea goes back to El-Masry’s RLC simulation technique (El-Masry and Sakla 1979) and has
been re-packaged over the years in different forms, but it is based on the notion of digital integra-
tor replacement. This method did not gain traction early on because it usually results in delay-free
loops, also called “zero delay feedback loops” or “zero delay feedback” or ZDF. Zavalishin pre-
sents an algebraic solution to the delay-free loop problem. In 2015, I extended Härmä’s “Implemen-
tation of Recursive Filters Having Delay Free Loops” (1998) to provide another method of solving
the problem that uses simple filter stimuli and responses with a universal transfer function. For
this chapter, the phrase “Virtual Analog,” or VA, refers to these integrator replacement designs.

12.4.1 Digital Integrator Replacement

Figure 12.1 shows the fundamental concept behind integrator replacement as a method of digitiz-
ing an analog filter. A simple first order RC filter is shown in Figure 12.1(a), and it is easy to derive
the cutoff frequency wc = 1/RC. The analog block diagram is shown in Figure 12.1(b), and you can
see the location of the multiplier and integrator inside of a delay-free loop. This is well documented
in Zavalishin’s text, using simple voltage dividers as well as Laplace transforms. You can also
download an alternate derivation from www.willpirkle.com/synth-lab that uses signal flow graph
theory – in any event, you need to know a bit about analog block diagrams and filtering theory to
understand these derivations.

While digital summers and coefficient multipliers are simple to implement, the analog integrator
does not have a directly corresponding digital version. The analog integrator’s transfer function
H(s) = 1/s may be analyzed in the frequency domain as a kind of first order lowpass filter with a
magnitude response of infinity at w = 0, or as a time domain algorithm that calculates the area
under the analog signal’s curve. If we think about calculating the area under the signal’s curve,
we know that any digital version will have errors because the signal itself is discretized where the
smooth analog curve is broken into samples.

The bilinear integrator approximates the analog integrator with a trapezoidal area calculation.
Figure 12.2(a) shows two samples from the audio input, the current input x(n), and the previous
input x(n − 1). If the integrator output y(n) represents the area under the input signal’s curve, then
the area of this trapezoid can be found using the familiar geometric equation, where the value T/2
represents the halfway point between the two input samples and T = 1/fs.

T
y n() = −y n(1)+ +((x n) (x n −1))

2 (12.1)

Taking the z-transform of (12.1) by inspection, we get:

Figure 12.1 (a) A simple RC lowpass filter and (b) the analog block diagram

http://www.willpirkle.com

Synthesizer Filters 175

T z1+ −1 T z +1
H z() =

2 1− z 1 =− 2 z −1
 (12.2)

Figure 12.2(b) shows the bilinear integrator in transposed canonical form and has been labeled
with an intermediate node, s(n), that represents the output of a storage block or z−1 storage register
and shows that the output is a scaled version of the input, plus the output of that storage register.
This separates the equation into two parts: the part dependent only on the current input signal x(n)
and the part dependent only on the output of the storage system s(n) or the delayed part. Equation
(12.3) shows how the output y(n) is separated into these two components and that it is a function of
the input x(n), the static coefficient T/2, and the storage component s(n).

T
y n() = []x n() + s n()

2
 (12.3)

Performing digital integrator substitution on the first order lowpass filter produces the diagram in
Figure 12.3(a). The coefficient multiplier that was wc = 1/RC has been replaced with wa, which repre-
sents the pre-warped analog cutoff frequency that is inherent in the bilinear transform calculation.
The original analog cutoff frequency is assigned directly to the desired digital frequency, wd, and
then the “incorrect” analog version is calculated with the standard pre-warping Equation (12.4).

2 ω T 1ωa = tan d
 T =

T 2 fs
 (12.4)

Figure 12.3(b) combines the series multipliers into one value, g = waT/2, and ignores the details of
the delay structure. Figure 12.3(c) takes this one step further and simplifies the whole feed-forward
structure into a block with input, output, g and s values. This notation will be used throughout the
chapter. At this point, everything is in place, but we still have to deal with the delay-free loop.

12.5 Resolving Delay-Free Loops in VA Structures

The underlying issue with delay-free feedback loops is that you wind up with equations that look
like (12.4), where the discrete output y(n) appears on both sides of the equation, implying that you

Figure 12.2 (a) The bilinear (trapezoidal) approximation of the area under a curve, showing the error por-
tion between the dotted line and the curve, and (b) transposed canonical form of the bilinear
integrator

176 Synthesizer Filters

need the current output value in order to calculate the current output value. Prior to the late 1990s,
you had to place a z−1 storage register in the loop to prevent feedback loop dependence, but this
would alter the transfer function of the structure.

12.5.1 Zavalishin’s Algebraic Method

Consider the structure in Figure 12.3(c), where the input to the shorthand block has been labeled
u(n) (commonly used in signals and systems theory). Tracing the signal, you can write (12.5), which
places y(n) on both sides of the equal sign.

u n() = −x n() y n()
y n() = +gu()n s()n

= −g x((n y) (n s)) + ()n
 (12.5)

Zavalishin’s technique requires you to make somewhat of a leap of faith regarding the difference
equation in (12.4) – ignore the independent variable n, which results from the discretization of the
signal, and treat the equation as instantaneous. This results in Equation (12.6).

y g= −()x y + s
gx + s g s

y = = x +
1 1+ g + g 1+ g

y G= +x S
g s

G = S =
1 1+ g + g

 (12.6)

At this point, you let G = g/(1 + g) and S = s/(1 + g), which shoehorns the equation into the format
y = Gx + S, which follows the idea of separating the difference equation into input and storage
parts. Now, refer to Figure 12.3(a), and look at the node marked v(n) = g(x(n) – y(n)). Ignoring the
discrete time variable n, you get v = g(x − y). Now, substituting Equation (12.5) as the y component,
you can write:

Figure 12.3 (a) The analog integrator is replaced with a digital bilinear integrator (b) a shorthand version
after combining the two input multipliers into one, and ignoring the exact details of the bilinear
structure and (c) simplified notation showing a block with input, output, g, and s ports

Synthesizer Filters 177

 g 1 1+ g g 1
v g= −()x y = −g x x − s g = x − x − s

 1+ g 1+ g 1 1+ g + g 1+ g
x g+ − −x gx s g= g = ()x s−
 1 1+ g + g

= −G x()s

 (12.7)

Now, by observation, you resolve the delay-free loop. This is accomplished with two steps:

1 Change the input coefficient multiplier to G = g/1 + g, and note that this is the same as cascad-
ing the original g coefficient with another 1/1 + g coefficient

2 Relocate the original feedback loop from the output to the s(n) location

Both steps are shown in Figure 12.4, where 12.4(a) shows the setup with v(n), and 12.4(b) relocates
the delay loop and merges the coefficients into one G value. When you use Zavalishin’s method,
these will always be true – the loop coefficient gain multiplier will be merged with another factor
(g becomes G), and the loop source will be relocated from the output to a storage location, where
s(n) is the output of a pure delay network.

12.5.2 Modified Härmä Method

My loop resolution method is called the Modified Härmä (MH) method because it is based on
Härmä’s original design, which resolved one specific type of delay-free loop where the processing
is in the feedback path, and the feed-forward path consists only of non-storage components. The
MH method extends that theory to resolve any kind of delay-free loop. You can find the derivation
that does not require ignoring the discrete time variable n and that uses a familiar infinite series
in Pirkle (2014). The methodology is also different – instead of algebra, you stimulate the loop by
injecting two values (0.0 and 1.0) into it under specific conditions and tabulating the results. Next,
you use a universal difference equation template and plug in the values – the loop can then be
resolved by inspection. The MH method requires five steps. The first three involve stimulating the
loop to find three values:

Figure 12.4 (a) The delay-free loops structure with v(n) labeled and (b) the resolved loop done by examination
of Equation (12.7)

178 Synthesizer Filters

1 uo(n) = the temporary loop input value
2 yo(n) = the temporary loop output value
3 X = the loop gain without any delay (storage) elements in place
4 The fourth step is to plug these values into the delay-free resolved difference equation for a sin-

gle loop system; this is the result of the derivation of the method and is covered in the source.

1
y n() = y no()

1− X
(12.8)

5 The last step is to find uo(n) for the filter implementation to see how the new difference equa-
tion will alter the structure – it is here that you will be able to relocate the loop and modify
the loop coefficient by inspection. You can then prove to yourself that the difference equation
implements the new structure.

Figure 12.5 shows the MH method’s first three steps for a system consisting of a single loop, with
the processing block in the feedback path. With these values and Equation (12.8), you can easily
write the difference equation:

Figure 12.5 The first three steps in the MH method for resolving delay-free loops produce the values uo(n),
yo(n), and loop gain X

Synthesizer Filters 179

Figure 12.6 (a) The final structure after loop resolution and (b) combining the series loop coefficients into a
single value α

1
y n() = y no()

1− X
K x[]()n S+ ()n

=

1− KG
(12.9)

For the final step, find the exact value for uo(n) – this will vary depending on the loop structure.
Notice that the operations are the same as those in Zavalishin’s algebraic method: the loop is re-
located from the output y(n) to a storage location S(n), and the loop coefficient is augmented with
another series multiplier.

u no o() = +x n() Gy ()n S+
and
y no o() = Ku ()n
therefore
u no o() = +x n() GKu n()+S

x n()+S
u no() =

1− KG

 (12.10)

Now you can inspect (12.8) and (12.9), and set up the final structure shown in Figure 12.6. Notice
that the output of the loop-processing block seems to go nowhere – this is correct as the output
value is not applied anywhere else. In fact, you don’t need to calculate the output value in this case
as the loop is dependent on the S(n) value.

For completion, in multiple loop systems, the generalized difference equation solution is shown
in Equation (12.11).

= ∑

M
1

y n() f u((n s)) + β
− i i1 X

 i=1
f u((n)) = the processing functon in the feed-forward path

or x n() if no function in path
M = the number of delay elements in the structure
X = the loop gain coefficient
s ti = he output of delay element i
βi = the feedback multiplier for delay element i

 (12.11)

180 Synthesizer Filters

12.6 VA Filters from Primitive Analog Block Diagrams

The simplest VA filters are derived from first and second order primitive analog filter block dia-
grams. Primitive means that the diagrams consist only of summers, multipliers, and integrators,
with no higher-level structures embedded.

12.6.1 First Order VA Filters

Figure 12.7(a)–(c) shows the analog filter block diagrams and virtual analog realizations for the
three basic first order filters: LPF, HPF, and APF. In all cases, the single coefficient a is calculated
the same, using Equation (12.5). Converting this to C++ code, we can write the update calculation
for a (note that the calculation for wa and g may be combined and simplified a bit).

double wd = 2*pi*Fc;
double T = 1/SampleRate;
double wa = (2/T)*tan(wd*T/2);
double g = wa*T/2; // <--- i.e. g = tan(wd*T/2)

// --- final calculation
double alpha = g/(1.0 + g);

These three filters may be combined into a single structure that implements all of them at once
as they are based on the same core structure, and we only need to resolve that delay-free loop once.
We will use this kind of structure for the Korg35 filters.

12.6.1.1 First Order LPF Analog FGN

I modified this algorithm to produce better analog matching gain at Nyquist using the Korg35
sub-circuit in Figure 12.9(c). The method involves blending in some of the HPF response, whose
gain at Nyquist is fixed at 1.0. It turns out that for this design, the alpha coefficient may be used
directly as a scaling factor, albeit with a bit of magnitude matching error. Figure 12.7(d) shows the
normal VA LPF frequency response, with the Nyquist magnitude pinned down to 0.0, while 12.7(e)
shows the matched-analog response, with finite gain at Nyquist. Figure 12.7(f) and (g) shows the
HPF frequency and APF phase responses.

12.6.2 Second Order State Variable Filter

For filters higher than first order, there will almost always be multiple analog circuit realizations
and varying block diagram implementations. The well-documented State Variable Filter (SVF),
also known as the Kerwin-Huelsman-Newcomb (KHN) filter after its inventors, is a second order
structure that produces all four basic filters at once: LPF, HPF, BPF, and BSF. Figure 12.8(a) shows
the analog block diagram that consists of two synchronously tuned integrators inside of two de-
lay-free loops, an inner loop, and an outer loop. Figure 12.8(b) shows Zavalishin’s VA realization.
Notice that the analog block diagram references z, the damping factor in classical analog filter
theory, but in musical applications, we prefer to replace it with the term Q, which stands for quality
factor, where:

Synthesizer Filters 181

1
Q =

2ζ (12.12)

You can see that the bandpass output is fed back into the input summer via the scaling coefficient
2z = 1, so the more feedback, the lower the resonant peak. Notice the relocation of the delay-free
loops to storage locations s1(n) and s2(n), and the addition of the ao coefficient in series with the

Figure 12.7 Primitive analog block diagrams and their resulting VA filter structures for (a) first order low-
pass filter, (b) first order high-pass filter, and (c) first order all-pass filter (d) the normal first
order BZT LPF frequency response with zero gain at Nyquist (e) analog FGN LPF frequency
response (f) first order HPF frequency response and (g) first order APF phase response; all plots
are shown with fc = 100 Hz, 1 kHz, 5 kHz, and 10 kHz

182 Synthesizer Filters

input loop gain value a. The design equations and output calculations are given in Equation block
(12.13) (Zavalishin 2008). After updating the coefficients, you calculate the individual outputs in
succession, starting with yHP.

ωd c= 2π f
T = 1 fs

2 ω T ωa = tan d
T 2
ω ωα = =a dT T

tan y nHP () = −α β0 1()x n() s n1 2() − β s n
 2 ()

2 2
1

R = =y nBP () α1 1y nHP ()+ s n()
2Q

1α0 = y n y n2 LP () = +α
+ +α α 1 2BP () s n()

1 2R
ρ α= +2 (R yBS n x) (= −n R) 2 y nBP ()

 (12.13)

12.6.2.1 SVF Analog FGN

As with the first order filters, the SVF LPF also includes an erroneous zero at Nyquist, which is a
result of the bilinear transform. In order to correct the gain at Nyquist, I observed that the value
residing in the first integrator’s state register, labeled s1(n) in Figure 12.8, is actually a mixture of
the current bandpass output plus the high-pass output scaled by α. We can take advantage of the
fact that the HPF gain at Nyquist is easily calculated (and mostly equals 1.0 except for very high
combinations of fc and Q). I used a similar method of blending in this “correction” signal knowing
the values of a and the desired gain at Nyquist. This works very well up until just before Nyquist,
where we observe a small high frequency magnitude offset due to the fact that the internal HP-
F+BPF signal has the same value of Q applied to it. The Nyquist gain still matches the analog
version, and the filter is still stable right up to fc = Nyquist. To calculate the analog matching coef-
ficient σ in Figure 12.8, I use Equation (12.13), evaluating the analog matching transfer functions
at f = Nyquist. The equations for MLPF and MHPF are the standard equations to calculate the
magnitude of the analog filter H(s) for second order LPF and HPF, respectively. In our ratio, their
denominators cancel each other out, so we are left with a relatively simple coefficient equation to
calculate. Figure 12.8(c) and (d) shows the normal and analog matched LPF outputs, while Figure
12.8(e) and (f) shows the SVF HPF and BPF outputs at a variety of fc and Q settings.

4 2

f 1
fo = ζ

fc 2

1 f 2
M HLPF = =()s = = o

LPF M HHPF H()s

()
PF2 2

1 4− +f f2 ζ 2 2 ()1− +f 2 2
o o o

M 1σ = =LPF

αM 2
HPF f N= yquist α fo

Q

foζ

=

 (12.14)

Synthesizer Filters 183

12.7 VA Filters from Signal Flow Graphs

Signal flow graphs may be used as a shorthand method for notating primitive analog block dia-
grams. However, they excel when used to diagram more complex block algorithms consisting of
series or parallel branches of sub-filters. These high-level signal flow graphs also describe sum-
mers and coefficients, but the integrators are replaced with filters: LPF1 and HPF1 for first or-
der lowpass and high-pass filters, respectively. Higher order sub-filter blocks are equally possible.
For these designs, each first order building block is implemented as a VA filter, then these are

Figure 12.8 (a) The SVF analog block diagram (b) the VA realization including the analog matched LPF
output yLPM(n) (c) normal SVF LPF frequency response and (d) LPF frequency response with
analog matching at Nyquist (e) SVF HPF frequency response with fc = 100 Hz, 1 kHz, 5 kHz,
10 kHz and 15 kHz and Q = 25 and (f) SVF BPF frequency response with fc = 2.5 kHz and
Q = 0.5, 10 and 25

184 Synthesizer Filters

connected together, often involving delay-free loops around the sub-filters. The delay-free loop
resolution methods still work as usual, with the sub-filters replaced with an equation that is always
broken into the current input and storage components, or y(n) = Gx(n) + S(n).

12.7.1 Korg35 Second Order Filters

Korg35 second order resonant filters used in the MS-10 and early MS-20 are voltage controlled ver-
sions of the Sallen-Key filter topology. Sallen-Key filters feature a positive feedback path through
a narrow bandpass filter that reinforces the resonant frequency and eventually allows the filter to
self-oscillate. Korg took advantage of this to produce a simple but effective highly resonant filter.
Both LPF and HPF are second order types and will self-oscillate, but the Korg35 HPF has an
interesting quirk; its roll-off slope is +6 dB/octave instead of the normal +12 dB/octave. This pro-
duces an HPF with more bass response. The non-standard roll-off is due to the manner in which
Korg implemented the HPF, using an analog filter shortcut – take any analog filter circuit, ground
the input, then lift and drive the ground connections to produce the complementary version with
the same fc and Q values.

I designed the Korg35 filters directly from their signal flow graphs, as shown in Figure 12.9(a)
and (b). These filters are made of first order sub-filters that are synchronously tuned, mean-
ing they share the same fc value. The complete derivation is available at www.willpirkle.com/
synth-book-derivations/. The Sallen-Key filter has two analog implementations that differ only in
terms of the maximum loop gain K that creates the self-oscillation; these use K = 2.0. During the
derivation, a new variable (b) was needed to act as a feedback scalar once the delay-free loops were
resolved. This created the structure in Figure 12.9(c) that is used for each of the VA sub-filters; this
filter can generate LPF and/or HPF outputs, and includes the new feedback coefficient. Notice that
the loop resolution also generated the loop coefficient ao as usual. The design of Equation (12.15)
is straightforward; the aN coefficients are the same for all filters, and only sub-filters 2 and 3 need a
b coefficient, which is different from LPF to HPF. Figure 12.9(d) shows the normal LPF and HPF
responses with their different roll-off slopes.

ω T g 1
g = tan d α α=

 o =
2 1 + g 1− +K Kα α2

(1−α) −1
Korg35 LPF: β2 3= K β =

(1+ g g) (1+)

−α 1
Korg35 HPF: β2 3= β =

(1+ g g) (1+)

 (12.15)

12.7.1.1 Korg35 Analog FGN

I modified the Korg35 LPF for finite gain at Nyquist to try to match the true analog response more
closely. The first order VA module shown in Figure 12.9(c) includes the analog FGN matching
described in Section 12.3 and generates all three outputs at once. For the Korg35 LPF, I use the
analog FGN output for the VA1 LPF. For the VA2 LPF, the normal (BZT) LPF output is used to
supply the feedback loop, and the analog Nyquist matched output is routed to the filter output.
Figure 12.9(e) shows the new version with finite gain at Nyquist. As with the SVF, there is a slight
boost at the very highest fc settings, and the filters are stable right up to fc = Nyquist.

http://www.willpirkle.com
http://www.willpirkle.com

Synthesizer Filters 185

12.7.2 Moog Fourth Order Ladder Filter

Robert Moog invented a filter that became known as the Moog ladder filter; this might be the
most celebrated, copied, and tweaked of any manufacturer’s filters. Several integrated circuit com-
panies made variations on this design, including the Curtis CEM3328, CEM3372, and Precision
Monolithics PMI SSM2044. They optimized, modified, tweaked, and extended the design. The

Figure 12.9 The signal flow graph and VA realizations for (a) Korg35 LPF, (b) Korg35 HPF and (c) the com-
bined structure that is used for each of the Korg35 sub-filters (d) the LPF and HPF frequency
responses show differences in the roll-off slopes with LPF fc = 500 Hz and HPF fc = 5 kHz and
(e) the Korg35 LPF frequency response with analog Nyquist matching and fc = 100 Hz, 1 kHz, 5
kHz and 15 kHz with K = 1.9

186 Synthesizer Filters

devices were used in countless synthesizers from nearly every company in the 1970s and 1980s. A
unique feature of this filter is that changes in resonance create changes in the overall filter gain;
as the Q increases, the filter gain drops, as shown in Figure 12.10(b). In addition, you can see that
the resonant (peak) frequency also increases as Q increases. The roll-off slope is 24 dB/octave as
a fourth order filter.

The Moog ladder filter consists of a cascade of four first order synchronously tuned LPF stages
in a global negative feedback loop, as shown in Figure 12.10(a). Putting four first order LPFs in se-
ries creates a fourth order filter, but it won’t be resonant. The way this filter implements resonance
is based on the phase response of each first order section. The phase shift at the cutoff frequency
is −45 degrees for a first order LPF stage. Each successive stage then adds another −45 degrees
of phase shift. After going through four of these filters, the phase shift at fc will be −180 degrees,
exactly out of phase with the input. This output is fed back into the input through a negative sca-
lar, −K, which flips the phase at the cutoff so it is back in-phase with the input. This amplifies the
cutoff frequency along with the frequencies that are very close to it resulting in a resonant peak.
If K = 0 there is no feedback and no resonance. As soon as K becomes non-zero, the Q increases,
and peaking occurs. When K = 4, we achieve 100% feedback through the loop, and the filter will
self-oscillate.

The loss of low frequency gain as the Q is increased is sometimes considered problematic,
especially if the filter is being used on a bass instrument. However, the reduction in gain also
prevents the filter from overloading and may be part of the device’s lore as a “musical filter.”
Curtis Electromusic Specialists (the same company that made the CEM3328) provided a way
of controlling the loss of gain all the way up to no loss at all by designing this feature into one
of their ICs in 1984. The gain is compensated by feeding some of the inverted input signal into
a summer prior to the gain element −K. The doubly inverted (in-phase) signal works against

Figure 12.10 T he Moog ladder filter (a) signal flow block diagram (b) notice how the bass response is reduced
as the Q is increased shown with fc = 100 Hz, 1 kHz, 5 kHz and 15 kHz each with increasing
Q (K) value; the BZT and analog FGN curves are shown for K = 3, and for K = 3.9 the analog
FGN response is indicated (c) the modified additional outputs generate three more filter types
including a resonant first order variety

Synthesizer Filters 187

the inverted signal in the feedback path. The filter in the ARP2600 is also a Moog ladder filter
derivative that incorporates gain compensation. Zavalishin proposed simply boosting the in-
put x by a factor of 1 + K, an elegant and simple modification. A variable version can then be
implemented by making the boost factor 1 + aK where a is on the range of 0.0 to 1.0, as shown
in Figure 12.11(a).

Figure 12.11(a) shows the final VA realization after the delay-free loop has been resolved; the
complete derivation is available at www.willpirkle.com/synth-book-derivations/. Here, the single
feedback loop becomes four parallel loops, each originating from one of the storage registers in the
sub-filters, and the familiar loop gain coefficient appears at the input to the first filter. Note that
the input scaling and extra outputs are optional. The Moog ladder filter block diagram is ripe for
hacking. One easy addition is to tap off of the output of each of the series LPFs, which produces
three more outputs for first order, second order, and third order versions of the filter. The first or-
der filter also includes a resonant peak, and the frequency responses are shown in Figure 12.10(c).
See the exercises for more hacks. The design equations for the Moog ladder filter are in Equation
block (12.16). Note that all sub-filters share the same a coefficient value. The b coefficients are
subscripted with the sub-filter number.

ω 1
g tan dT g

= α α=
 o =

2 1 + g 1+ Kα4

α3 α2 α 1β1 = β2 = β3 4= β =
1 1+ g g+ 1+ g g1+

 (12.16)

12.7.2.1 Moog Filter Analog FGN

The Moog ladder may also be experimentally modified for finite gain at Nyquist, though it re-
quires four more filters that run in a parallel branch with the main set, as shown in Figure 12.11(b).
The reason that I cannot simply place the series filters in analog Nyquist matched mode is that
this alters the phase response in a nonlinear manner across fc values and destroys the feedback
loop’s behavior. A somewhat brute force method is to add the four analog Nyquist matched filters
and use their outputs but keep the existing signal path that generates the proper phase response
for the feedback loop. All of the filters are sync-tuned, so there is only one calculation of the α
coefficient; the filters are also very CPU-friendly, so there is not much added overhead. The new
version produces the finite gain at Nyquist which you can see in Figure 12.10(b) and (c). As with
the others, the filter is stable right up to fc = Nyquist. The filters in the upper row do not have the
S-ports connected to anything.

12.7.3 VCS3 Diode Ladder Filter

The Diode Ladder Filter first appeared in the EMS VCS3 monophonic synth designed by David
Cockerell in 1969. It is also incorporated into the 1982 Roland TB-303 monophonic bass synth.
In 1974, Steiner presented another resonant lowpass filter using diodes, but it implemented the
Sallen-Key topology. In 1977, Yamaha patented the ring-diode method of implementing a voltage
controlled filter in another Sallen-Key topology, and Korg used yet another Sallen-Key ring-diode
variation in numerous synths, including the S700. These ring-diode networks are unrelated to the
diode ladder filter in this section.

http://www.willpirkle.com

188 Synthesizer Filters

This diode ladder filter is based on the Moog ladder filter topology but uses diodes rather than
transistors as voltage controlled elements and incorporates multiple feedback paths between sec-
tions. The effect of the feedback paths on the signal is two-fold: like the Moog filter, it reduces
overall gain as the resonance increases, but the reduction is more extreme (by about 12 dB); sec-
ond, as the resonance increases, the resonant frequency migrates upwards but never makes it to the
cutoff point. At the point of self-oscillation, the resonant peak will have drifted up to 0.707fc, and
the resonant frequency is never truly correct and equal to the fc used in the calculations. Figure
12.12(a) shows the signal flow block diagram, which includes three inner delay-free feedback loops
as well as the main outer loop with the –K feedback value. Figure 12.12(b) shows how the gain
changes more drastically than the Moog ladder filter as the loop gain K is varied. In this filter, K
ranges from 0 to 17, at which self-oscillation occurs, and the filter gain is reduced by −24 dB.

There are numerous similarities to the Moog version: four synchronously tuned first order LPFs
in series embedded in a global feedback loop that creates positive feedback only at the cutoff

Figure 12.11 The Moog ladder filter (a) VA realization with optional input scaling and output branches, and
(b) the analog FGN version; note that the β coefficients are contained in each sub-filter but
shown externally here to convey their operation in the feedback loop

Synthesizer Filters 189

frequency. As soon as K becomes non-zero, the Q increases, and peaking occurs. However, the
diode ladder incorporates multiple feedback loops around each section (LPF2 feeds back into
LPF1, LPF3 feeds back into LPF2, LPF4 feeds back into LPF3), as shown in Figure 12.13(a). This
is a topology known as leap-frog-form (LFF). In addition to the feedback paths, there are also
attenuators on the inputs to the last three LPFs. Due to the complex interactions of the multiple
feedback paths, the filter analysis and synthesis of the block diagram is much more difficult than
any of the filters in this chapter. The full derivation is available at www.willpirkle.com/synth-book-
derivations/. The crossed feedback paths necessitate adding new local feedback input and output
ports to the basic VA LPF, as shown in Figure 12.13(a). Figure 12.13(b) shows the final realization
after the delay-free loops have been resolved, and the inner loops have been relocated to and from
storage units in each feedback pair.

The design equations for the diode loop coefficients and the coefficients for each sub-filter are
given in Equations (12.17) and (12.18).

ω
g = tan dT

 2
0.5g 0.5g 0.5g g

G1 2= G = G = G
1+ 1 0+ − 3 4 =

g g g.5 G4 1 0+ −g g.5 G3 1+ −g gG2

β β1 4= G G3 2G G2 4= = =G G3 3β β4 4 1

1αo =
1+ KG4 3G G2 1G

 (12.17)

Figure 12.12 The diode ladder filter’s (a) signal flow block diagram, and (b) notice how the bass response
is reduced as the Q is increased shown with fc = 500 Hz, 1 kHz, 5 kHz and 15 kHz each with
increasing Q (K) value and (c) the experimental analog FGN output at fc = 2.5 kHz, 5 kHz, 10
kHz and 15 kHz; the error in the resonant peak frequency is normal and correct for this filter

http://www.willpirkle.com
http://www.willpirkle.com

190 Synthesizer Filters

Filter 1 Filter 2 Filter 3 Filter 4

αo 1 0.5 0.5 0.5

g g g gα
1 1+ +g g 1 1+ +g g

1 1 1 1β
1+ −g gG g2 31 0+ − .5gG 1 0+ −g g.5 G g4 1+

γ 1 1+ +G G1 2 G G2 3 1 1+G G3 4

δ g g g0.5 0.5 0

ε G G2 3 G4 0

 (12.18)

Figure 12.13 (a) The modified first order VA LPF (named mLPF) and (b) its shorthand block diagram with
arrows showing the signal flow directions (c) the diode ladder filter realization and (d) the ex-
perimental analog FGN version with added α1 coefficient at the output; note that the β co-
efficients are calculated within each sub-filter but are shown externally here to convey their
operation in the feedback loop

Synthesizer Filters 191

12.7.3.1 Diode Filter Analog FGN

The diode ladder may also be experimentally modified in a similar brute-force manner as the
Moog filter for finite gain at Nyquist, as shown in Figure 12.12(c). I cannot simply place the se-
ries filters in analog Nyquist matched mode because this alters the phase response in a nonlinear
manner across fc values and destroys the feedback loop’s behavior. Once again, all of the filters
are sync-tuned, so there is only one calculation of the α coefficient, and the filters are very CPU-
friendly, so there is not much added overhead. As with the others, the filter is stable right up to
fc = Nyquist. Each filter in the upper row gets its local feedback input from the lower row of normal
VA filters. As with the Moog ladder analog FGN version, the global feedback loop is taken only
from the lower row of VA filters to maintain the proper phase relationship for resonance control.
The analog FGN filter requires an additional gain equalizer coefficient, α1, that is calculated to fit
the measured gain as fc varies, as given in Equation (12.19).

a b= =1.005381 0.8783896 c = 01.113067 −0.2110344

2π bf
f = =c f a d−

e α1 = +d
fs c 1+ e

d =

 (12.19)

12.8 VA Filters from Conceptual Signal Flow Graphs

I have also created VA filters from conceptual signal flow graphs of filters that do not have an
analog closed-form transfer function and even violate some classical analog filter design para-
digms. This yields some bizarre results, including filters with the resonant frequency fr and the
cutoff frequency fc, decoupled and controlled independently, allowing you to move the resonant
peak anywhere you like in the response, regardless of the fc setting, as shown for the second order
LPF in Figure 12.14(a). In addition, I’ve developed strange filters, such as the resonant first shelv-
ing filters shown in Figure 12.14(b), and filters with multiple resonant peaks, each independently
controllable, as in Figure 12.14(c) and (d). You can find the descriptions and algorithms at https://
www.willpirkle.com/novel-hybrid-filters.

12.9 Nonlinear Processing and Self-Oscillation Control

All of the VA filters include the ability for nonlinear processing (NLP), and there are numerous
locations within the filter structures to place nonlinear waveshapers. In some cases, the nonline-
arities are placed to model nonlinearities in the circuit components: for example, the analog Moog
filter is nonlinear in nature due to the way in which the transistor ladder differential pairs conduct
current. The differential voltage and current are related by the hyperbolic tangent function. In
other cases, the nonlinearities are due to clipping circuits placed inside the filters to try to limit the
ultra-high gain that comes from high resonance settings. The nonlinear processors, all of which
are based on soft-clip circuits, also aid in taming the harsh clipping that may result from self-
oscillation when the filter is driven with program material that has large amounts of energy near
the resonant frequency. There are a few strategies for the placement of the NLP, which is often
done with tanh() waveshapers. Care must be taken to ensure that the waveshapers have a unity-
gain or less amplification factor so they do not disrupt the gain in the sensitive feedback loops we
have designed.

https://www.willpirkle.com
https://www.willpirkle.com

192 Synthesizer Filters

Figure 12.15(a) shows a saturating integrator (Zavalishin 2008) with a waveshaper in the
feedback loop. This saturating integrator may be placed into any of the models as a non-
linear filter. For the Korg35 filters, you might also experiment with placing the NLP in the
feed-forward path of the overall loop, as shown in Figure 12.15(b). Both ladder filters include
numerous nonlinearities within each filter and within the entire feedback loop. Zavaliahin’s
budget version is shown in Figure 12.15(c), with a single NLP block at the input and outside of
the feedback loop.

12.9.1 NLP with Soft-Knee Peak Limiter

A fundamental issue with any kind of NLP is the addition of aliased components to the signal,
which need to be mitigated with oversampling. However, for taming the self-oscillation distortion,
it works quite well. After several years of experimentation, I found a solution to producing pure
sinusoids during self-oscillation and avoiding distortion using a soft-knee peak limiter with the
threshold set between −0.5 dBFS and −1.0 dBFS, as shown in Figure 12.15(d) on the output of the
Moog ladder filter. This method is implemented for all of the SynthLab filters; you may, of course,
disable the limiters if you like. In order to produce smooth distortion, you move the threshold from
nearly the topmost value (0.0 dBFS) to a much lower value, then increase the limiter’s makeup gain
to bring the signal up to the nominal level – the soft knee and low threshold will produce rounded,
soft-clipped waveforms.

Figure 12.14 N ovel VA filters contrived from conceptual signal flow graphs, including (a) second order LPF
with fr = 500 Hz and fc = 1 kHz, (b) resonant first order high shelving filter with fc = fr = 2 kHz
and a doubly-resonant LPF with fc = 500 Hz, (c) fr = 1 kHz, and (d) fr = 3 kHz

Synthesizer Filters 193

12.10 Synth Filter Objects

The SynthLab VAFilterCore object implements all of the filters discussed in this chapter. In order
to simplify the object, I created smaller C++ objects for each filter.

1 VA1Filter: first order LPF, HPF, APF, and LPF with analog FGN
2 VASVFilter: state variable filter with second order LPF, HPF, BPF, BSF, and LPF with

analog FGN
3 VAKorg35Filter: second order Korg35 LPF and HPF (including HPF’s 6 dB/octave roll-off)
4 VAMoogFilter: fourth order Moog LPF; normal and analog FGN; and the first, second, and

third order LPF variations
5 VADiodeSubFilter: modified VA1Filter structure that includes the additional diode specific

coefficients
6 VADiodeFilter: fourth order diode LPF and analog FGN

These all inherit from IFilterBase and do not implement shared parameter pointers as they are
used as embedded sub-filter objects. IFilterBase requires the implementation of only four func-
tions. The filters include outputs for all types in Table 12.1 and are written into a filter output data
structure.

Figure 12.15 N onlinear blocks in the VA structures shown inside (a) the saturating integrator, (b) the Korg35,
and (c) Moog signal flow block diagrams, while (d) shows the location of the peak limiter on the
filter output, always outside of any feedback loop

194 Synthesizer Filters

The VA1Filter and VADiodeSubFilter objects are used as sub-filters in the Korg, Moog, and
diode filters, which are always synchronously tuned with identical α coefficients that require the
tan function call but in general will have different β coefficients. Therefore, these filters include
added functions to allow the container filter to set the coefficients directly, bypassing the costly
update function for improved efficiency. Additionally, these filters need to provide access to their
s(n) values for the container object to manipulate in its feedback loop. The VA1Filter includes these
additional functions; note that beta is applied during the getFBOutput method for the Korg35 and
Moog filters.

// --- set coeffs directly, bypassing coeff calculation
void setBeta(double _ beta);
void setAlpha(double _ alpha);

// --- added for MOOG & K35, need access to this output value
double getFBOutput();

The VADiodeSubFilter requires many more coefficients that are packaged in the DiodeVA1Coef-
ficients structure. It also requires access into and out of the feedback portion, so it includes these
additional methods; compare the code with Figure 12.12(a).

void setFilterCoeffs(const DiodeVA1Coeffs& _ coeffs);

void setFBInput(double _ feedbackIn) { feedbackIn = _ feedbackIn; }

double getFBOutput() {
return coeffs.beta * (sn + feedbackIn*coeffs.delta); }

Table 12.1 shows the second order and higher VA filters, and their required VA1Filter sub-filters,
which are stored in small arrays on the container object. The filter indexes are named according to
the model, block diagram, and equations, so you can easily link the parts for study.

12.10.1 Sub-Filter Operation

The coefficient calculation starts with a function call to setFilterParams, which checks the incom-
ing values and, if different, saves them and calls update. For filters with a Q control, you need to

Table 12.1 High order VA filters and their sub-filter types and arrays

Filter VA1Filter Sub-filter Types Array Name

VASVFilter none, see model n/a
VAKorg35 LPF Filter1: LPF1 lpfVAFilters[KORG_SUBFILTERS]

Filter2: LPF1
Filter3: HPF1

VAKorg35 HPF Filter1: HPF1 hpfVAFilters[KORG_SUBFILTERS]
Filter2: HPF1
Filter3: LPF1

VAMoogFilter Filter1 = Filter2 = Filter3 = Filter4: LPF1 subFilter[MOOG_SUBFILTERS];
VADiodeFilter Filter1 = Filter2 = Filter3 = Filter4: LPF1 subFilter[DIODE_SUBFILTERS];

Synthesizer Filters 195

map the incoming value on the range [1, 10] to the range of K values such that Q = 10 produces
self-oscillation. This is accomplished with the mapDoubleValue function. For example, in the
Korg35 filter, the K value goes from 0.01 to 2.0 as Q is increased from 1.0 to 10.0.

void VAKorg35Filter::setFilterParams(double _ fc, double _ Q)
{

// --- use mapping function for Q -> K
mapDoubleValue(_ Q, 1.0, 10.0, 0.01, 2.0);

if (fc != _ fc || K != _ Q)
{

fc = _ fc;
K = _ Q;
update();

}
}

The update function performs the coefficient calculations and is based directly on the filter coef-
ficient equations presented in the chapter, using the same variable names whenever possible. For
example, the VAKorg35Filter’s update function calculates Equation block (12.13) as follows; com-
pare the code with the equation block for this filter, then do the same for the remaining filters so
you understand how the calculation works.

bool VAKorg35Filter::update()
{

double g = tan(kTwoPi*fc*halfSamplePeriod);
alpha = g / (1.0 + g);

// --- alpha0 same for LPF, HPF
alpha0 = 1.0 / (1.0 - K*alpha + K*alpha*alpha);

// --- three sync-tuned filters
for (uint32 _ t i = 0; i < KORG _ SUBFILTERS; i++)
{

lpfVAFilters[i].setAlpha(alpha);
hpfVAFilters[i].setAlpha(alpha);

}

// --- set filter beta values FLT2:LPF FLT3:HPF
lpfVAFilters[FLT2].setBeta((K * (1.0 - alpha)) / (1.0 + g));
lpfVAFilters[FLT3].setBeta(-1.0 / (1.0 + g));

// --- set filter beta values FLT2:HPF FLT3:LPF
hpfVAFilters[FLT2].setBeta(-alpha / (1.0 + g));
hpfVAFilters[FLT3].setBeta(1.0 / (1.0 + g));

return true;
}

196 Synthesizer Filters

The process function runs the filter algorithm on a single audio input sample and varies greatly
with the model. Each filter declares a FilterOutput structure named output that may hold multiple
filter output values in an array of doubles:

double filter[NUM _ FILTER _ OUTPUTS];

Each slot in the array holds a different filter output and a helper enumeration is used for easier
code readability:

enum { LPF1, LPF2, LPF3, LPF4, HPF1, HPF2, HPF3…, NUM _ FILTER _ OUTPUTS};

The VAMoogFilter::process method is shown here for the normal filter.

• Notice that the getFBOutput function is used on the sub-filters
• The bass gain compensation is hard coded with bassComp = 0 so that the filter operates in a

normal manner
• The input value u is calculated with the α0 loop correction factor (this is the same for

all filters)
• Each filter processes into a sub-structure, whose outputs are gathered accordingly
• The output structure’s member variables are written and will vary with the filter model; note

the use of the helper enumeration
• The analog FGN code simply pumps the input u into a series of LPF1 modules, taking their

analog FGN outputs while preserving the normal feedback outputs for the resonant loop and
following the normal pattern; check the sample code for details.

FilterOutput VAMoogFilter::process(double xn)
{

// --- 4th order MOOG:
double sigma = 0.0;

// --- feedback
for (uint32 _ t i = 0; i < MOOG _ SUBFILTERS; i++)

sigma += subFilter[i].getFBOutput();

// --- gain comp
xn *= 1.0 + bassComp*K; // --- bassComp is hard coded

// --- now figure out u(n) = alpha0*[x(n) - K*sigma]
double u = alpha0*(xn - K * sigma);

FilterOutput subFltOut[4];
FilterOutput subFltOutFGN[4];

Synthesizer Filters 197

// --- send u -> LPF1
subFltOut[FLT1] = subFilter[FLT1].process(u);

// --- and then cascade the outputs to form y(n)
subFltOut[FLT2] =

subFilter[FLT2].process(subFltOut[FLT1].filter[LPF1]);
subFltOut[FLT3] =

subFilter[FLT3].process(subFltOut[FLT2].filter[LPF1]);
subFltOut[FLT4] =

subFilter[FLT4].process(subFltOut[FLT3].filter[LPF1]);

// --- optional outputs 1,2,3
output.filter[LPF1] = subFltOut[FLT1].filter[LPF1];
output.filter[LPF2] = subFltOut[FLT2].filter[LPF1];
output.filter[LPF3] = subFltOut[FLT3].filter[LPF1];

// --- MOOG LP4 output
output.filter[LPF4] = subFltOut[FLT4].filter[LPF1];

return output;
}

Now, you need to compare the rest of the object code to the block diagrams and coefficient
equations to prove to yourself that the code matches the model. Each filter can produce the analog
FGN output, whose implementation varies from simple to complex depending on the filter type.
Table 12.2 lists the filters and their sub-filter array components.

12.11 Input Drive and Output Peak Limiter

The SVF, Korg35, Moog, and diode models include an input distortion control that sets the satura-
tion value in a tanh waveshaper, as documented in my FX plugin book. When the saturation is at

Table 12.2 Synth filter models and their output types, along with notes on implementation

Synth Filter Model Outputs Notes

VA1Filter LPF1, HPF1, APF1, LPF1_FGN Uses Zavalishin’s first order structure
VASVFilter LPF2, HPF2, BPF2, BSF2, LPF2_FGN Self-oscillation induced at max Q by

letting Q = infinity so r = a
VAKorg35Filter LPF2, HPF2, LPF2_FGN Massive gain near self-oscillation
VAMoogFilter LPF1, LPF2, LPF3, LPF4, and analog Analog FGN version requires four more

FGN versions of each sub-filters but are sync-tuned
VA1DiodeSubFilter LPF1, LPF1_FGN Uses coefficient structure for extended

variables
VADiodeFilter LPF4, LPF4_FGN Requires a gain factor for analog FGN

output that is empirically derived

198 Synthesizer Filters

the minimum value, the waveshaper is disabled. Placing the nonlinear distortion at the filter input
allows the filter to sculpt the added harmonics. Extreme settings will cause aliasing, which will
require mitigation via oversampling, which is also covered in the FX plugin book. The output of
each model passes through a peak limiter using logarithmic RMS detection with the threshold set
at almost 0 dBFS, which produces pure sinusoids during self-oscillation and prevents distortion
from high gain due to high Q settings. The limiter is a simplified version of the limiter in the second
edition FX book and works extremely well. The coding details can be found in the VAFilter and
VAFCore objects as they implement these blocks and not the filters themselves.

12.12 SynthFilter and Cores

The SynthFilter and filter core details are shown in block form in Figure 12.16. The custom mod-
ule strings are the filter-type strings, and the mod knobs are chosen for the most common oper-
ations, including key tracking, drive, and modulation intensity controls, one each for EG and
bipolar modulation inputs. Both cores are available as separate dynamic modules and work easily
in stand-alone mode, so you can use them in your non-synth projects as well. Table 12.3 lists the
GUI parameter structure and core descriptions.

The VA filter core produces all of the VA filters in this chapter. For easier programming, a sec-
ondary filter enumeration is used that groups the filters according to VA model:

enum class FilterModel { kFirstOrder, kSVF, kKorg35, kMoog, kDiode};

Figure 12.16 The SynthFilter and core block diagram, filter types, and mod knob labels

Synthesizer Filters 199

12.12.1 Synth Filter Controls, Modulations and Features

The synth filters share the same four controls: frequency (cut-off, center, or resonant), Q, a filter-
keytrack enable switch, and an output control (dB). Table 12.2 lists the GUI controls and their
parameter targets within the plugin. The VA filter core also includes a stereo peak limiter to pro-
duce sweet and pure sinusoidal output when driven into self-oscillation. The filter drive control
adds pre-filter distortion using tanh waveshapers. The limiter’s threshold is set to −0.5 dBFS. The
filters include three modulation calculations: key-track with offset, bipolar, and unipolar (EG)
modulation.

12.13 Synth Filter Core Programming Notes

With the C++ files open, compare the programming notes with the code that you see, starting with
the class descriptions of each core. Sections 12.13.1 through 12.13.5 summarize the five operational
phases, plus constructor for the synth filter cores. Make sure to examine the code while digesting
their operational phase details.

Table 12.3 SynthFilter custom parameter structure and cores: (*) downloadable SynthLab-DM core project

Parameter Structure Description

FilterParameters Used for all filters; includes additional parameters, such as bass compensation,
that only apply to some filters

Example Core Description

VAFilterCore* 13 VA filter algorithms including the first, second, and third order Moog variants
BQFilterCore* A few biquad filters to get you started; use my FX plugin book for several dozen

more, including impulse invariant, the MMA FGN lowpass, and multiple
analog Nyquist gain matching algorithms

Table 12.4 The SynthFilter core GUI controls

Control Function Target

Filter type Selects 1 of 13 filter types Filter selection
Filter f Sets filter center or cutoff frequency Filter frequency
Filter Q Set generic Q value on range [1, 10] Filter Q
Key track Enable/Disable key track modulation Filter frequency
Output Level in dB Output amplitude

Mod Knob
KT amount Key tracking offset in semitones +/− 48 range Filter frequency
Drive Sets waveshaper saturation Input amplitude
EG Int Sets intensity of EG modulation Filter frequency
BP Int Sets intensity of summed bipolar modulation Filter frequency

200 Synthesizer Filters

12.13.1 Construction Phase

All cores:

• The module strings are the filter types; use whatever strings make the most sense to your users
• The mod knobs are all assigned
• The filter cores are simple in that there are no lookup tables or databases to access

12.13.2 Reset Phase

The reset function simply resets all of the components and sets up the limiter with a threshold of
−0.5 dBFS.

va1.reset(processInfo.sampleRate);
svf.reset(processInfo.sampleRate);
etc…

// --- output limiter
limiter.reset(processInfo.sampleRate);
limiter.setThreshold _ dB(-0.5);

12.13.3 Note On Phase

The note-on event is easily serviced; you save the incoming MIDI pitch to use for key tracking,
and that is it.

12.13.4 Update Phase

The update operation follows the normal design pattern for pitch modulation, though here, it
is for the filter fc value that is based off of semitones and calculated the same way as fo (pitch)
modulation for oscillators. Filters are often hard-wired to a separate EG, with a dedicated EG
intensity control; the same is true for the SynthLab synths that feature a dedicated filter EG object.
However, a bipolar modulation input may also be applied and a bipolar intensity control used. To
set or modify the range of operation, you only need to modify a bit of code in the filtercore.h file.
Here, you use the semitonesBetweenFrequencies helper function to set the modulation range in
semitones. The high limit is the top of the filter range, but you may decide to lower it to around 18
kHz – listen and decide.

freqModLow = 20.0; // <- you will want to raise this value a bit
freqModHigh = 20480.0; // <- you will want to lower this value a bit
freqModSemitoneRange = semitonesBetweenFrequencies(

freqModLow, freqModHigh);

In the update function, first parse the mod knob values that set the EG and bipolar intensities,
then calculate the modulation. Notice that the bipolar calculation adds a 0.5 modifier to split the
modulation range around the user’s fc control setting.

// --- bipolar freqmod (0.5 is to split the total range)

Synthesizer Filters 201

bpInt = getModKnobValueLinear(parameters->modKnobValue[MOD _ KNOB _ C],
0.0, +1.0);

bpFmodSemitones = bpInt*0.5*freqModSemitoneRange*
processInfo.modulationInputs[kBipolarMod];

// --- EG freqmod
egInt = getModKnobValueLinear(parameters->modKnobValue[MOD _ KNOB _ D],

0.0, +1.0);
egFmodSemitones = egInt*freqModSemitoneRange*

processInfo.modulationInputs[kEGMod];

The key-tracking code checks to see if the function is enabled, then overrides the user’s fc control
setting and calculates the key track frequency shift on a range of [−48, +48] semitones (+/− four
octaves).

// --- setup fc mod
double fc = parameters->fc;
double ktFmodSemotones = 0.0;

// --- key tracking
if (parameters->enableKeyTrack)
{

ktFmodSemotones = getModKnobValueLinear(
parameters->modKnobValue[FLT _ KEYTRACK], -48.0, +48.0);

fc = midiPitch;
}

The modulation calculation sums the semitone values as usual and bounds the value:

// --- sum modulations
fcModSSemis = bpFmodSemitones + egFmodSemitones + ktFmodSemotones;

// --- multiply by pitch shift factor
fc *= pow(2.0, fcModSSemis / 12.0);
boundValue(fc, freqModLow, freqModHigh);

The last chunk of code is a decision tree that sets the selection members, then calls the update
function on the sub-object. The VA filters are selected by family:

else if (parameters->filterAlgorithm == VAFilterAlgorithm::kDiode _ LP4)
{

// --- output array slot
if (parameters->analogFGN)

outputIndex = ANM _ LPF4;
else

outputIndex = LPF4;

// --- model

202 Synthesizer Filters

selectedModel = FilterModel::kDiode;

// --- sub-filter update
diode.setFilterParams(fc, parameters->Q);

}

The biquad filters calculate the filter coefficients and store them:

if (parameters->filterIndex == enumToInt(BQFilterAlgorithm::kLPF2))
{

// --- see 2nd Ed FX for formulae
double theta _ c = kTwoPi*fc / sampleRate;
double d = 1.0 / mappedQ;
double betaNumerator = 1.0 - ((d / 2.0)*(sin(theta _ c)));
double betaDenominator = 1.0 + ((d / 2.0)*(sin(theta _ c)));
double beta = 0.5*(betaNumerator / betaDenominator);
double gamma = (0.5 + beta)*(cos(theta _ c));
double alpha = (0.5 + beta - gamma) / 2.0;

// --- update coeffs
bq.coeff[a0] = alpha;
bq.coeff[a1] = 2.0*alpha;
bq.coeff[a2] = alpha;
bq.coeff[b1] = -2.0*gamma;
bq.coeff[b2] = 2.0*beta;

}

12.13.5 Render Phase

The VA core render phase is simple since the sub-filters do all of the heavy lifting. Therefore, the ren-
der function simply uses the filter type and output index to perform the processing. The drive control
is used to apply a nonlinear waveshaper only if the control value is greater than zero. Then, the se-
lected filter’s process function runs the filter, and the output is applied to the peak limiter and scaled
with the user’s output control value that was calculated in the update function. Notice that the VA
core’s sub-filters calculate all outputs (LPF, HPF, BPF, etc.), which are then selected, and all filters
and sub-filters are stereo, requiring double the objects. Examine the code in vafilters.h and .cpp to see
how I minimize the filter calculations using the IFilterBase interface and functions that set the filter-
ing coefficients directly, bypassing the update calculation. For the Korg35, Moog, and diode filters,
the sub-filters are synchronously tuned so a single update function’s results can be shared across
multiple sub-filter components. The synth filter processes audio input buffers into output buffers.

// --- stereo I/O
float* leftInBuffer = processInfo.inputBuffers[LEFT _ CHANNEL];
float* leftOutBuffer = processInfo.outputBuffers[LEFT _ CHANNEL];

float* rightInBuffer = processInfo.inputBuffers[RIGHT _ CHANNEL];
float* rightOutBuffer = processInfo.outputBuffers[RIGHT _ CHANNEL];

Synthesizer Filters 203

At the top of the block-processing loop, notice the filter bypass code:

for (uint32 _ t i = 0; i < processInfo.samplesToProcess; i++)
{

double xnL = leftInBuffer[i];
double xnR = rightInBuffer[i];

if (parameters->filterIndex ==
enumToInt(VAFilterAlgorithm::kBypassFilter))

{
leftOutBuffer[i] = xnL;
rightOutBuffer[i] = xnR;
continue;

}

Filter drive/distortion uses a built-in waveshaper function (note that there are several to choose
from):

// --- waveshaper drive
if (parameters->filterDrive > 1.05)
{

xnL = tanhWaveShaper(xnL, parameters->filterDrive);
xnR = tanhWaveShaper(xnR, parameters->filterDrive);

}

The VA filters are processed according to filter family; notice the array of two filters for each
family:

FilterOutput output[STEREO];

if (selectedModel == FilterModel::kFirstOrder)
{

output[LEFT] = va1[LEFT].process(xnL);
output[RIGHT] = va1[RIGHT].process(xnR);

}
else if (selectedModel == FilterModel::kSVF)
{

output[LEFT] = svf[LEFT].process(xnL);
output[RIGHT] = svf[RIGHT].process(xnR);

}
else if (selectedModel == FilterModel::kKorg35)
{

output[LEFT] = korg35[LEFT].process(xnL);
output[RIGHT] = korg35[RIGHT].process(xnR);

}

etc. . .

204 Synthesizer Filters

The biquad core uses a single biquad filtering object, BQAudioFilter, that implements the direct
form biquad filter, described in detail in my FX plugin book. That object performs the filtering in
a simple function call:

// --- select output
leftOutBuffer[i] = outputAmp *

filter[LEFT _ CHANNEL].processAudioSample(xnL);
rightOutBuffer[i] = outputAmp *

filter[RIGHT _ CHANNEL].processAudioSample(xnR);

12.14 Exercises

12.14.1 SynthLab-DM Core: SVF Self Modulation

The state variable filter will only self-oscillate when the Q value becomes infinite and is the only
model that does not have an upper feedback value limit that creates self-oscillation. The SVF has
the Q control from [1, 10] mapped to a range of [0.707, 25.0], and at the top value, the filter is highly
resonant, producing copious gain at the peak frequency, though it is not oscillating. Examine the
equations in block (12.12) and figure out what happens to the r value if Q becomes infinite. Then,
modify the VASVFilter::update function with an if/else statement, and add your own code. Now,
when the user maxes the Q control, the filter will go into self-oscillation. The switching point will
be inaudible as the filter will already have massive gain, and the output limiter will be maintaining
distortion-free operation.

if (Q > 24.95)
// --- your code here

else
rho = 2.0*R + alpha; // normal calculation

The bipolar modulation intensity control (Mod Knob #4) can be removed because bipolar mod-
ulators like LFOs already have output amplitude controls that will set the modulation intensity. It
can also be set with the Modulation Matrix, so this Mod Knob can be changed to give you more
practice. Here are two possibilities for altering this control.

12.14.2 SynthLab-DM Core: SVF Bass Compensation

The code and parameter structure already include a bassComp variable that represents the a var-
iable in Figures 12.11 and 12.12 for the Moog and diode filters. This value varies on the range [0.0,
+1.0]. Modify the Mod Knob #4 string for “Bass Comp,” then modify the update calculation to
remove the bipolar mod intensity calculation (or set it to 1.0), and modify the render function to
apply the bass compensation. As the user increases the bass compensation control, the filter gain re-
duction will be abated, and more bass will result. The output limiter will keep the distortion at bay.

12.14.3 SynthLab-DM Core: Key Tracking Slope

The key-tracking amount is a constant shift in semitones above or below the MIDI pitch of the
note being played. Check out the manual for the Korg Wavestate™ from www.willpirkle.com/

http://www.willpirkle.com

Synthesizer Filters 205

Downloads/wavestate.pdf, and look at the filter key-tracking section. Notice how the added slope
control is used to create a rate of change in the key-tracking offset as the user moves above or
below the middle-note (usually middle-C or MIDI note 60). Next, change Mod Knob #4 to a key-
tracking slope control, and use the Wavestate manual and information to create your new feature.

12.14.4 Advanced Module: Oberheim/Moog FilterCore

Finally, make your own filter core object which implements the Oberheim variations on the Moog
ladder filter. Create your own Moog filter C++ object, and add it to the objects in vafilters.h and
vafilters.cpp, which implements the added filters from Oberheim’s Xpander® synth. Tom Oberheim
realized that, if outputs were taken from each of the Moog’s four LPFs and combined in vari-
ous ratios, many other filters could be obtained. You can download the original XPander service
manual from www.willpirkle.com/Downloads/Oberheim_Xpander_Service_Manual.pdf. The fol-
lowing are some of the variations available (other than the normal LPFs), and the service manual
contains more options.

• second order BPF
• fourth order BPF
• second order HPF
• fourth order HPF

Figure 12.17 shows the newly added feed-forward coefficients that inject zeros into the transfer
function and a table that lists the coefficient values for the four new filters. Create your own new
synth filter core object that implements these four new filters, and add it to the SynthLab projects
that you like, thereby increasing the number of filters to 18 in total.

Bibliography

cedos.com. 1980. “CEM3328 Four Pole Low-Pass VCF Datasheet.” http://www.cedos.com/datasheets/ce-
m3328pdf.pdf, Accessed October 14, 2020

El-Masry, E.I. and Sakla, A.A. 1979. “Low-sensitivity Digital Ladder Networks.” 13th Asilo-mar Conference,
pp. 273–278.

Fettweis, Alfred. 1986. “Wave Digital Filters: Theory and Practice.” Proceedings of the IEEE, vol. 74, no. 2.
pp. 270–327.

Figure 12.17 The Oberheim variations on the Moog ladder signal flow block diagram and table of coefficient
values

http://www.willpirkle.com
http://cedos.com
http://www.cedos.com
http://www.cedos.com

206 Synthesizer Filters

Fontana, Fredrico. 2010. “Modeling of the EMS VCS3 Voltage-Controlled Filter as a Nonlinear Filter Net-
work.” IEEE Transactions on Audio, Speech and Language Processing, vol. 18, no. 4. pp. 760–772.

Huovilainen, Antti. 2006. “Nonlinear Digital Implementation of the Moog Ladder Filter.” Proceedings of
the International Conference on Digital Audio Effects, Naples.

Lindquist, Claude. 1977. Active Network Design with Signal Filtering Applications. Long Beach: Steward and
Sons.

Nagahama, Yasuo. 1977. “Voltage Controlled Filter.” United States Patent 4,039,980.
Oberheim, Tom. 1984. Oberheim XPander Service Manual. Los Angeles: ECC Development Corp.
Pirkle, Will. 2013. “Modeling the Korg35 Highpass and Lowpass Filters.” Presented at the 135th Audio En-

gineering Society Convention, New York.
Pirkle, Will. 2014. “Novel Hybrid Virtual Analog Filters Based on the Sallen-Key Architecture.” Presented

at the 137th Audio Engineering Society Convention, New York.
Pirkle, Will. 2014. “Resolving Delay-Free Loops in Recursive Filters using the Modified Härmä Method.”

Presented at the 137th Audio Engineering Society Convention, New York.
Pirkle, Will. 2018. Designing Audio Effects Plugins in C++, 2nd Ed. Chap. 12. New York: Routledge.
Stilson, Tim & Smith, Julius O. 1996. “Analyzing the Moog VCF with Considerations for Digital Implemen-

tation.” Proceedings of the 1996 International Computer Music Conference, San Francisco.
Stinchcombe, Tim. 2006. “A Study of the Korg MS10 and MS20 Filters.” http://www.timstinchcombe.co.uk/

synth/MS20_study.pdf, Accessed October 14, 2020
synthfool.com. 1974. “Oberheim SEM Schematics.” http://www.synthfool.com/docs/Oberheim/Oberheim_

SEM1A/Oberheim_SEM_1A_Schematics.pdf, Accessed October 14, 2020
Välimäki, Vesa & Huovilainen, Antti. 2006. “Oscillator and Filter Algorithms for Virtual Analog Synthe-

sis.” Computer Music Journal, vol. 30, no. 2, pp. 19–31, Cambridge: MIT Press.
Zavalishin, Vadim. 2012. The Art of VA Filter Design. https://www.native-instruments.com/fileadmin/ni_

media/downloads/pdf/VAFilterDesign_2.1.0.pdf, Accessed October 14, 2020

http://www.timstinchcombe.co.uk
http://www.timstinchcombe.co.uk
http://synthfool.com
http://www.synthfool.com
http://www.synthfool.com
https://www.native-instruments.com
https://www.native-instruments.com

In its simplest form, physical modeling involves creating DSP components that combine to behave
like their physical counterparts, such as a pendulum or a resonating mass-spring system. The
theory may be used for modeling strings, tubes, or struck-metal plates, or practically any other
acoustic/mechanical system or effect, such as a piano or the reverb effect. The Yamaha VL-1®,
Korg Prophecy®, and OASYS® are examples of early, commercially available physical modeling
synthesizers. Today, the GeoShred® mobile app uses physical string modeling as its synthesis core.
This area has matured over several decades, including texts dedicated specifically to the science.
In this chapter, we will study one of the most famous and useful physical modeling algorithms:
the Karplus-Strong plucked string model. This algorithm works well as an introduction to phys-
ical modeling because it includes the same set of components as other more complex algorithms.
such as a saxophone. Physical modeling does away with PCM samples and wavetables, so there is
little data to store or load. However, the processing may become very complicated as the output is
mathematically generated.

13.1 The Exciter-Resonator

Physical modeling algorithms for acoustic instruments usually contain two components: the ex-
citer and the resonator, which are fundamentally connected, as shown in Figure 13.1(a). The ex-
citer stimulates the resonator that rings at the desired musical pitch. Figure 13.1(b) includes an
output filter that couples the output waveform to the air load. Figure 13.1(b) also shows that the

13 Karplus-Strong Plucked String Model

Figure 13.1 (a) The most basic exciter-resonator system, and (b) a more complex model that includes cou-
pling from the resonator back to the exciter and an output impedance coupler

208 Karplus-Strong Plucked String Model

resonator can couple back to the exciter with the reverse arrow. Table 13.1 lists a few common
acoustic instruments and their exciter, resonator, and output filter. The saxophone and trumpet
both feature coupled resonators because the standing wave setup in the instrument’s tube reflects
off of the musician’s lips/mouth. Instruments that include open holes, such as most woodwinds,
have an additional complexity since there are multiple locations where the sound couples with the
air load.

13.2 The Plucked String

Plucked string instruments include guitars and basses as well as harps and other similar devices.
Struck string instruments include piano, clavichord, and dulcimer. In both cases, the string is de-
formed and released either with the finger or a hammer, as depicted in Figure 13.2(a) (the guitar)
and (b) (the deformation), and acts as the excitation signal. In its simplest version, the deformation
sets up a transverse wave that bounces back and forth between the bridge and the fretting finger, or
nut if the string is open, as shown in Figure 13.2(c) and (d). The transverse wave bounces off of each
terminal end point at the nut (or fretting finger) and the bridge. The rate of the bounces per second
is the frequency in Hertz of the note. The transverse wave on the string itself is the resonator, and
the bridge couples the resonator with the body that vibrates and couples the output to the air load.
As the system loses energy, the transverse wave loses amplitude and eventually becomes inaudible.
In addition, we observe the fact that high frequencies, which inherently do not have as much power
as low frequencies, decay faster and earlier. The body behaves as a complex, multi-peaked filter
that resonates well at some frequencies and not so well at others.

13.3 The Karplus-Strong Model

The Karplus-Strong (KS) model for the plucked string is simple, elegant, and effective. Its most
basic form is immediately simpler than other algorithms because there is no interaction between
the resonator and the exciter – once the string is plucked, the exciter is removed from the model,
and the resonator takes over. Note that there are more complex models that do include coupling
to the exciter. DSP building blocks are designed to implement each section of the model. Figure
13.3(a) shows the basic idea for modeling the string.

13.3.1 KS Resonator

The resonator consists of two delay lines, each of which implements half of the total delay, D,
that is the period of the musical pitch. An LPF and attenuator at each delay output remove high

Table 13.1 S ome common instruments and their physical modeling components

Instrument Exciter Resonator Output Filter

Guitar Plucked-string deformation Transverse wave on
string

Guitar bridge to body
(integrator)

Saxophone Reed flapping against mouthpiece
and breath pressure

Standing wave in
tube

Bell and open holes in bore
(HPF)

Trumpet Lips vibrating in mouthpiece and
breath pressure

Standing wave in
tube

 Bell (HPF)

Karplus-Strong Plucked String Model 209

frequencies and energy on each reflection. Figure 13.3(b) shows how this loop may be simplified
and improved. The two delay lines may be combined, along with the attenuators and filters to
reduce complexity.

Musical pitches will rarely be exact multiples of the sample period. This means that the
period of the waveform, and the calculated delay, D, will include a fractional component, as
shown in Figure 13.3(b). The fractional delay is implemented with a first order all pass filter
(APF) in Figure 13.4(a) that creates a linear fractional group delay, d over the range of 0 Hz
to about 0.1fs, as shown in Figure 13.4(b). With fs = 44.1 kHz, this would be around 4,410 Hz,
which is close to the top note on a piano, so it is easily usable across the range of a guitar or
bass. The resonator’s delay line length and APF fractional delay calculations must be exact to
produce the correct pitch. The user may have control over the attenuation that corresponds to
the string’s decay time.

Figure 13.2 (a) An acoustic guitar with nut, bridge, and body; (b) plucking the string deforms it and (c) sets
up a transverse wave that moves down the string, and (d) bounces off the nut and moves back
toward the bridge

Figure 13.3 (a) Basic model of a plucked string with dual delay lines for transverse wave oscillation and (b) a
simplified version that combines like components and adds the fractional delay APF

210 Karplus-Strong Plucked String Model

13.3.2 KS Loop Filter

The lowpass filter in the loop is going to reduce high frequency components, but it can also in-
troduce its own group delay, depending on the filter, fc. This means that we cannot let the user
adjust the filter, or the note will be slightly out of tune. However, if we use the simple first order
feed-forward LPF, shown in Figure 13.5(a), with the coefficients a0 = a1 = 0.5, then we get the most
selectivity with a zero at Nyquist, as shown in Figure 13.5(b), and we can calculate that we will get
exactly ½ of a sample of delay through the filter.

13.3.3 KS Exciter

The exciter signal has numerous options: a simple unit impulse, an impulse generated from a res-
onant filter, and impulses that are combinations of several impulsive or noisy components. A sim-
ple and effective excitation signal consists of a short noise blast with an envelope and a spectral

Figure 13.4 (a) A first order structure for an APF with only one coefficient a to calculate and (b) the group
delay versus frequency for the APF; each curve represents a different APF fc

Figure 13.5 (a) The simple first order feed-forward LPF and (b) its frequency response showing a zero at
Nyquist

The Karplus-Strong algorithm is a specific kind of plucked string model and has undergone
improvements and modifications over time. The algorithms here are a combination of some
of these modifications. For simplicity’s sake, I am keeping the Karplus-Strong moniker for
the model developed here.

Karplus-Strong Plucked String Model 211

content. In the traditional KS algorithm, the exciter signal is placed inside of the delay line and sets
the initial state for the system.

For the KSOscillator core, the exciter is placed at the entrance to the loop summer, producing
the first output samples immediately and without delay. Setting the spectrum of the noise exciter
establishes the initial frequency response of the system. The LPF loop filter will take that spectrum
and filter it repeatedly on each pass through the loop, emulating the natural harmonic decay in an
acoustic stringed instrument. Unlike the resonator, which has some fixed properties and calcula-
tions, the exciter is wide open for experimentation. The harmonic content of the output depends
upon the exciter’s initial harmonic spectrum. If noisy signals are used, then randomness in the
spectra will create slight timbral differences for each note-event, which will add a human element.

13.3.3.1 Windowed Noise Burst Exciter

You can create interesting sounds with very simple exciter signals, including the rectangular-pulsed
random noise that you generate by simply counting off a few random values, as shown in Figure
13.6(a). You can also use common window functions to create a time domain signal without the
discontinuities at the edges that will reduce the high harmonics, as in the Hann windowed excita-
tion in Figure 13.6(b). The windowed exciter lends itself easily to re-triggering, which produces a
stream of impulsive blasts called “sonic grains,” as shown in Figure 13.6(c). Each of these may also
operate on pseudo-random noise or filter noise signals.

13.3.3.2 EG Shaped Noise Burst Exciter

You can also shape the noise burst with an envelope generator (EG) using the attack-release (AR)
and attack-hold-release (AHR) contours, as shown in Figure 13.6(d) and (e). As with the windowed
exciter, the EG may also be retriggered. The physical model of a bowed instrument like the cello is
quite complex, but the AHR shaped noise produces a surprisingly similar sound when the attack
time is long. When the attack and release are set to 0.0, and the hold time is finite, we get the rec-
tangular noise blast.

Figure 13.6 (a) Rectangular windowed noise burst; (b) Hann windowed noise burst; (c) sonic grains from
re-triggered windowed exciter; (d) attack-release; and (e) attack-hold-release envelope noise
bursts

212 Karplus-Strong Plucked String Model

13.3.3.3 Exciter by Reverse Filtering with PCM Samples

In yet another approach to generate an impulse, you start with a single PCM sample of an actual
plucked string note-event. Next, you synthesize a perfectly complementary KS model that reverses
(complements) all of the DSP algorithm blocks and run the model in reverse-time. This model ac-
cepts an input at the output port that flows in the reverse direction, then you recover the impulse
response as the “output” of the exciter. Now you have the exact impulse response needed for the
model to produce an output identical to your PCM sample. If you are interested, see the Leary
reference for more information.

13.4 Pluck Position

Figure 13.2 is oversimplified but effective in explaining the transverse wave’s relationship to the
string’s frequency. The pluck actually creates string motion, which may be thought of as two pulses
that travel in opposite directions (Fletcher/Rossing) and bounce back and forth, producing a set
of vibrating modes that combine to produce phase cancellations at frequencies based on the pluck
position. When plucked in the exact center (twelfth fret on a guitar), the two standing waves can-
cel at each even harmonic, starting with the second harmonic (the octave), then the fourth, sixth,
and eighth, producing a distinctly hollow timbre. As the pluck position moves towards one end,
the canceled harmonics appear at exact multiples of the pluck position, as a fraction of the string
length. This is modeled with an inverse comb filter whose delay length z-D/M is set to the pluck
position fraction D/M of the string loop delay, as shown in Figure 13.7(a). If the string is plucked
at ½ the string length, then the comb delay is ½ the loop delay (D/2), while it is 1/4 the total delay
for a pluck at 1/4 the string length (D/4). The z−D/M comb filter response is shown in Figure 13.7(b),
with notches which are multiples of M = 4. The number of notches and whether or not a zero is
present at DC and Nyquist depends on the even/odd nature of the comb filter delay length. The
comb filter length will rarely be an exact integer, and we use a delay line that interpolates to create
the fractional delay in that filter.

13.4.1 Bridge Filter

The bridge acts as an integrator as it couples the signal pulses to the soundboard top and is im-
plemented with a lowpass filter whose fc is lower than the lowest pitch to synthesize (Välimäki), as
shown in Figure 13.7(c). The bridge filter and pluck position filter may be combined (Välimäki) into
one unit, as shown in Figure 13.7(a), whose combined frequency response is shown in Figure 13.7(d).

Figure 13.8(a) shows the output of the KS model for the KSOscillator taken at the bridge with
the bridge filter engaged and a fundamental frequency of 110 Hz. Figure 13.8(b) includes the pluck
position filter with the pluck point at half the string length, showing that every other harmonic is
missing. The harmonic amplitudes have variation in them because the source is a short noise burst
that does not have a perfectly flat spectrum.

13.4.2 Pickup Filter

Implementing an electric or bass guitar pickup requires us to revert to the two-delay-line KS
model in Figure 13.2(a); the pickup point is tapped from locations within the integer delay line,
corresponding to different locations under the strings. The pickup itself behaves like a second

Karplus-Strong Plucked String Model 213

order resonant lowpass filter, with a resonant frequency between 2 kHz and 5 kHz, and a peak
gain of a few dB for guitar. Bass pickups may exhibit much higher resonant peak frequencies. To
keep the model simple, the single delay version is still implemented, with the pickup filter placed
just before the bridge filter, as shown in Figure 13.8.

13.5 Karplus-Strong Algorithm Equations

For a given note-event, we will need to calculate several parameters for the resonator component
that will set the delay length and calculate the APF coefficients for the fractional delay filter. We
know that the delay loop will provide L + ½ samples when we include the loop filter. The loop filter
has coefficients a0 and a1 fixed at 0.5, so there is nothing to calculate for it.

To calculate the fixed delay length L and APF coefficient a, we only need a few equations,
and we can show these by example: suppose the user plays MIDI note 60 or middle-C with
fo = 261.6256 Hz.

Figure 13.7 (a) The pluck position filter is a simple feed forward comb filter that is combined with the bridge
integrator in the delay branch, (b) shows the comb filter response for a pluck position of ¼ the
total length (M = 4), (c) the bridge filter’s lowpass-integrator response and (d) the combined
integrator and comb filter responses

Figure 13.8 Sp ectra of the KS model of the note A-2 (110 Hz), showing output of (a) bridge filter only and (b)
bridge filter and pluck position with pluck at ½ the length of the string

214 Karplus-Strong Plucked String Model

Calculate the exact delay length LE:

f 44,100
L s

E = = = 168.5614
fo 261.6256...

 (13.1)

We will get ½ sample of delay from the simple LPF, so subtract back, and find the nearest integer
length that will result in a fractional delay of less than one sample:

LD E= −int(L 0.5) = =int(168.0614) 168 (13.2)

LD is the length of the delay in samples. Now, find the fractional amount that the APF must make up:

δ = −L LE D()+ =0.5 0.0614 (13.3)

Another way to think about LD and d is that they are the integer and fractional components of LE.
With this fractional delay time, you can calculate the single APF coefficient a as:

2π fω o
0 =

fs
sin((1−δ ω)(0 / 2))

a =
sin((1+δ ω)(0 / 2))

= 0.8842

 (13.4)

For the pluck position filter, the comb delay is set to LE/M, as described in Section 13.4, where M
is the denominator of the pluck position fraction. This requires a comb filter that interpolates to
create fractional delay times. The bridge integrator is a first order, all pole lowpass filter with the fc
set to 20 Hz, which is about half of the bass guitar’s low E-string frequency of about 44 Hz.

13.6 Karplus-Strong C++ Objects

Technically, the KS algorithm constitutes a complete patch and renders a plucked/struck event
complete with decay time setting. However, the KS algorithm also works well as an oscillator used
within the SynthLab architecture that includes LFOs, EGs, etc. In order to facilitate the opera-
tion, I’ve created a set of very small, very specific C++ objects that perform dedicated processing,
which are listed in Table 13.2. These objects are lightweight and dedicated to KS algorithms, with
simple set, process, and render functions.

13.6.1 Exciter, Resonator, and PluckPosFilter C++ Objects

The Exciter and Resonator objects complete the KSCore for the KSOScillator and implement three
KS models: nylon string guitar, distorted electric guitar, and electric bass guitar. The exciter object
implements the block diagram in the dotted box in Figure 13.9 and uses an EG-shaped noise burst
as the excitation. The simple Attack-Hold-Release (AHR) EG is implemented and can produce
both short noise bursts and longer, quasi-bowed-string excitation signals. When dealing with short
noise bursts or impulsive signals, a DC offset may be present that will build up in the resonator. A
simple first order HPF is used to block the DC. The Resonator object implements the single delay
architecture in Figure 13.2(b) and is unchanged.

Karplus-Strong Plucked String Model 215

Table 13.2 L ist of lightweight objects specifically for KS algorithms

Object Name Functionality Important Methods Notes

ResDelayLine Resonator integer length
delay line

readDelay Length set to correspond to
MIDI note 0 at ~8 HzwriteDelay

setDelayTime
FracDelayAPF Resonator fractional

delay element
setAlpha Single coefficient α sets

fractional delay
a0 = a1 = 0.5

processAudioSample
ResLoopFilter Simple feed-forward

LPF with ½ sample
delay

processAudioSample

ExciterEG Dedicated AHR EG
with analog EG
curvature

setParameters(AHR) Lean version of AnalogEG
with only A, H, and RstartEG

render
DCRemovalFilter First order HPF with

fc = 2 Hz to remove
DC offsets

reset Coefficients are hard-coded
processAudioSample

PluckPosFilter Inverse comb filter with
selectable bridge
integrator and pickup
filter

reset Options for output at pluck
position, pickup, and
bridge, and combinations
of them

processAudioSample

HighShelvingFilter High shelving filter with
fc (Hz) and boost/cut
(dB)

 setParameters Adds HF energy to exciter
signal with shelf fc = 2 kHzprocessAudioSample

ParametricFilter Non-constant-Q
parametric filter for
body resonance

setParameters Used for body filter, post
processing; varies with
model

processAudioSample

LP2Filter Second order biquad
LPF

setParameters Used for the amp simulator
and pickup filtersprocessAudioSample

LP1PFilter First order one-pole LPF setParameters Used for the bridge pickup
processAudioSample

Figure 13.9 T he block diagram of the KS algorithm packaged as the KSOCore includes the exciter, pluck,
pickup, and bridge filters, and the resonator and body filter; the inset shows the very simple gui-
tar preamp simulator, consisting of eight stages of waveshaping followed by a second order LPF

216 Karplus-Strong Plucked String Model

Table 13.3 shows the Exciter object’s member objects and methods. The sub-objects do the work,
and the render method simply generates the noise and shapes it with the EG. Notice that the func-
tion takes an argument coupledInput that allows you to couple the resonator back into the exciter
for experimentation. Finally, the DC is removed and the excitation value returned.

double render(double coupledInput = 0.0)
{

double noise = noiseGen.doWhiteNoise();
double eg = noiseEG.render();
double ahr = (noise * eg) + coupledInput;
return dcFilter.processAudioSample(ahr);

}

Table 13.4 shows the Resonator object’s member objects and methods. Once again, the sub-
objects do the work, and the process method follows Figure 13.6, starting with reading the output
of the delay line to sum with the incoming exciter signal:

double Resonator::process(double xn)
{

// --- read delay
double delayOut = delayLine.readDelay();

// --- filter input + delay output
double filterOut = loopFilter.processAudioSample(xn + delayOut);

// --- create fractional delay with APF
double yn = fracDelayAPF.processAudioSample(filterOut);

// --- write the value into the delay and scale
delayLine.writeDelay(yn*decay);

// --- done
return yn;

}

Table 13.3 The Exciter members and brief description

Exciter Member Argument/Variable Description

NoiseGenerator noiseGenerator Creates white noise; see Section 8.1
ExciterEG noiseEG AHR EG for shaping the noise burst
DCRemovalFilter dcFilter HPF to remove DC offset, fc fixed at 2 Hz
setParameters() attackTime_mSec Sets EG parameters

holdTime_mSec
releaseTime_mSec

startExciter() None Places the EG into attack state, ready to render
render() None Renders the exciter output samples, one at a time

Karplus-Strong Plucked String Model 217

Table 13.5 shows the PluckPosFilter object’s member objects and methods. This object is set up
to allow you to choose from any output point using multiple combinations of filters according to
the PluckFilterType; each model will use a different output point.

enum class PluckFilterType {kPluck, kPluckAndBridge, kPickup,
kPluckAndPickup, kBridge,
kPluckPickupBridge};

The PluckPosFilter requires a delay line for the comb filter, a one-pole LPF for the bridge inte-
grator, and a second order resonant LPF for the pickup filter, which are set up in the reset function
as follows:

1 combDelay: length is set for the lowest possible pitch, MIDI note 0 at the current fs
2 bridgeIntegrator: fc = 20 Hz (you may lower this, but you will need to boost the output to ac-

commodate the loss of energy)
3 pickupFilter: fc = 2.5 kHz, Q = 1.5 (Q plays an important role in the pickup’s tonal coloration;

experiment with this filter)

The processAudioSample function decodes the input parameter and returns the desired output
value. Notice the scalar multipliers that make up for lost energy in the bridge and pickup filters;
feel free to experiment with these as needed.

if (type == PluckFilterType::kBridge)
return 12.0*bridgeIntegrator.processAudioSample(xn);

if (type == PluckFilterType::kPickup)
return pickupFilter.processAudioSample(xn);

// --- pluck position
double yn = combDelay.readDelay();
combDelay.writeDelay(xn);

// --- output pluck
double pluck = 0.5*(xn - yn);

Table 13.4 The Resonator members and brief description

Resonator Member Argument/Variable Description

ResDelayLine delayLine Circular buffer for integer resonator delay
FracDelayAPF fracDelayAPF Generates fractional delay for loop tuning
ResLoopFilter loopFilter Simple feed forward LPF with ½ sample group

delay
setParameters() frequency

decay
Sets the resonator’s frequency and attenuation

parameters
process() xn Process a sample through the resonator loop,

taking output, as shown in Figure 13.6

218 Karplus-Strong Plucked String Model

if (type == PluckFilterType::kPluck)
return pluck;

// --- pluck and pickup
if (type == PluckFilterType::kPluckAndPickup)

return pickupFilter.processAudioSample(pluck);

// --- pluck and bridge
if (type == PluckFilterType::kPluckAndBridge)

return 12.0*bridgeIntegrator.processAudioSample(pluck);

if (type == PluckFilterType::kPluckPickupBridge)
{

double pu = 2.0*pickupFilter.processAudioSample(pluck);
return 12.0*bridgeIntegrator.processAudioSample(pu);

}

13.7 KSOscillator and KSOCore

The KSOscillator and KSOCore objects are shown in block form in Figure 13.10. The model imple-
ments a nylon string guitar, and distorted electric and bass guitar KS algorithms. The differences
between the three variations lies mainly in filter settings and the addition of a simple preamp sim-
ulator for the distorted guitar. This is the only SynthLab oscillator that has just one core as it is a
very specific kind of algorithm.

13.7.1 KSOCore Mod Knobs

The KSOscParameters structure contains the GUI parameters, which are very application-specific
and consist of the AHR EG controls and the decay control. You will notice that there are no tuning
controls; however, in unison mode, the four voices will be detuned as with the other oscillators.
You may decide to remove this functionality. The mod knobs are set up for the rest of the function-
ality shown in Figure 13.9 and consist of:

1 AmpTweak: +/−12 dB of final amplitude adjustment, corresponding to the output control on
the other oscillators

2 Body: a medium-Q parametric filter is placed at the output of the system to mimic the funda-
mental body resonances of the models

3 Bite: a high-shelving filter after the Exciter to add high harmonics and brightness to the excita-
tion signal

Table 13.5 The PluckPosFilter members and brief description

Exciter Member Argument/Variable Notes

DelayLine combDelay Length defaults to lowest MIDI note
LP1PFilter bridgeIntegrator Lossy integrator with fc = 20 Hz
LP2Filter pickupFilter Resonant LPF; avoid high Q, or feedback may result

Karplus-Strong Plucked String Model 219

4 PluckPos: controls the pluck position and works backwards on a range of [10, 2], establishing
the denominator of the pluck position fraction

13.8 KSOCore Member Objects

Table 13.6 lists the core member objects and their KS functionality.

13.9 Core Programming Notes

With the C++ files open, compare the programming notes with the code that you see, starting with
the class descriptions of each core. Sections 13.9.1 through 13.9.5 summarize the five operational
phases, plus constructor for the wavetable cores. Make sure to examine the code while digesting
their operational phase details.

13.9.1 Construction Phase

As with all of the ModuleCore objects, you first assign the module name and module type, then set
the module strings. For the KS oscillator, these are the names of the plucked string instruments.

Figure 13.10 The KSOscillator and KSOCore block diagrams, module strings, mod inputs, and GUI controls

220 Karplus-Strong Plucked String Model

13.9.2 Reset Phase

The reset method simply calls the reset method on each of the member objects. In addition, the
distortion filter is hardcoded for fc = 2 kz and Q = 1.0 (feel free to experiment)

distortionFilter.reset(sampleRate);
distortionFilter.setParameters(2000.0, 1.0); // fc and Q

13.9.3 Note-On Phase

The note-on event is easily serviced; we first save the incoming MIDI pitch to use for update cal-
culations. Then, the sub-objects have their delay lines flushed with the flushDelays or clear func-
tions, depending on the object. This is crucial to avoid corrupted information in the delays. Most
importantly, the exciter’s startExciter method is called, placing the exciter EG into the attack state
and making it ready for render.

// --- parameters
midiPitch = processInfo.noteEvent.midiPitch;

// --- reset
resonator.flushDelays();
pluckPosFilter.clear();

// --- start excitation
exciter.startExciter();

13.9.4 Update Phase

The core’s update method follows the normal pitch modulation calculation detailed in Section
6.8.1. After the modulated oscillator frequency is calculated, the resonator and pluck position
objects are updated using the oscillator frequency to calculate the delay lengths. Notice that the
resonator’s setParameter function returns the newly calculated delay line length, including the
fraction. The pluck position mod knob is quantized to an integer value and used to calculate the
pluck position filter’s new delay length.

Table 13.6 KSOCore member objects/variables

KS Functionality C++ Object/Variables Notes

Exciter Exciter AHR noise exciter
Resonator Resonator One-delay-line resonator
Pluck position, pickup, &

bridge
PluckPosFilter Includes scalar values to make up for energy losses;

feel free to adjust as needed
Brightness HighShelfFilter Adds high harmonics to the exciter
Body resonance ParametricFilter Different center frequencies for the three models
Distortion LP2Filter The simple preamp simulator uses a second order

filter to smooth harsh harmonics

Karplus-Strong Plucked String Model 221

// --- BOUND the value to our range
boundValue(oscillatorFrequency, OSC _ FMIN, OSC _ FMAX);

// --- Resonator:
double delayLen = resonator.setParameters(

oscillatorFrequency, parameters->decay);

// --- Pluck Position:
pluckPosition = (uint32 _ t)getModKnobValueLinear(

parameters->modKnobValue[MOD _ KNOB _ D], 10.0, 2.0);

pluckPosFilter.setDelayInSamples(delayLen / pluckPosition);

The exciter attack, hold, and release times are updated, followed by the bite and body filters. Notice
how the mod knobs map to boost-only values for both filters and that the center frequencies are
different for each model. The high shelf “bite” filter has fc = 2 kHz with boost from 0.0 to 20.0 dB.

// --- filters
bite _ dB = getModKnobValueLinear(parameters->modKnobValue[MOD _ KNOB _ C],

0.0, 20.0);

highShelfFilter.setParameters(2000.0, bite _ dB);

The “body” filter is a parametric boost-only filter with 0.0 to +6 dB of gain, and various fc and
Q values depending on the model – these too are highly experimental.

body _ dB = getModKnobValueLinear(parameters->modKnobValue[MOD _ KNOB _ B],
0.0, 6.0);

// --- fc, Q vary with model
if (parameters->algorithmIndex == kNylonGtr)

bodyFilter.setParameters(400.0, 1.0, body _ dB);
else if (parameters->algorithmIndex == kDistGtr)

bodyFilter.setParameters(300.0, 2.0, body _ dB);
else if (parameters->algorithmIndex == kBass)

bodyFilter.setParameters(250.0, 1.0, body _ dB);

13.9.5 Render Phase

The render function is fairly simple because the member objects do most of the work; it follows the
flow of Figure 13.8, from exciter to pluck position filter to resonator to body filter in that order.
The fundamental differences are in the pluck position filter, whose output is tapped from different
locations for each model, and the added preamp simulator for the distorted guitar model. The
process starts with the exciter and high-shelf filter:

double input = exciter.render();
input = highShelfFilter.processAudioSample(input);

222 Karplus-Strong Plucked String Model

The pluck position is altered by model:

if (parameters->algorithmIndex == kNylonGtr)
input = pluckPosFilter.processAudioSample(input,

PluckFilterType::kPluckAndBridge);

else if (parameters->algorithmIndex == kDistGtr)
input = pluckPosFilter.processAudioSample(input,

PluckFilterType::kPluckAndPickup);
else if (parameters->algorithmIndex == kBass)

input = pluckPosFilter.processAudioSample(input,
PluckFilterType::kPluckPickupBridge);

The bass is lowpass filtered twice through the pickup and bridge filters, and has the least high
harmonics. The input is applied to the resonator object, then the preamp simulator is applied to
the distorted guitar output only.

// --- resonate the excitation
double oscOutput = resonator.process(input);

// --- VERY simple guitar preamp sim
if (parameters->algorithmIndex == kDistGtr)
{

int stages = 8;
for (int i = 0; i < stages; i++)

oscOutput = tanhWaveShaper(oscOutput, 1.0);

// --- drop -6dB; make up for energy boost
oscOutput = 0.5 * distortionFilter.processAudioSample(oscOutput);

}

Finally, the body filter and output amplitude values are applied, and the output is written:

// --- add resonance if desired
oscOutput = bodyFilter.processAudioSample(oscOutput);
oscOutput *= outputAmplitude;

// --- write to output buffers
leftOutBuffer[i] = oscOutput;
rightOutBuffer[i] = oscOutput;

13.10 Extensions to the KS Algorithm

The plucked string algorithm has been augmented over the years, with numerous extensions and
improvements. An excellent source you may use as a starting point is Valamaki, which documents
the additions and contains a plethora of references and sources for more information and study.
These additions include:

Karplus-Strong Plucked String Model 223

• Electric guitar and bass pickup output (requires dual delay lines)
• Pluck shaping to model variations in pluck and pick stroke angles
• Sympathetic vibration of open strings; applications to the old-fashioned harp-guitar

The chapter references here also contain information about hammered and bowed-string models,
which include coupling between resonator and exciter, and involve scattering junctions.

13.11 Exercises

13.11.1 SynthLab-DM: High Register Accommodations

The high-shelving filter allows the boosting of high frequencies in the exciter; however if you play
very high notes, you will notice that the attack loses its sharpness (Jaffe and Smith 1983). Imple-
ment a system that adjusts the high-shelving filter’s gain value and/or shelving frequency to ac-
commodate notes in the upper register. Next, note that, for the nylon string model, the notes lose
energy very quickly in the upper register, and though that is similar to the real instrument, you
may want to try to extend the note duration by manipulating the loop’s decay parameter, which is
set in the resonator model (see the code in Section 13.6.1).

13.11.2 SynthLab-DM: 12-String Guitar

A 12-string guitar uses pairs of strings, called courses, that are tuned one octave apart for the
lower four strings and in unison for the upper pair of B and E strings. You can implement these
extra strings as additional resonators and feed the excitation signal to each in parallel. For the
unison-tuned string pairs, you can apply a bit of detuning for a thicker sound. Implement your
own 12-string guitar model as a new KSOCore, or modify the existing core to add the 12-string
option. If you want to go further with realism, research the sympathetic vibration modeling for
open-string chords, and add that to your implementation.

13.11.3 SynthLab-DM: Body Resonance and Electric Guitar Feedback

The exciter’s render method includes an input so that the exciter may be re-stimulated from the
resonator. This has two immediate applications: first, the body of the guitar usually has multi-
ple resonant peaks (see Fletcher and Rossing), and this may be simulated with resonant filters
that feed back from the resonator into the exciter. Many electric guitarists feature feedback
in their styles; one method to create this is to rest the headstock of the guitar on the vibrating
amp to couple the energy back into the instrument. This is equivalent to coupling part of the
resonator’s output back into the exciter directly or through a filter; in both cases, care is needed
to avoid runaway feedback. Postulate a model for body resonances and/or guitar feedback that
re-energize the exciter with part of the resonator’s signal and implement it. Guitar feedback is
often on octave boundaries, so that would be a place to start your experiments. Use the cou-
pledInput variable for the exciter object’s render function to channel audio back to the exciter.

224 Karplus-Strong Plucked String Model

Bibliography

Karjalainen, Matti, Välimäki, Vesa & Tolonen, Tero. 1998. “Plucked String Models: From the Karplus-Strong
Algorithm to Digital Waveguides and Beyond.” Computer Music Journal, vol. 22, no. 3, pp. 17–32, Cam-
bridge: MIT Press.

Jaffe, David & Smith, Julius. 1983. “Extensions of the Karplus-Strong Plucked-String Algorithm.” Computer
Music Journal, vol. 7, no. 2, pp. 56–69, Cambridge: MIT Press.

Kahrs, Mark & Karlheinz, Brandenburg. 1998. Applications of Digital Signal Processing to Audio and Acous-
tics, Chap. 10. Boston: Klewer Academic Publishers.

Karjalainan, Matti, Välimäki, Vesa & Jánosy, Zoltan. 1993. “Towards High-Quality Sound Synthesis of the
Guitar and String Instruments.” Proceedings of the 1993 International Computer Music Conference, San
Francisco, California: International Computer Music Association, pp. 56–63.

Karplus, Kevin & Strong, Alex 1983. “Digital Synthesis of Plucked-String and Drum Timbres.” Computer
Music Journal, vol. 7, no. 2, pp. 43–55. Reprinted in C. Roads, ed. 1989. The Music Machine. Cambridge:
MIT Press.

Smith, Julius Orion. 1993. “Efficient Synthesis of Stringed Musical Instruments.” Proceedings of the 1993
International Computer Music Conference, San Francisco, California: International Computer Music
Association, pp. 64–71.

Smith, Julius. 2010. Physical Audio Signal Processing, Chap. 9. Stanford: Center for Computer Research in
Music and Acoustics.

Chapter 6 detailed the various types of modulations and calculations, then each of the synth mod-
ules implemented an update function that used one or more of the modulations and corresponding
calculations. These synth modules are modulation destinations because they change their inter-
nal parameters when modulation values are applied. The LFO and EG modules are modulation
sources because their outputs are applied to the modulation destinations. For FM synthesis,
pitched oscillators are used as both modulation sources and modulation destinations; this is pos-
sible for other modules as well, as it is with the LFOs that can modulate each other’s oscillator
frequency. The modulation matrix is used to connect sources and destinations during the voice
object’s update phase. The matrix must therefore know the locations of all of the source values (the
outputs of the LFOs and EGs) as well as the locations of the destinations (the modulation inputs).
We will use the ModMatrix object to connect our modules together.

14.1 Modulation Inputs and Outputs

Each SynthModule object includes two Modulators member objects: one for incoming modulation
values and another for modulation outputs named modulationInput and modulationOutput. The
Modulators object is a thin wrapper for a statically declared array of 32 double values, with get/set
function access to the array elements and a special array pointer access for the modulation matrix.
The elements are indexed with a simple enum, and all SynthModules share the same modulation in-
put array index names, as shown in Figure 14.1(a). There are currently 22 modulation inputs when
you include the additional wave-sequencing object in SynthLab-WS, and you may add as many
more as you like as the array will be self-sizing. Each module that generates a modulation output
writes into its modulationOutput using its own module-specific index names, as shown for the LFO
core in Figure 14.1(b) and (c). The EG has another set of index names, as shown in Figure 14.1(d).

14.2 Modulation Routings

A modulation routing (or mod routing) is a specific connection between the modulation output
array of one object and the modulation input array of another, such as the connection shown in
Figure 14.2, where the mod source is LFO1’s normal output (array slot 0), and the mod destina-
tion is OSC2’s bipolar input (array slot 3). Each routing is a unique (source, destination) pair.
In the SynthLab ModMatrix object, any number of sources may modulate the same destination.
The modulation matrix’s parameter object stores a set of modulation routings, and you may add,
remove, or re-configure the routings at any time. You may also define pre-wired routings for a

14 The Modulation Matrix

226 The Modulation Matrix

semi-modular design: for example, the amp EG’s output is always hardwired to the DCA’s EG
input, while a filter EG’s output is always connected to a filter’s fc modulation input.

The ModMatrix source and destination arrays are indexed with their own simple enums that
need to be separate from the module enums, and you can easily add more, as needed. Mod sources
are prefixed with “source” and likewise with destinations, so the constants are easy to decode.

enum modSource
{

// --- LFOs here
kSourceLFO1 _ Norm,
kSourceLFO1 _ Inv,

kSourceLFO2 _ Norm,
kSourceLFO2 _ Inv,

// --- EGs here
kSourceAmpEG _ Norm,
kSourceAmpEG _ Bias,
// etc . . .

Figure 14.1 (a) The modulation input array is indexed the same way for all SynthModules using constant
declarations for kEGMod, kBiasedEGMod, etc… (b) the LFO Core exposes a modulation input
and a modulation output (c) the modulation output array is indexed specifically for the LFO
using constant declarations while (d) shows the indexing for the EG‘s modulation output array
for comparison

Figure 14.2 A m odulation routing that connects LFO1’s normal output to OSC2’s bipolar modulation input,
which modulates the oscillator’s frequency

The Modulation Matrix 227

// --- remain last, will always be the size of modulator array
kNumberModSources

};

enum modDestination
{

kDestOsc1 _ fo,
kDestOsc2 _ fo,
// etc . . .

kDestOsc1 _ Amp,
kDestOsc2 _ Amp,
// etc . . .

// --- remain last, will always be the size of modulator array
kNumberModDestinations

};

14.2.1 Mod Routing Selection and Intensity Controls

Modulation matrices take on varying forms in different synth designs. Figure 14.3 shows two
out of the many possible GUI design choices for a modulation matrix. The modulation matrix in
Figure 14.3(a) looks like an actual matrix, with rows (sources) and columns (destinations). On the
EMS VCS3, pins are inserted into holes, which make the electrical connection between the analog
source and the destination (the pins contain resistors for summing and attenuating). On the Ar-
turia Prophet VS plugin, GUI buttons are used to create the mod routings, and this synth includes
intensity controls for the sources and destinations. You can think of them as global send and re-
ceive controls per source and destination. In this mod matrix, the user can map any or all sources
to any or all destinations, as desired. You can see that both the LFO2 and EG2 modulate the same
destination – in this case, the mod values are summed together without scaling.

Figure 14.3(b) shows a different type of mod matrix; here, the user is restricted to only four
modulation routings and presented with a selection list for each routing pair. This matrix features
individual intensity controls for each routing, allowing for finer control per mod routing connec-
tion. In this version, the selection lists must also include a “no connection” choice.

Figure 14.3 M odulation matrix designs include (a) pin/button programmable with global source and desti-
nation intensity controls, and (b) a limited choice matrix with individual channel routing inten-
sity controls

228 The Modulation Matrix

14.3 Mod Matrix Channel Routing

The modulation matrix is packaged as a C++ object named ModMatrix. Figures 14.1–14.3 make
apparent that the ModMatrix object will need to know the source and destination locations in or-
der to pull and push the mod values into place. On the destination end, it will need to accumulate
the mod values since multiple sources can modulate a single destination. There are numerous ways
in which to handle this, including individual arrays for sources and destinations. The method in
ModMatrix is to store pointers to the statically declared modulation input and output array loca-
tions on each synth module; it reads from the source array slot and accumulates into the destina-
tion array location. This must be done at the voice level, and the SynthVoice constructor sets up the
sources, destinations, and hardwired routings.

In order to accommodate many mod matrix schemes, the ModMatrix object includes multiple
intensity controls, a hardwired bypass path that overrides the channel path, and channel enable
and disable controls, as shown in Figure 14.4(a). The intensity controls are source, channel, and
destination; these may look like overkill, but they are there for maximum flexibility in your de-
signs. And you will rarely use all three intensity controls. Figure 14.4(b) shows how the object is
configured to match the mod matrix in Figure 14.3(a). In this case, there is a single GUI intensity
control for each source and destination, but they connect to the same parameter within each mod-
ulation routing. Figure 14.4(c) shows the configuration for Figure 14.3(b), which only requires an
enable switch and channel intensity control.

14.4 ModSource and ModDestination for GUI Controls

Ultimately, the user programs the ModMatrix via the GUI, or you can set up the object program-
matically from within the SynthVoice object. There is only one set of ModMatrix controls on the
synth, but these routings apply to all of the voices. However, each voice contains its own set of
modules (LFOs, EGs, etc.), which are locally owned, and they have their own local modulation

Figure 14.4 (a) The ModMatrix configuration for a single routing shows the multiple intensity controls and
enable-switches; in this example, the hardwire enable switch is overriding the channel branch
while (b) and (c) demonstrate the routing configurations that match Figures 14.3 (a) and
(b), respectively

The Modulation Matrix 229

input and output arrays, and therefore need their own set of array pointers – these are not shared
resources. To manage this issue, I use one ModMatrix object per voice, which stores pointers
to the voice’s member object modulation array slots. In order to share the GUI parameters for
routing and intensity functions, I use std::shared_ptrs to std::arrays in the ModMatrixParameters
structure, which handles user input from the GUI. These arrays are named “rows” for sources and
“columns” for destinations. There are two std::arrays, one each for the sources and destinations,
holding tiny C++ structures called ModSource and ModDestination; these store the GUI routing
and intensity settings.

The ModSource structure contains a single intensity parameter, while the ModDestination con-
tains its own intensity variable plus the channel and hardwire-enable and intensity parameters.
The ModDestination is special because there may be many routing channels merging into a single
destination. Thus, the ModDestination parameters are stored in arrays of 48 channels, providing
the capacity for up to 48 rows of modulation sources in the matrix; if you require more, simply
change the constant definition for the array size. Notice that the array objects are sized to mod-
SourceRows and modDestinationColumns from the enums in Section 14.2, so, as you add or remove
your own, these sizes will automatically reset.

14.5 ModMatrixParameters

The ModMatrixParameters structure contains only two member variables: the shared pointers to
the source and destination parameter arrays. The GUI controls are parsed into these arrays.

// --- modulation matrix rows and columns
std::shared _ ptr<std::array<ModSource, kNumberModSources>>

modSourceRows;

std::shared _ ptr<std::array<ModDestination, kNumberModDestinations>>
modDestinationColumns;

To facilitate transferring the GUI control information into the structures, several helper functions
are provided that accept the source and destination index values and intensity controls.

void setMM _ SourceIntensity
void setMM _ DestIntensity

void setMM _ ChannelEnable
void setMM _ ChannelIntensity

void setMM _ HardwireEnable
void setMM _ DestHardwireIntensity
void setMM _ DestDefaultValue

A final function allows a single call to set a complete hardwired routing, including source and
destination index values and the hardwired channel intensity.

void setMM _ HardwiredRouting(uint32 _ t source, uint32 _ t destination,
double intensity = 1.0)

230 The Modulation Matrix

14.6 The ModMatrix Object

There will be one ModMatrix object for each voice, and it is simple, containing only three member
variables: a shared pointer to the parameters and source and destination arrays, sized exactly as
needed for holding pointers to the source and destination value locations.

// --- parameters
std::shared _ ptr<ModMatrixParameters> parameters = nullptr;

// --- arrays to hold source/destination pointers
double* modSourceData[kNumberModSources];
double* modDestinationData[kNumberModDestinations];

The ModMatrix object also includes a set of functions for adding and removing sources or desti-
nations, along with functions for populating the arrays with local pointers. The only other method
is for running the modulation matrix that will happen once per render block – after the modulator
components have rendered their values and before the destinations have updated their parameters.
The simple for loop is organized with columns (destinations) as the outer loop since the destina-
tions may have multiple sources. If the channelEnable is not set, the loop continues. This short and
simple function provides all of the modulation routing and calculations.

// --- loop over destinations columns & calculate the accumulated
// modulation value
double modDestinationValue = 0.0;

for (int col = 0; col < kNumberModDestinations; col++)
{

ModDestination destination = parameters->
modDestinationColumns->at(col);

modDestinationValue = destination.defautValue;

for (int row = 0; row < kNumberModSources; row++)
{

if (!modSourceData[row] ||
destination.channelEnable[row] == 0)
continue;

// --- get local modulation value
double modSourceValue = *modSourceData[row];

ModSource source = parameters->modSourceRows->at(row);

// --- scale it
modSourceValue *= source.intensity;

// --- choose intensity

The Modulation Matrix 231

if (destination.channelHardwire[row])
modDestinationValue += modSourceValue *

destination.hardwireIntensity[row];
else

modDestinationValue += destination.intensity *
modSourceValue;

}
// --- write to the output array
if (modDestinationData[col])

*modDestinationData[col] = modDestinationValue;
}

14.7 Initializing the ModMatrix

The SynthVoiceParameters structure declares the shared pointer to the ModMatrixParameters and
uses the make_shared function such that the first SynthVoice that is created will create the shared
structure for the rest of the voices so the GUI controls are handled without a problem.

The SynthVoice uses std::unique_ptrs for its modules as they are never shared across voices. The
ModMatrix is declared in the class definition, then created in the constructor, passing the shared
parameters during ModMatrix construction.

// --- each voice has a modulation matrix
// but rows/columns are shared via matrix parameters
std::unique _ ptr<ModMatrix> modMatrix;

// --- creation
modMatrix.reset(new ModMatrix(parameters->modMatrixParameters));

In order to use the ModMatrix, the SynthVoice object needs to program its member object with
several pieces of information. First, it needs to set up the pointers to each module’s source or desti-
nation array location. To add sources or destinations, you use the helper functions. Setting up the
LFO1 as a source and OSC2’s fo as a destination is simple – the oscillators all use the kBipolarMod
array slot for modulating the f , so you request pointers via getModArrayPtr and provide the index:o

// --- add LFO1 Output Source index and pointer
modMatrix->addModSource(kSourceLFO1 _ Norm,

lfo1->getModulationOutput()->getModArrayPtr(kLFONormalOutput));

// --- add wavetable oscillator fo as destination
modMatrix->addModDestination(kDestOsc1 _ fo,

wtOsc->getModulationInput()->getModArrayPtr(kBipolarMod));

To remove a mod source or destination during runtime, you use the clear methods:

modMatrix->clearModSource(kSourceLFO1 _ Norm);
modMatrix->clearModDestination(kDestOsc1 _ fo);

232 The Modulation Matrix

14.8 Programming the ModMatrix

Each SynthVoice’s mod matrix object is specific to it and only contains the arrays of local pointers.
To program the ModMatrix, you use the ModMatrixParameters, either via GUI control informa-
tion or programmatically from within the voice object.

To set up a hardwired routing from the AmpEG to the DCA’s EG mod input, you write:

parameters->modMatrixParameters->setMM _ HardwiredRouting(
kSourceAmpEG _ Norm, kDestDCA _ EGMod);

All destinations have a default value that is set to 0.0 on creation, but there are some routings that
require a default setting of 1.0 to prevent accidental silence. This is necessary for the AmpEG to
DCA EG mod and is handled with another helper function:

parameters->modMatrixParameters->setMM _ DestDefaultValue(
kDestDCA _ AmpMod, 1.0);

To enable the routing from LFO1 to OSC2’s fo, you write the following; notice that the enable ar-
gument true may come from a GUI control switch.

parameters->modMatrixParameters->setMM _ ChannelEnable(
kSourceLFO1 _ Norm, kDestOsc2 _ fo, true);

To set the channel intensity to 0.707 for this routing, you write the following; as with the channel
enable, the 0.707 value may come from a GUI knob or slider.

parameters->modMatrixParameters->setMM _ ChannelIntensity(
kSourceLFO1 _ Norm, kDestOsc2 _ fo, 0.707);

The source and destination global intensity values are set with the same types of functions:

setMM _ SourceIntensity(kSourceLFO1 _ Norm, 0.456);
setMM _ DestIntensity(kDestOsc2 _ fo, 0.789);

14.9 Mod Matrix Transforms

The SynthLab modulation matrix consists of sources that are both bipolar (LFO and wave se-
quencer) and unipolar (EG). For most modulations, you may freely mix these together. On occasion,
you may need to declare a destination as requiring a unipolar-to-bipolar or bipolar-to-unipolar
transform, as happens with the EG re-triggering modulation in Section 7.7. The MMA DLS specs
also list inversion (multiply by −1), along with the curved transforms as transform possibilities.
When you declare a modulation destination, you may also add an optional transform into the
function arguments.

modMatrix->addModDestination(kDestAmpEGRetrigger,
ampEG->getModulationInput()->getModArrayPtr
(kTriggerMod), kMMTransformUnipolar);

The Modulation Matrix 233

14.10 Running the ModMatrix

The ModMatrix is executed after the modulators have generated their outputs and before the des-
tinations are updated during the SynthVoice::renderVoice operation. For example, in a wavetable
synth voice, you would write this:

// --- render modulators
lfo1->render(samplesToProcess);
lfo2->render(samplesToProcess);

// --- update/render (add more here)
ampEG->render(samplesToProcess);
filterEG->render(samplesToProcess);
auxEG->render(samplesToProcess);

// --- run the mod matrix
modMatrix->runModMatrix();

// --- update and render everything else
wtOsc1->render(samplesToProcess);
wtOsc2->render(samplesToProcess);

// --- etc…

Bibliography

MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 1. https://www.midi.org/specifications-
old/item/dls-level-1-specification, Accessed October 14, 2020

MIDI Manufacturer’s Association. 1999. Downloadable Sounds Level 2. https://www.midi.org/specifications-
old/item/dls-level-2-specification, Accessed October 14, 2020

SynthLab Documentation. 2020. www.willpirkle.com/synthlab-docs, Accessed October 14, 2020

https://www.midi.org
https://www.midi.org
https://www.midi.org
https://www.midi.org
http://www.willpirkle.com

In recent years, there has been a resurgence in dynamic timbral synthesis with waveform cross-
fading. Wolfgang Palm, Sequential Circuits, and Korg have released synths that generate long
evolving sounds, percussive loops, and searing lead patches using fairly simple waveform crossfade
techniques. These include:

1 Wave morphing: crossfading a series of waveforms, one after the other, using an LFO, EG, or
other modulation source that smoothly morphs between them; there are only ever two wave-
forms that are being crossfaded or mixed at a given time

2 Wave sequencing: crossfading a series of waveforms, one after another, based on a sequencer
designed in order to perform a combination of crossfading and holding such that the wave-
form morphing follows a rhythmic sequence or pattern; unlike wave morphing, sequencing
often involves holding the waveforms using rhythmic note durations between crossfades or
allowing for silent gaps that break up the sequence, producing rhythmic patterns without nec-
essarily needing drum sounds

3 Vector synthesis: implements waveform crossfading using a joystick or pre-programmed mix
envelopes; one, two, three, or four waveforms may be mixed at any given time corresponding
to the joystick’s four extremes when an x, y grid is superimposed on the joystick’s motion

Vector mixing is covered in Section 6.4 and requires an X-Y track-pad on the GUI; the original
Sequential Circuits equations are given so you can translate the joystick’s x, y location into a set of
four mix values for performing the four-way crossfading that is central to this synthesis method.
This chapter is about wave morphing and wave sequencing.

15.1 Wave Banks

Before getting into the details, we need to consider the fact that wave morphing will require mul-
tiple data sources, and for simplicity, only wavetables are used for morphing and sequencing. The
SynthEngine already maintains a wavetable database, as discussed in Section 9.2, so we already
have a system for storing and sharing the tables. Wave morphing synths usually employ sets of
waveforms that are designed to work together as a group. In SynthLab, a group of wavetables
that is imported all at once is called a wave bank. The tables are stored in the normal manner and
may be used like any other wavetable, but the importing mechanism only involves one step, and
the morphing wavetable core has access to all of the waveform names in each bank; thus, it has
the unique strings necessary to select the waveforms in succession from the database as it morphs

15 Wave Morphing and Wave Sequencing

Wave Morphing and Wave Sequencing 235

during the render phase. The SynthLabBankSet structure stores pointers to the tables as well as a
list of waveform names for the database. All of this is documented online.

15.2 Wave Morphing

Wave morphing involves crossfading over a series of oscillator waveforms in succession using a
modulation signal that may come from GUI controls or from a modulator component. Wavetable
and PCM samples lend themselves easily to this kind of crossfading, especially when the tables or
files are all the same length; here, I use the term table to represent any tabular data source, includ-
ing PCM samples. Wolfgang Palm’s Infinite® and Korg’s Electribe Wave® are excellent examples,
among many others. Infinite is special because it displays morphing in the frequency domain,
showing the spectra of the waveform slices rather than the time domain representation that is more
common. In addition, Infinite allows you to precisely control the spectral components – for exam-
ple, you may manually cut out every other harmonic or alter the harmonic envelope of each slice.

Wave morphing requires a set of source tables (slices) that are distributed along a morphing
dimension; you need at least two waveforms to morph over, but commercial morphing table col-
lections usually range from four to hundreds of different tables for generating only one note-event.
Figure 15.1 shows several variations, and the double-arrows show the morphing dimension. The
morphing table sets (or banks) may be made of dissimilar waveforms, as in Figure 15.1(a), which
includes a sinusoid, triangle, square, and sawtooth waveform (from back to front), and is named
PrimalWaves in the SynthLab-WT project. Another bank preparation involves starting with a
common waveform and varying one or two parameters of it, taking sample slices at regular in-
tervals, as shown in Figure 15.1(b)’s square wave, whose duty cycle is changed over the course of
the bank’s waveforms. Figure 15.1(c) shows a bank that starts with a complex waveform processed
through filters, waveshapers, and other effects to produce a related set of waveforms.

15.2.1 Wave Morph Modulation

The crossfade modulation that occurs between the fixed waveforms includes a starting point, in-
tensity, and a modulation control signal. The modulation signal that controls the location of the
current morphing point is typically a low frequency modulator, such as an LFO, EG, or MIDI
CC. Figure 15.2(a) shows an LFO morphing back and forth across a range of four waveforms. The
dotted waveforms are the interpolated or in-between combinations of the two fixed waveforms on
either side. With slow modulators, there will be thousands of interpolated waveforms between the
fixed sources. Figure 15.2(b) shows morphing with an EG that is significantly different. The EG

Figure 15.1 Three sets of tables for morphing, including (a) dissimilar waveforms, (b) one waveform whose
parameters are adjusted for each slice, and (c) a complex waveform that has undergone multiple
passes of filtering or other processing

236 Wave Morphing and Wave Sequencing

curve morphs over the waveforms but stops at the sustain morph point and holds that waveform
until the key is released, when the morphing moves backward toward the starting waveform. The
user can typically control the starting morph waveform with a floating-point control value that
allows the starting point to be in between waveforms.

15.3 The MorphWTCore

The wavetable oscillator from Section 9.3 loads wavetable module cores that use the wavetable
database it provides via the engine. The ClassicWTCore is designed to load statically declared
wavetables, which are provided in a set of .h files and use the SynthLabTableSet structure to store
the data. Since SynthLab uses interfaces for the wavetable databank, you are free to use whatever
mechanism you wish for storing and importing by modifying the existing structure or sub-classing
IWavetableDatabase. The MorphWTCore is also a wavetable core and snaps into the SynthLab-WT
project alongside the other cores, though with two differences: it uses the SynthLabBankSet to
import the tables to the database, and it stores interface pointers for two table sources instead of
one, interpolating between them as required. As the morphing index moves along, the two table
sources always point to the waveform pair needed for interpolation. The mechanisms for reading
and interpolating the individual tables do not change, and the auxEG is used as the hardwired
morphing modulator, so everything is already present in the SynthLab architecture to support the
MorphWTCore.

Figure 15.3 shows how the MorphWTCore works as a wavetable oscillator core object, and the
modules’ strings point to wavetable banks, which are really just a pre-set list of wavetables in the
database. The auxEG is hardwired to the kWaveMorphMod array slot, which acts as a unipolar

Figure 15.2 (a) An LFO modulates the wave-morphing index, producing a smoothly interpolated succes-
sion of waveforms back and forth along the range, while (b) the EG also morphs the waveforms
but stops during the sustain portion, holding the current waveform constant prior to release

Wave Morphing and Wave Sequencing 237

morph position modulator. The unique modulation input may be connected to an LFO and ac-
cepts bipolar modulation based around the center point, which is set with the morph start control.

15.4 MorphWTCore Programming Notes

The MorphWTCore is fundamentally the same as the other wavetable cores except for the fact that
it uses two wavetable sources whose tables are blended through constant power morph modulation
(Section 6.2.2). It also initializes the wavetable database using a SynthLabBankSet, which is simply
an array of SynthLabTableSet pointers and a corresponding array of unique wavetable names. The
code for setting up the banks is straightforward and involves two parts: first, the core stores a set
of MorphBankData structures for each set of wavetables that includes the bank name and the table
names. There is one structure for each module string, so for the PrimalWaves bank, the informa-
tion would include that bank name plus an array of table names, DigiSaw, DigiSine, etc. This is the
mechanism that connects the bank name the user selects to the set of tables and allows the core to
find and load those tables to morph between. The second part simply iterates over the wavetables,
querying the database during the reset phase and adding tables as needed, which is just a big loop
over the same code that you saw for the normal wavetable oscillator.

15.4.1 MorphWTCore Construction Phase

The constructor is identical to the other wavetable core constructors except for the fact that it uses
banks of wavetables. The object uses the function addMorphBankData to store the set of unique
wavetable name strings for each bank. The user only sees the bank names, but the oscillator needs
the waveform names to morph across. The BankDescriptors are part of my implementation of the

Figure 15.3 The MorphWTCore snaps into the WTOscillator object and exposes its mod knobs, which are
slightly different and include morph start index and morph mod intensity; notice that the mod-
ule strings point to a bank of wavetables

238 Wave Morphing and Wave Sequencing

SynthLabBankSet, which contains an array of SynthLabTableSets. Remember that you are free to
set up your wavetables as you wish as long as you use the IWavetableDatabase interface on your
wavetable object.

moduleType = WTO _ MODULE;
moduleName = "Morph WT";

// --- this must be done before setting module strings
uint32 _ t count = 0;
addMorphBankData("PrimalWaves", PrimalWaves _ BankDescriptor, count++);
addMorphBankData("DigiDoo1", DigDoo1 _ BankDescriptor, count++);

etc…

The module strings are then set, using the morph bank names that are stored in the previous
operation.

for(uint32 _ t i=0; i<MODULE _ STRINGS; i++)
coreData.moduleStrings[i] = morphBankData[i].bankName.c _ str();

Finally, the mod knobs labels are assigned according to Figure 15.3.

15.4.2 MorphWTCore Reset Phase

The reset function is fundamentally the same as it is for the other wavetable cores, but it queries the
database for banks of wavetables rather than individual tables, using a helper function that loops
through the bank’s waveforms, ensuring each is registered with the database.

// --- query and add all waveforms in each bank
checkAddWaveBank(PrimalWaves _ BankDescriptor, processInfo);
checkAddWaveBank(DigDoo1 _ BankDescriptor, processInfo);
etc…

15.4.3 MorphWTCore Update Phase

After performing the usual pitch modulation calculations from Section 6.8.1, the core needs to use
the morph modulation input value to select a pair of tables to morph between. The morph start
and end index values are used to set up a range that is normalized to the range [0, +1]. Then the
wave morph modulation value (from the auxEG) is applied to select the pair of tables. The frac-
tional distance between the tables is used as the interpolation point.

// --- get the floating point morph position
morphMod = processInfo.modulationInputs->getModValue(kWaveMorphMod);

// --- NOTE -1
morphTables = morphBankData[parameters->wavetableIndex].numTables - 1;

// --- mod knob C is the intensity control

Wave Morphing and Wave Sequencing 239

morphStart = morphTables * parameters->modKnobValue[MOD _ KNOB _ C];

// --- calculate morph location and save for render
morphLocation = morphMod * (morphTables - morphStart);

boundValue(morphLocation, 0.0, (double)morphTables);

uint32 _ t table0 = (uint32 _ t)morphLocation;
uint32 _ t table1 = (uint32 _ t)morphLocation + 1;
if (table1 > morphTables)

table1 = table0;

The two table index values are used to identify the tables via their unique waveform names,
which were stored in the MorphBankData structure during the first step in Section 14.4. The
waveform names for table0 and table1 are found in the structure, then used to select the
wavetables:

bankIndex = parameters->wavetableIndex;
table0str = morphBankData[bankIndex].tableNames[table0].c _ str()
table1str = morphBankData[bankIndex].tableNames[table1].c _ str()

selectedTableSource[0] =
processInfo.wavetableDatabase->getTableSource(table0str);

selectedTableSource[1] =
processInfo.wavetableDatabase->getTableSource(table1str);

With the two tables selected and the fractional morph location stored, all that remains is blend-
ing the two tables during the render phase.

15.4.4 MorphWTCore Render Phase

The render function is identical to the same function in the other wavetable cores, even in its ability
to self hard sync the morphing oscillator. The only difference is in the renderSample helper func-
tion that performs the morph. If the morph location happens to be a pure integer value, then only
one table is used.

double MorphWTCore::renderSample(SynthClock& clock){

double mCounter = clock.mcounter;

// --- integer morph location
if (selectedTableSource[0] == selectedTableSource[1])

return selectedTableSource[0]->readWaveTable(mCounter);

After the table read operations, the morph location is split into integer and fractional parts, and
the fraction is used to interpolate points between the tables. After the output is formed, the clock
is advanced as usual.

240 Wave Morphing and Wave Sequencing

// --- two table reads
double oscOutput0 = selectedTableSource[0]->readWaveTable(mCounter);
double oscOutput1 = selectedTableSource[1]->readWaveTable(mCounter);

// --- split the fractional index into int.frac parts
double intPart = 0.0;
double morphFraction = modf(morphLocation, &intPart);

// --- const power summing:
double mixValueA = 0.0;
double mixValueB = 0.0;

// --- calculate mix values
calculateConstPwrMixValues(morphFraction, mixValueA, mixValueB);

// --- morph
double oscOutput = oscOutput0*mixValueA + oscOutput1*mixValueB;

The self hard sync code is identical to the other wavetable cores since the renderSample function
does all of the work.

15.5 Wave Sequencing 1.0

Korg introduced another type of crossfade modulation called wave sequencing in the Wavesta-
tion® line, which also included vector synthesis. The idea is to set up a sequence of waveforms in
steps that are both crossfaded over some duration and held for another duration according to a
pattern, often rhythmic in nature. Each track in the sequencer is made up of a sequence of steps.
A wave sequence track stores the crossfade and step durations that are applied to morph each suc-
cessive pair of waveforms into and out of one other, as shown in the “Waves” track of Figure 15.4.
The step durations are carried over into other tracks, which adjust pitch and amplitude so these

Figure 15.4 Korg’s wave sequencer from the Wavestation featured the ability to hold and crossfading
waveforms while also modulating each segment’s pitch and amplitude; the waveforms actually
blend together during the crossfades and are shown separated for easier viewing; the ampli-
tudes were not displayed in dB in the Wavestation

Wave Morphing and Wave Sequencing 241

parameters are modulated along with the crossfaded waveforms. A loop system, shown as a loop
track in Figure 15.4, sets the looping points with numerous looping options available, including a
no-loop (one-shot) setting. Finally, it is also possible to create silent (rest) segments, and this is key
to creating complex drum tracks with interesting rhythmic variations using just one wave sequence.

In the original Korg wave sequencing (now called Wave Sequencing 1.0), all of the tracks were
locked together in time and controlled with the loop track so that each step applied the same pitch
and amplitude to the crossfaded waveforms in the same manner: for example, the waveform in
Step Two in Figure 15.4 would always be shifted +7 semitones and always play at unity gain. The
Wavestation took this concept to the extreme: a wave sequence was rendered from one oscillator,
and the Wavestation had four of these oscillators running in parallel, each with its own wave se-
quence and timing patterns, that could be mixed with the four-way vector synthesis modulation
in Section 6.3, creating bass lines, drum tracks, slowly modulating pads, and a searing lead sound
all in one patch.

15.5.1 Wave Sequencing 2.0

Nearly 30 years after the Wavestation’s release, in January 2020, Korg released the Wavestate®,
which was designed and voiced with some of the original Wavestation engineers and sound design-
ers, and uses both wavetables and PCM samples, referring to all of them, simply, as samples. The
Wavestate features what Korg calls “Wave Sequencing 2.0,” which re-thinks the wave sequencer
and its possibilities for generating dense, unique, and even un-repeatable patterns. The synth itself
has deep modulation capabilities, some of which affect the wave sequencing, but its design and
operation are outside the book’s scope. In the Wavestate, the wave sequencer is divided into lanes
made up of steps. There is one timing lane, which sets up the crossfade and segment duration
times; a sample lane that stores the waveform for each step; lanes for modulating parameters that
apply to the waveforms (pitch, amplitude, note/rest); and a step sequencer lane, also for modulat-
ing other parameters in the synth (e.g. filter fc). In addition to the use of the name lanes, some of
the fundamental additions to the 2.0 version also include:

1 The ability for each lane to operate independently with its own looping setup; all segments in
the lanes are still locked to the timing lane’s segment durations, but they may move freely on
their own, loop back and forth, or jump around randomly

2 The steps in each lane, including the timing lane, have their own probability setting which ran-
domly enables or disables them; for a non-timing step, disabling it shuts off the output value
so it is not applied (note that this is different from transmitting a zero value)

3 A disabled timing step is absorbed into the previous step, elongating the segment duration and
crossfade times

4 Each timing step has three operational modes: note (play normally), rest (silence), or gate (hold
this step during the sustain portion of the amp envelope)

Figure 15.5(a) shows how the Wavestate wave sequencer is set up so that each lane has its own
start, end, loop start, and loop ending points, removing the original Wavestation’s step locking.
The non-timing steps are shown in dotted lines because they will inherit the duration from the
timing lane. In addition to amplitude and pitch, there are lanes that include shape (a contour ap-
plied as an amplitude scalar) and segment gating, where you set the amount of time the waveform
plays as a percentage of the timing step’s duration, which itself is powerful: since the lanes are not

242 Wave Morphing and Wave Sequencing

locked together, this step’s on and off times will be applied to whatever waveform happens to be
in the sample lane at the time. This also means that each segments pitch, amplitude, and contour
may vary over time, and with the use of probability settings, the sequencer can generate a non-
repeating stream of melodies, rhythmic patterns, and modulations during a single note-event. Due
to a combination of independent lane looping and probability values, Figure 15.5(b) shows how
steps labeled (1) and (2) might be combined from the various other lanes’ pieces using the timing
step durations and the other lane step values or waveforms. You can also see how a small number
of waveforms and parameters can generate a massive number of combinations when probability
is applied. Now consider this: practically every parameter for each kind of step and lane is modu-
late-able, and the step sequencer can even modulate its wave sequencer’s own parameters. There
are 16 steps in a wave sequence, and the Wavestate implements four separate wave sequencers (A,
B, C, and D) per note-event.

Figure 15.5 (a) The Wavestate’s wave sequencer splits out each lane with its own start, stop, loop start,
and loop end points (b) a possible combination of lanes showing the lane steps marked (1) and
(2); the timing lane is used to synchronize the other lane step durations and crossfade timing

Wave Morphing and Wave Sequencing 243

15.6 SynthLab WaveSequencer

The SynthLab-WS project uses a single wave sequencer that is based on the Wavestate’s multi-lane
system and includes eight steps per lane. You may easily expand this to use more steps or even
add another wave sequencer. For simplicity, there are a few features not included, such as the
wave contour lane and lack of probability on the timing lane, but it is nonetheless a very powerful
sequencer. It includes one step-sequencer lane as with the Wavestate, and you may expand that to
include more lanes and hereby emulate a traditional step sequencer gone wild. Figure 15.6 shows
the wave sequencer’s GUI controls and interface. There are four lanes, with controls correspond-
ing to Figure 15.5’s parameters and the specifications in Section 15.5.1. There are also status lights
(LEDs) to allow the user to see which steps are active in each lane at a given instant. There is a
bank of global controls for each lane that has its own loop start and end points, and a loop mode
control: forward, backwards, or forwards-backwards. All lanes also include a shuffle switch that
randomizes the step sequence on each trip around that lane’s loop points. These combine with the
probability controls to create some very interesting sequences – as with the Wavestate, make sure
that the DAW is in record mode all the time to catch your inventions as they happen.

15.6.1 C++ Implementation: WaveSequencer Overview

The WaveSequencer object acts as a pure modulation source and is run at the same time as the
EGs and LFOs. The SynthVoice implements one WaveSequencer that is created, reset, and updated
along with the other modules. The WaveSequencer writes numerous values into its modulation
output array, which you may access via the modulation matrix. A special wave-sequencing oscilla-
tor (WSOscillator) maintains internal oscillators that are the targets for the wave sequencer modu-
lation values: oscillator amplitude, waveform index, and pitch, along with the crossfading values to
blend the two output waveforms during the morph. Figure 15.7(a) shows the WaveSequencer block
diagram and member objects: Lanes, LaneSteps, and the XHoldFader. The XHoldFader contains
the timers that set the hold and crossfade times, and generates the crossfade gain values. In one

Figure 15.6 S ynthLab’s wave sequencer interface includes individual settings for all steps and a global con-
trol over the lanes

244 Wave Morphing and Wave Sequencing

operational mode, shown in Figure 15.7(b), the XHoldFader performs the holding and crossfading
of two input values, A and B, that may be audio signals or control values. In the second mode, in
Figure 15.7(c), the object outputs the A and B gain values that an external object applies to its own
signals, and it generates both linear and the two crossfade modulation gain values from Section
6.2.2 (linear, square law, and constant power). The WaveSequencer acts as the external object that
applies the hold and crossfade gain values.

The WaveSequencer also provides a visual output of the current steps operating in each lane that
have the ability to connect to your GUI to turn on and off as each step is activated or deactivated,

Figure 15.7 (a) The WaveSequencer and its member objects; (b) the XHoldFader can hold and crossfade
signals or values, and (c) it can output the crossfade gain values in the XFadeData structure and
operate in both modes at once, if needed

Wave Morphing and Wave Sequencing 245

which happens when the crossfade is halfway completed. You access these metering values through
the engine, which provides a set of arrays corresponding to the four lanes of eight steps. You can
use that to illuminate your GUI. The stock version provides status indicators for the first voice
that is running. In poly mode, each note will generate its own new sequence as each new note is
triggered.

15.6.2 C++ Implementation: Setting Step and Crossfade Durations

The step and crossfade durations may be set in milliseconds or with note durations. Using note
durations allows you to easily set up musically interesting patterns. In addition, there is a time
stretch/shrink control that will allow you to speed up or slow down the sequence while maintain-
ing the note duration ratios between steps and crossfades. We already saw one implementation in
the LFO’s BPM Sync mod knob control. To facilitate both the GUI controls and timing calcula-
tions, I’ve included a strongly typed enum and helper functions that will convert note durations to
time in seconds. The NoteDuration enum corresponds to the GUI control you set up for your user,
and you display either duration strings or GUI note graphics that are indexed according to this
enum. The kOff enum corresponds to a step or crossfade duration of zero seconds.

enum class NoteDuration {
k32ndTriplet, k32nd, k16thTriplet, kDot32nd, k16th, k8thTriplet, kDot16th,
k8th, kQuarterTriplet, kDot8th, kQuarter, kHalfTriplet, kDotQuarter,
kHalf, kWholeTriplet, kDotHalf, kWhole, kDotWhole, kOff,
kNumNoteDurations
};

Then, the function getTimeFromTempo will convert the duration into a time value using the
BPM value from your DAW.

getTimeFromTempo(double BPM, NoteDuration duration,
bool returnMilliseconds = false)

15.6.3 C++ Implementation: Holding and Crossfading

To understand the modulation values that the sequencer outputs, first consider how the timing
lane operates from the very start of the note-event. Consider the wave steps and timing sequence in
Figure 15.8(a). At any given time, the sequencer will either be holding the current waveform (A) or
crossfading waveform A into waveform B, as shown in Figure 15.8(b). Once the crossfade is done,
the first timing step is discarded, the next is loaded, wave B moves to the wave A location, and the
series repeats, as shown in Figure 15.8(c) and (d). Each pair of steps goes through the same process:
hold for some duration, then crossfade into the next, or hold-crossfade-hold-crossfade, etc. This
produces two gain values: one for the first (A) step and one for the second (B) step. When holding,
wave A’s gain will always be 1.0, and after the crossfade, it will be 0.0. Then, wave B becomes the
“holding” step. The wave sequencer writes the current wave A, and wave B gain values into its
modulation output array.

The waves themselves are indexed to correspond to the wave sequencing oscillator’s unique
waveform names, and these values are also written to the modulation output array, along with
the amplitude values you set on the GUI. Each oscillator may have a different pitch, and the pitch

246 Wave Morphing and Wave Sequencing

values are also written. Finally, the step sequencer modulation value, which may be stepped or
interpolated, is written to its location. If you want to add more step sequencer modulation lanes,
you will need to add more slots into the modulation output array to handle their values. The enu-
meration for the wave sequencer’s modulation output array is:

enum {
kWSWaveMix _ A,
kWSWaveMix _ B,
kWSWaveIndex _ A,
kWSWaveIndex _ B,
kWSWaveAmpMod _ A,
kWSWaveAmpMod _ B,
kWSPitchMod _ A,
kWSPitchMod _ B,
kWStepSeqMod,
kWSXFadeDone,
kNumWSOutputs

};

Figure 15.8 (a) A set of timing and waves to be sequenced shows the hold-then-crossfade pattern where you
(b) hold wave A and crossfade to B on first step then (c) wave B is labeled as the new wave A and
the next segment is loaded as wave B (d) the hold-then-crossfade process repeats with each new
segment

Wave Morphing and Wave Sequencing 247

You can see one additional output, kWSFadeDone, that is toggled when a new crossfade has
finished. The target wave sequencing oscillator uses this indicator to swap oscillators so that oscil-
lator B becomes oscillator A, then the next step is loaded as the new oscillator B.

15.6.4 C++ Implementation: Lanes and LaneSteps

The wave sequencer is actually relatively simple because it is really a big loop management system.
The best way to understand it is to use the homework problems that will force you to examine the
code and go deeper into the loop timing operations. The timing lane generates the step-timing
information that is used to switch the other lane steps on and off, and they all switch steps at the
same time – but each lane calculates its next step based on its own loop settings and each next
step’s probability value. To create a C++ solution, I made two C++ structures to encapsulate each
component, as shown in Figure 15.9(a), with a Lane structure that maintains an array of LaneStep
structures. The jump table is a circular buffer that contains the indexes of the lane steps for a
given loop. After the first timing loop’s crossfade, the steps are incremented so that the next step
becomes the new current step, and a new next step is selected, as shown in Figure 14.9(b). Without
randomization, the loop start and end points will cycle through the same series of steps, as shown
in Figure 15.9(c), after the loop end point is hit. With randomization, once the loop end point is
crossed, the Lane reshuffles the contents of the jump table, and that changes the sequence of the
steps, as shown in Figure 15.9(d). So, the jump table sequences the lane steps, and the Lane delivers
the current and next lane values to the sequencer.

Table 15.1 lists the C++ structures and objects used to create the WaveSequencer. The LaneStep
holds information about both timing steps (step and crossfade durations) and modulation steps
(pitch, wave, or step sequencer values).

The Lane’s C++ code for setting the loops and maintaining the jump table, current step, and next
step is reasonably simple, and involves creating the equivalent of a shuffle-able linked list. I also
added the ability to create outside loops: if the user sets the loop start point to be lower than the
loop end point, the loop will still operate but on the “outside” of the loop. If the start index is 6, and
the end index is 2, then the outside loop sequence will be: 6, 7, 0, 1, 2, 6, 7, 0, 1, 2, … Each LaneStep
keeps track of a previous step and next step index value; if these values are −1, then the Lane will
use the jump table’s value to set the next step. If the value is non-zero, then that indicates a loop
start or end point. The function updateLoopPoints is called each time the jump table is shuffled

Table 15.1 WaveSequencer C++ objects and structures

Structure/Object Description

LaneStep Stores information about the step: step and crossfade durations (timing steps)
and control values (non-timing steps), and previous and next step indexes; also
includes a random number generator for probability

Lane Stores an array of LaneSteps and a jump table for ordering the steps; also provides
shuffling when randomness is applied

WaveSequencer Stores a set of Lanes, one each for timing, wave, pitch, and step sequencer, and uses
the XHoldFader object to set the step timing and generate the waveform gain
values

248 Wave Morphing and Wave Sequencing

and sets these next-step values to −1 or the next/previous index value; it is used in conjunction with
getNextStepIndex to make the looping work properly. The user also sets a probability variable that
is used each time the Lane advances to the next step. A random percentage value is generated and
compared to the probability percentage value; the step is active if the random percentage value is
less than or equal to the user’s setting. Timing steps do not include probability. When a step is not
used, its value is simply held over from the previous step’s value to keep continuity in the modula-
tion signals (Table 15.2).

15.7 The WSOscillator Object

The wave-sequencing oscillator is called WSOscillator and is a nice example that shows how to
combine multiple modules. Unlike all the other SynthLab projects, SynthLab-WS does not feature
a set of four oscillators that expose their waveforms, pitch controls, and mod knobs. In fact, the os-
cillator is somewhat hidden from the GUI, and there is no standard block diagram or module core

Figure 15.9 (a) A Lane structure maintains an array of LaneStep structures that are sequenced according to
a jump table; the current step/next step pairs are shown in white and grey boxes (b) after the tim-
ing lane’s first crossfade, the current step/next step pair advances according to the loop direction
(to the right in this example) (c) without randomization, the segments will loop in the same order
after the loop end point is hit (d) with randomization, the jump table is shuffled after each loop
restarts which then shuffles the lane steps accordingly

Wave Morphing and Wave Sequencing 249

strings to reveal as in the other oscillators. The WSOscillator contains several underlying WTOs-
cillator objects, each of which exposes up to four module cores that may render 16 waveforms each.
This provides up to 64 waveforms for the user to select, including the morphing wavetable bank
names, in the wave sequencer’s GUI, so there is plenty of variation available.

As you can tell from Figures 15.7 to 15.9, there are two oscillators running at any given time,
one for the A waveform and the other for the B waveform – unlike wave morphing that occurs on
the input to a single oscillator, this morphing occurs on the outputs of two oscillators that may
have different pitches as well as waveforms. However, all of the other SynthLab projects feature

Table 15.2 The WaveSequencer’s SynthModule overrides and descriptions

SynthModule Function Operational Description

Reset Sets current and next step indexes to 0; initializes a sample counter for
generating status (for blinking lights)

Update Updates each Lane with start/end times, step values, and probabilities; for
the timing lane, it calculates the step and crossfade durations in mSec from
the user’s entry in NoteDuration; instructs Lanes to randomize sequences if
user selects that option

doNoteOn Initializes each lane with the first pair of steps, resets the status variables (for
blinking lights), and resets the jump tables on each Lane to start from the
original positions

Render Gets next crossfade values from XHoldFader object and monitors the
crossfade done flag; when finished, it advances each lane’s next step. Writes
the modulation values to its output array and turns the status lights on and
off as each step moves to the next location

doNoteOff Not used

Figure 15.10 The four WSOscillators are used in a round-robin manner starting with (a) the oscillator pair
(0, 1); after the first crossfade is completed, (b) the sequence shifts to oscillator pair (1, 2) then
(c) to pair (2, 3) then (d) wrapping around to pair (3, 0), and so on

250 Wave Morphing and Wave Sequencing

four oscillators, and the modulation matrix is set up with that paradigm. In order to allow you to
modulate the underlying oscillators, the WSOscillator implements four member oscillators as well
but only uses two of them at a time in a round-robin fashion, as shown in the sequence of Figure
15.10(a) through (d). Notice that this is identical to the way in which the waveforms are held and
crossfaded in Figure 15.8; the oscillators switch when the waveforms switch, and this is why the
WaveSequencer outputs an indicator that the crossfade has occurred.

15.7.1 WSOscillator Members

The WSOscillator maintains four WTOscillators as well as four WTOscParameter structures, one
for each oscillator. These parameter structures are used to set the oscillator amplitudes in dB and
the pitch offsets in semitones as the sequencer updates these values on each block processing cycle.
To facilitate the round-robin behavior, an active oscillator array holds the two currently running os-
cillator index values. The WSOscillator member variables and descriptions are listed in Table 15.3.

Table 15.4 lists the WSOscillator’s SynthModule member function overrides and describes how
they operate.

Table 15.3 The WSOscillator members and descriptions

WSOscillator Member Operational Description

waveSeqOsc[4]
waveSeqParams[4]
activeOsc[2]

The four oscillator members
Parameter structures for each oscillator
Array containing the indexes of the two currently active

oscillators
oscMixCoeffs[4] Hold or crossfade gain values for the oscillators; only

two are used at a time
vector<WaveStringData> waveStringFinder Set of structures used to connect the 64 possible

waveforms to their module cores

Table 15.4 The WSOscillator’s SynthModule overrides and descriptions

SynthModule Function Operational Description

Reset Sets current and next step indexes to 0; initializes a sample counter for
generating status (for blinking lights)

Update Updates each Lane with start/end times, step values, and probabilities; for the
timing lane, it calculates the step and crossfade durations in mSec from the
user’s entry in NoteDuration; instructs Lanes to randomize sequences if user
selects that option

doNoteOn Initializes each lane with the first pair of steps, resets the status variables (for
blinking lights), and resets the jump tables on each Lane to start from the
original positions

Render Gets next crossfade values from XHoldFader object and monitors the crossfade
done flag; when finished, it advances each lane’s next step. Writes the
modulation values to its output array and turns the status lights on and off as
each step moves to the next location

doNoteOff Not used

Wave Morphing and Wave Sequencing 251

15.8 WSOscillator Programming Notes

Like the FMOperator, the WSOscillator maintains a set of modules and orchestrates their use.
This is a great object to study as it shows how one module can create and control numerous mem-
ber modules. The only sticky detail here is how the waveform list is populated. All SynthModules
include two built-in functions for populating the dynamic lists. The getModuleStrings function
returns the module strings for a given core, and the function getAllModuleStrings loops through
all four cores and compiles a std::vector of all the strings. Your plugin framework calls the function
getAllModuleStrings in order to populate the wave sequencer’s waveform lists. The WSOscillator
includes a function that performs the same looping as getAllModuleStrings in order to populate its
own vector of WaveStringData structures, which include the module core index and corresponding
waveform index that maps to each of the 64 waveform strings that the user chooses. The WSOs-
cillator can then easily find the core and waveform index for each wave step. You can find the code
for this in WSOscillator::makeWaveStringMap.

15.8.1 WSOscillator Construction Phase

The wave-sequencing oscillator creates its member oscillators, along with corresponding param-
eter structures, in the constructor to control each object. The morphing wavetable cores use mod
knob D to control the morph intensity, and we want to hard code that to 1.0 or full intensity as the
default value. The code for setting up the parameter structures and instantiating the oscillators is
below – notice how each oscillator has its own parameter structure.

for (uint32 _ t i = 0; i < NUM _ WS _ OSCILLATORS; i++)
{

waveSeqParams[i].reset(new(WTOscParameters));
waveSeqParams[i]->modKnobValue[0] = 0.5;
waveSeqParams[i]->modKnobValue[1] = 0.0;
waveSeqParams[i]->modKnobValue[2] = 0.0;
waveSeqParams[i]->modKnobValue[3] = 1.0; // morph intensity

}

// --- four wavetable oscillators
waveSeqOsc[0].reset(new WTOscillator(_ midiInputData, waveSeqParams[0],

_ waveTableDatabase, blockSize));
waveSeqOsc[1].reset(new WTOscillator(_ midiInputData, waveSeqParams[1],

_ waveTableDatabase, blockSize));
waveSeqOsc[2].reset(new WTOscillator(_ midiInputData, waveSeqParams[2],

_ waveTableDatabase, blockSize));
waveSeqOsc[3].reset(new WTOscillator(_ midiInputData, waveSeqParams[3],

_ waveTableDatabase, blockSize));

15.8.2 WSOscillator Reset Phase

The reset phase involves creating the waveform map; initializing the member variables; and, most im-
portantly, forwarding the reset function call to the member oscillators. Notice how the activeOsc array
is initialized with (0, 1) – these are the first two oscillators that will be used in the round-robin loop.

252 Wave Morphing and Wave Sequencing

// --- create string map
makeWaveStringMap();
for (uint32 _ t i = 0; i < NUM _ WS _ OSCILLATORS; i++)
{

oscMixCoeff[i] = 0.0;
waveSeqOsc[i]->reset(_ sampleRate);

}

// --- initial pair of oscillators
activeOsc[0] = 0;
activeOsc[1] = 1;

15.8.3 WSOscillator Note-On & Note-Off Phases

The doNoteOn function cycles through each core of the four member oscillators and simply for-
wards the doNoteOn function call to each, synchronizing all cores at once. Note the Boolean flag
that is set at the end of the function, which will initialize the round-robin sequence. There is noth-
ing to do for the note-off phase, so that function is empty.

for (uint32 _ t core = 0; core < NUM _ MODULE _ CORES; core++)
{

for (uint32 _ t i = 0; i < NUM _ WS _ OSCILLATORS; i++)
{

waveSeqOsc[i]->selectModuleCore(core);
waveSeqOsc[i]->doNoteOn(noteEvent);

}
}

initRoundRobin = true;

15.8.4 WSOscillator Update Phase

The oscillator includes two helper functions, called setNewOscWaveA and setNewOscWaveB, that
greatly simplify the update function. The setNewOscWaveA function demonstrates how the waveS-
tringFinder is used to load the correct oscillator core and set the waveform index it will use during
its own update handler. The wave sequencer’s modulation outputs have been hard-wired to the
WSOscillator’s modulation inputs during the voice construction. The code for connecting the wave
mix A value is shown below.

modMatrix->addModSource(kSourceWSWaveMix _ A,
waveSequencer->getModulationOutput()->getModArrayPtr(kWSWaveMix _ A));

modMatrix->addModDestination(kDestOsc1 _ WSWaveMix _ A,
wsOsc1->getModulationInput()->getModArrayPtr(kWaveSeqWave _ AGainMod));

parameters->modMatrixParameters->setMM _ HardwiredRouting(
kSourceWSWaveMix _ A, kDestOsc1 _ WSWaveMix _ A);

Wave Morphing and Wave Sequencing 253

The setNewOscWaveA function fetches the sequencer’s pitch and amplitude values for waveform
A and uses the parameter structure to set the information in the oscillator. The setNewOscWaveB
function uses the wave B index, pitch, and amplitudes, and calls the doNoteOn handler on the new
oscillator in case the user selected a one-shot drum or sound effect for that step.

void setNewOscWaveA(uint32 _ t oscIndex, uint32 _ t waveAIndex,
double oscAMixCoeff)

{
// --- choose oscillator core
waveSeqOsc[oscIndex]->selectModuleCore

(waveStringFinder[waveAIndex].coreIndex);

// --- then set the oscillator waveform index
waveSeqParams[oscIndex]->wavetableIndex =

waveStringFinder[waveAIndex].coreWaveIndex;

// --- next set the pitch and amplitude from the sequencer
waveSeqParams[oscIndex]->oscSpecificDetune =

getModulationInput()->getModValue(kWaveSeqPitch _ AMod);

waveSeqParams[oscIndex]->outputAmplitude _ dB =
getModulationInput()->getModValue(kWaveSeqAmp _ AMod);

//--- store the mix coefficient for render
oscMixCoeff[oscIndex] = oscAMixCoeff;

}

The update function starts by fetching the waveform index and hold/crossfade mix values from its
modulation input:

wave _ AIndex = getModulationInput()->getModValue
(kWaveSeqWaveIndex _ AMod);

wave _ BIndex = getModulationInput()->getModValue
(kWaveSeqWaveIndex _ BMod);

oscAMixCoeff = getModulationInput()->getModValue
(kWaveSeqWave _ AGainMod);

oscBMixCoeff = getModulationInput()->getModValue
(kWaveSeqWave _ BGainMod);

If this is the very first update, the two oscillators are set up with the helper function, and then the
update function is done.

if (initRoundRobin)
{

setNewOscWaveA(activeOsc[0], wave _ AIndex, oscAMixCoeff);
setNewOscWaveB(activeOsc[1], wave _ BIndex, oscBMixCoeff);

254 Wave Morphing and Wave Sequencing

initRoundRobin = false;
return true;

}

All subsequent update function calls will then perform two steps. First, wait for the crossfade-done sig-
nal from the sequencer; if the crossfade is done, the activeOsc array is incremented and wrapped to im-
plement the round-robin behavior. Then, the helper functions are used to set the new oscillator data.

xfadeDone = getModulationInput()->getModValue(kWaveSeqXFadeDoneMod) ==
0 ? false : true;

if (xfadeDone)
{

// --- rotate to next pair of oscillators
if (++activeOsc[0] >= NUM _ WS _ OSCILLATORS) activeOsc[0] = 0;
if (++activeOsc[1] >= NUM _ WS _ OSCILLATORS) activeOsc[1] = 0;

// --- set wave index and mix coeff
setNewOscWaveA(activeOsc[0], wave _ AIndex, oscAMixCoeff);
setNewOscWaveB(activeOsc[1], wave _ BIndex, oscBMixCoeff);
return true;

}

Finally, if we are in the middle of a hold or crossfade operation, just set the updated pitch and
amplitude information using the oscillator parameter structures.

// --- just forward the settings: OSC 0
waveSeqParams[activeOsc[0]]->oscSpecificDetune =

getModulationInput()->getModValue(kWaveSeqPitch _ AMod);

waveSeqParams[activeOsc[0]]->outputAmplitude _ dB =
getModulationInput()->getModValue(kWaveSeqAmp _ AMod);

oscMixCoeff[activeOsc[0]] = oscAMixCoeff;

// --- just forward the settings: OSC 1
waveSeqParams[activeOsc[1]]->oscSpecificDetune =

getModulationInput()->getModValue(kWaveSeqPitch _ BMod);

waveSeqParams[activeOsc[1]]->outputAmplitude _ dB =
getModulationInput()->getModValue(kWaveSeqAmp _ BMod);

oscMixCoeff[activeOsc[1]] = oscBMixCoeff;

15.8.5 WSOscillator Render Phase

The rendering operation is very simple – after updating, call the render method on the two active
oscillators, then mix their audio output arrays into the WSOscillator’s output array.

Wave Morphing and Wave Sequencing 255

// --- update parameters for this block
update();

// --- render each osc
waveSeqOsc[activeOsc[0]]->render(samplesToProcess);
waveSeqOsc[activeOsc[1]]->render(samplesToProcess);

// --- mix output buffers into our buffer
getAudioBuffers()->flushBuffers();

// --- add osc 0
mixOscBuffers(waveSeqOsc[activeOsc[0]]->getAudioBuffers(),

samplesToProcess, oscMixCoeff[activeOsc[0]]);

// --- mix osc 1
mixOscBuffers(waveSeqOsc[activeOsc[1]]->getAudioBuffers(),

samplesToProcess, oscMixCoeff[activeOsc[1]]);

15.9 Exercises

15.9.1 Wave Sequencing

First, download the Korg Wavestate user manual from www.willpirkle.com\Downloads\wavestate.
pdf. There are several features missing from my WaveSequencer object, and you should try im-
plementing them yourself. This will force you to go deeper into the WaveSequencer code and
understand its looping operations as well as manipulate the four round-robin oscillators in the
WSOscillator object.

15.9.2 Crossfade Selection

The crossfades in my sequencer object are always set to constant power for crossfading wave-
forms and linear for crossfading the step sequencer’s values. Allow the user to choose the
type of crossfade they want for the waveform and the step sequencer, and alter the code to
apply it. HINT: the XHoldFader object outputs the gain values for all three options at once
(Figure 15.7(c)).

15.9.3 Fade-In and Fade-Out control

The Wavestate allows the user to manipulate both the fade-in and fade-out curvature independently
for the waveform crossfade. Modify the sequencer and XHoldFader to allow for the manipulation
of both fade-in and fade-out curvature using the two GUI control knobs that set the curvature val-
ues. Use the Wavestate manual as your guide. HINT: One easy way to provide a curvature control
is to simply combine the XHoldFader’s linear gain coefficients with the square law coefficients in a
ratio that corresponds to the user’s curvature control setting.

http://www.willpirkle.com\Downloads\wavestate.pdf
http://www.willpirkle.com\Downloads\wavestate.pdf

256 Wave Morphing and Wave Sequencing

15.9.4 Timing Probability

My WaveSequencer does not include a probability control for the timing steps. Use the Wavestate
manual to understand how this probability value works – when probability causes a timing step to
be skipped, its step duration is combined into the previous step, and the crossfade point is moved
out accordingly. Implementing this probability will then generate numerous different sequences
that are locked to the DAW BPM but will vary in step durations.

15.9.5 Timing Swing

Use the Wavestate manual to see how Korg implements timing swing by delaying the onset of every
other step in the sequence, and add a swing control to the other sequencer global GUI components.

Bibliography

Korg.com. 2014 “Electribe Wave Owner’s Manual.” https://www.korg.com/us/support/download/
product/0/797/#manual, Accessed October 14, 2020

Korg.com. 2016. “iWavestation Wave Owner’s Manual.” https://www.korg.com/us/support/download/
manual/0/739/3510/, Accessed October 14, 2020

Korg.com. 2019. “Wavestate Owner’s Manual.” https://www.korg.com/us/support/download/product/0/840/,
Accessed October 14, 2020

http://Korg.com
https://www.korg.com
https://www.korg.com
http://Korg.com
https://www.korg.com
https://www.korg.com
http://Korg.com
https://www.korg.com

The SynthLab engine and voice architectures are fundamentally identical across all of the pro-
jects, as shown in Figure 16.1. The projects’ quad oscillator banks are different, but everything
else remains the same. The wave sequencing SynthLab-WS includes the additional WaveSequencer
object, but it also uses four oscillators in its implementation.

Table 16.1 lists the projects and the type of oscillators that are used for the quad oscillator core.

16.1 SynthLab Modulation Matrix

All SynthLab projects use the same modulation matrix, except the wave sequencing synth, which
adds an additional modulation source row, as shown in Figure 16.2. The sources on the left col-
umn are the main synth modulators, and you can add many more rows if you like since the LFOs
and EGs have multiple outputs. The destinations across the top are common to many synth
designs. Notice how I save space by having two destinations that apply to OSC1, OSC2, and
OSC3 simultaneously. If you make oscillator #4 a sub-oscillator, playing an octave down, you
may not want to apply the same modulation or intensity so that oscillator has its own destination
columns.

Notice the two destination columns for “OSC mod” – this is a catchall for each oscillator’s abil-
ity to provide a special modulation that works with its algorithm. Table 16.2 lists the oscillators
and their special modulation destinations.

16.1.1 Modulation Matrix Programming

Mod matrix programming is covered in Chapter 14. Make sure you examine the SynthVoice con-
structors for each project to see the mod matrix programming operations. If you are using multiple
cores, notice how the voice object enables and disables the mod matrix routings as different cores
are loaded. Here is the code for selecting a new wavetable oscillator #1 core; notice how the old
modulation destinations are removed, and the new destinations are added. This does not require
any dynamic memory allocations.

wtOsc1->selectModuleCore(index);

// --- reset mod matrix pointers to new core modulation arrays
modMatrix->clearModDestination(kDestOsc1 _ fo);

16 The SynthLab Synth Projects

258 The SynthLab Synth Projects

Figure 16.1 S ynthLab voice architecture; the quad oscillator bank is different for each project, and the
WaveSequencer is only in SynthLab-WS

Table 16.1 SynthLab projects and oscillators

SynthLab Project Oscillators Notes

Wavetable (WT) WTOscillator May freely mix normal, one-shot, sound
effect, and morphing wavetables

Virtual analog (VA) VAOscillator Oscillators based on the Oberheim SEM®
that output both square and saw in a user-
controlled ratio

Sample based (PCM) PCMOscillator PCM samples stored in .wav files
Physical model (KS) KSOscillator Oscillators can be augmented with additional

resonators (e.g. 12-string emulation)
Chowning FM (DX) FMOperator The four FM operators require significantly

more GUI controls due to their built-in DX
EGs

Wave-sequencing
(WS)

WSOscillator that aggregates four
WTOscillators and is modulated
with a WaveSequencer

May freely mix normal, one-shot, sound
effect, and morphing wavetables while wave
sequencing at the same time

The SynthLab Synth Projects 259

modMatrix->clearModDestination(kDestOsc1 _ Mod);
modMatrix->clearModDestination(kDestOsc1 _ Morph);

modMatrix->addModDestination(kDestOsc1 _ fo,
wtOsc1->getModulationInput()->getModArrayPtr(kBipolarMod));

modMatrix->addModDestination(kDestOsc1 _ Mod,
wtOsc1->getModulationInput()->getModArrayPtr(kUniqueMod));

modMatrix->addModDestination(kDestOsc1 _ Morph,
wtOsc1->getModulationInput()->getModArrayPtr(kWaveMorphMod));

16.2 SynthLab Render Phase: Modulators

All SynthLab projects have the same initial code for the voice render method, which first renders
the modulator outputs, then runs the modulation matrix. SynthLab-WS runs its wave sequencer
object along with the other modulators and prior to the modulation matrix. To facilitate oscillator

Table 16.2 S ynthLab oscillators and their special modulation destinations

Oscillator C++ Object Special Modulation

Wavetable ClassicWTCore Oscillator shape
Morphing wavetable MorphWTCore Morphing index (added to other

modulation sources)
Virtual analog VAOCore Square wave duty cycle
Sample based All PCMCores Pan modulation (per oscillator)
Plucked string model KSOCore Pluck position

Figure 16.2 T he SynthLab modulation matrix uses a pin-programmer style interface and source and desti-
nation intensity controls

260 The SynthLab Synth Projects

mixing, the voice has its own sub-mix buffers that it uses to accumulate each oscillator’s output
buffer. This buffer must be cleared so that the first accumulation mixes with the cleared (0.0)
values.

bool SynthVoice::render(SynthProcessInfo& synthProcessInfo)

uint32 _ t samplesToProcess = synthProcessInfo.getSamplesInBlock();

// --- clear for accumulation
mixBuffers->flushBuffers();

// --- update/render (add more here)
lfo1->render(samplesToProcess);
lfo2->render(samplesToProcess);

ampEG->render(samplesToProcess);
filterEG->render(samplesToProcess);
auxEG->render(samplesToProcess);

// --- sequencer generates modulation values
waveSequencer->render(samplesToProcess); // <- SynthLab-WS only!!

// --- do all mods
modMatrix->runModMatrix();

16.3 SynthLab Render Phase: Quad Oscillator Mixing

All synths except SynthLab-WS blend four oscillators together to render the synthesized audio
signal. SynthLab-WS only uses a single WSOscillator, but that oscillator blends the outputs of two
of its four internal oscillators in round-robin format, as detailed in Section 15.7. After the modu-
lation matrix renders its values, the four oscillators are rendered and accumulated in series; the
accumulation function accepts a scalar mixing-coefficient that prevents overflow and is set to 0.25
here since we have four oscillators.

wtOsc1->render(samplesToProcess);
accumulateToMixBuffer(wtOsc1->getAudioBuffers(), samplesToProcess,

0.25);

wtOsc2->render(samplesToProcess);
accumulateToMixBuffer(wtOsc2->getAudioBuffers(), samplesToProcess,

0.25);

wtOsc3->render(samplesToProcess);
accumulateToMixBuffer(wtOsc3->getAudioBuffers(), samplesToProcess,

0.25);

The SynthLab Synth Projects 261

wtOsc4->render(samplesToProcess);
accumulateToMixBuffer(wtOsc4->getAudioBuffers(), samplesToProcess,

0.25);

SynthLab-WS uses only a single oscillator, and to simplify the filtering code that follows, it accu-
mulates into the same mix buffer but with a mixing coefficient of 1.0.

// --- wave sequencer
wsOsc1->render(samplesToProcess);
accumulateToMixBuffer(wsOsc1->getAudioBuffers(), samplesToProcess,

1.0);

16.4 SynthLab Render Phase: Filtering

All synths include a pair of SynthFilter objects that may be run in series or parallel. A GUI con-
trolled parameter switches between modes. This code takes advantage of the audio buffer mixing
functions in synthfunctions.h to perform the series/parallel operation. The first step is to copy the
oscillator mix buffers into either filter1 (series) or both filters (parallel):

// --- setup filtering
if (parameters->filterModeIndex == enumToInt(FilterMode::kSeries))
{

// --- to Filter1
copyBufferToInput(mixBuffers, filter1->getAudioBuffers(),

STEREO _ TO _ STEREO, samplesToProcess);
}
else
{

// --- to Filter1
copyBufferToInput(mixBuffers, filter1->getAudioBuffers(),

STEREO _ TO _ STEREO, samplesToProcess);

// --- to Filter2
copyBufferToInput(mixBuffers, filter2->getAudioBuffers(),

STEREO _ TO _ STEREO, samplesToProcess);
}

Next, the filters are rendered in series, where filter1’s rendered output buffer is copied to filter2’s
input and then rendered, or parallel, where both filters are rendered and outputs are accumulated
in the mix buffer. In both cases, the last step is to copy the buffers to the output DCA.

if (parameters->filterModeIndex == enumToInt(FilterMode::kSeries))
{

// --- update and render
filter1->render(samplesToProcess);

// --- to Filter2
copyOutputToInput(filter1->getAudioBuffers(),

262 The SynthLab Synth Projects

filter2->getAudioBuffers(),
STEREO _ TO _ STEREO, samplesToProcess);

// --- update and render
filter2->render(samplesToProcess);

// --- to DCA
copyOutputToInput(filter2->getAudioBuffers(),

dca->getAudioBuffers(),
STEREO _ TO _ STEREO, samplesToProcess);

}
else
{

// --- flush
mixBuffers->flushBuffers();

// --- render and accumulate
filter1->render(samplesToProcess);
accumulateToMixBuffer(filter1->getAudioBuffers(),

samplesToProcess, 0.5);

// --- update and render
filter2->render(samplesToProcess);
accumulateToMixBuffer(filter2->getAudioBuffers(),

samplesToProcess, 0.5);

// --- to DCA
copyBufferToInput(mixBuffers, dca->getAudioBuffers(),

STEREO _ TO _ STEREO, samplesToProcess);
}

The DCA processes the audio and provides gain and panning, and the final mix is copied into the
SynthProcessInfo structure that the engine provided during the render function call. After that, the
small piece of logic is run to see if the ampEG has expired and the note-event has ended. This is
part of the note-lifecycle and voice-stealing operation.

// --- update and render
dca->render(samplesToProcess);

// --- to mains
copyOutputToOutput(dca->getAudioBuffers(), synthProcessInfo,

STEREO _ TO _ STEREO, samplesToProcess);

16.5 SynthLab Render Phase: Global Volume and Delay FX

The engine code is identical across all SynthLab projects and discussed in detail in Chapter 2.
After rendering the active voices, the engine’s last step is to mix them and apply the delay FX and

The SynthLab Synth Projects 263

final global volume control. This code also shows how the wave sequencer status meter values are
parsed for the first voice only (otherwise, metering would be very confusing for the user).

// --- blend active voices
if (synthVoices[i]->isVoiceActive())
{

// --- render and accumulate
synthVoices[i]->render(voiceProcessInfo);
accumulateVoice(synthProcessInfo, gainFactor);

// --- only show first voice , WS only
if (i == 0)

parameters->wsStatusMeters =
parameters->voiceParameters->
waveSequencerParameters->statusMeters;

}

The ping-pong delay FX is also derived from SynthModule, so it behaves the same as the other
processor objects that process an input to an output (DCA and filters). The algorithm is straight
out of my FX plugin book. The engine owns the std::unique_ptr to the ping-pong delay and treats
it the same way the voice treats the filters using the input and output audio buffers that all Synth-
Modules expose. The global volume control is the last part of the engine processing and is done
with another helper function that simply iterates through the output buffer and applies the scaling
(volume control) factor.

if (parameters->enableDelayFX)
{

// --- copy synth output to delay input
copySynthOutputToAudioBufferInput(synthProcessInfo,

pingPongDelay->getAudioBuffers(),
STEREO _ TO _ STEREO, samplesToProcess);

// --- run the delay
pingPongDelay->render(samplesToProcess);

// --- copy to output
copyAudioBufferOutputToSynthOutput(

pingPongDelay->getAudioBuffers(),
synthProcessInfo, STEREO _ TO _ STEREO,
samplesToProcess);

}

// --- add master volume
applyGlobalVolume(synthProcessInfo);

16.6 SynthLab-DX: the FM Synthesizer

Yamaha produced and marketed the first commercially available FM synthesizer, the DX-7, in
1983, based off of John Chowning’s seminal paper The Synthesis of Complex Audio Spectra by

264 The SynthLab Synth Projects

Means of Frequency Modulation, published a decade prior. The DX-7 became the second-best-
selling synthesizer of all time at about 160,000 units sold (not far behind the Korg M1 at about
250,000 units). Yamaha spun off the product into multiple DX synths, all marketed as FM synths.
The manuals refer to this method as “digital FM tone generation.” However, neither the DX-7
nor any of the DX variants were FM synths; instead, they were all Phase Modulation (PM) syn-
thesizers. PM is virtually identical to frequency modulation so that much of the theory is inter-
changeable. FM and PM synthesis require accurate sinusoidal oscillators that can run forwards or
backwards; all SynthLab oscillators except the Karplus-Strong variant have this capability. FM
(and PM) synthesis are capable of producing a vast range of timbres, from searing, paint-peeling
lead sounds to muted piano sounds to the most convincing bell and gong sounds you will probably
ever synthesize without using samples.

16.6.1 FM and PM Basics

Both frequency and phase modulation theory are very well documented, and the mathematical
concepts were around long before Chowning’s 1973 paper. FM and PM synthesis generate dy-
namic and interesting waveforms using just two sinusoidal oscillators: the modulator and the
carrier. In FM, the modulator waveform varies the carrier oscillator’s instantaneous frequency
by adding and subtracting its own frequency, as shown in Figure 16.3(a). In PM, the modulator
waveform varies the carrier oscillator’s instantaneous phase by adding and subtracting a phase
offset (j) in Figure 16.3(b), which, in turn, varies the frequency. You can see that the resulting time
domain audio signals look very similar but phase-shifted from one another. Taking the magnitude
FFT produces the frequency spectrum, and in both cases, that spectrum consists of the carrier
frequency plus and minus multiples of the modulator frequency: fc + fm, fc − fm, fc + 2fm, fc − 2fm,
and so on. These additional spectral components are called the sideband frequencies or sidebands.
From Figure 16.3, you can see three important features about the sidebands:

1 The sidebands may be negative frequencies
2 The amplitudes of the sidebands don’t appear to follow a pattern other than being symmetri-

cal across the carrier frequency
3 A sideband component may occur at 0 Hz or DC

When the sidebands are negative frequencies, they reflect across the 0 Hz axis, flip in phase, and
add back into the positive frequency domain’s components. The reflected frequencies may line
up with existing spectral components, in which case they may add or subtract from them, or they
may land in-between existing frequencies. The amplitudes of the sideband harmonics, which may
first appear to modulate randomly, actually follow a set of mathematical equations called Bessel
functions; they produce a specific kind of undulation (up-down motion), but predicting how they
will move and sound is difficult without copious experience in playing and listening to the results.

For synth implementation, the most important of the three features is that PM does not produce
sidebands at DC or 0 Hz. Another issue is that for FM, the carrier oscillator needs to know the
frequency of the modulator so that it may add and subtract this value to modulate the oscillation
frequency; this is not required for PM, which simply offsets the current phaseInc value of the synth
clock by adding or subtracting some amount. The DC offset problem is a deal-breaker for FM as
a synthesis technique. For a single modulator-carrier pair, the DC offset may cause the output
signal to move outside the bounds of [−1, +1], which creates distortion and will add a DC offset to
the audio signal. More importantly, when cascading multiple modulator-carrier pairs, a DC offset

The SynthLab Synth Projects 265

at the output of the first pair will produce a constant detuning offset on the second pair that will
cause the note to play sharp or flat – and that is unacceptable.

16.6.2 Index of Modulation

When we use pitch modulation with an LFO modulating the oscillator frequency in semitones,
we usually include a modulation depth control – either the LFO output control, the modulation
matrix intensity control, or a combination of both. You can do the same thing with FM or PM
and increase or decrease this modulation “strength” to likewise affect the amount of the resulting
FM or PM. Here, the depth of modulation is called the “index of modulation” (I), and this control
has a profound effect on the amount of sideband harmonics that are generated. Figure 16.4(a)
shows how a modulator-carrier pair is connected for FM or PM synthesis. The carrier oscillator’s
frequency is the MIDI note pitch. The modulator’s frequency is some ratio of that and set with a
GUI “ratio” control. The modulator output is adjusted with a modulation index control, and as the
index increases, so do the harmonics. In Figure 16.4(b), the modulation index control is replaced
with an envelope generator that dynamically changes the index value as the note-event progresses,
which, in turn, alters the harmonics in a dynamic manner that resembles a strange filter that adds
or removes sideband harmonics as the index changes, producing interesting timbral shifts in the
output. Notice how the amplitudes of the individual sideband components undulate up and down
as the index changes. In this case, the maximum index value is 4.0; this is called the IMAX value.

16.6.3 FM Operators

“FM operator” is the name Chowning gives to the combination of a sinusoidal oscillator and
an output amplitude EG, and he has a specific way of diagramming various operator combi-
nations called algorithms. Figure 16.5(a) shows the FM operator and the square symbol, while
Figure 16.5(b) shows how two operators are connected as modulator (operator 2) and carrier (op-
erator 1). Chowning’s algorithms allow the last modulator in a series connection to modulate itself.

Figure 16.3 (a) FM and (b) PM time and frequency domain output signals; the spectral amplitudes shown
are for visual reference; the actual amplitudes follow Bessel functions and are more complex

266 The SynthLab Synth Projects

SynthLab’s FMOperator object consists of a sinusoidal wavetable oscillator paired with a DX-EG.
To create the patches, you connect the audio outputs and phase modulation inputs according to
the algorithm diagram.

Figure 16.4 (a) A modulation index control modifies the output spectrum; (b) replacing the control with an
EG allows the spectrum to morph as the note-event progresses

Figure 16.5 (a) An FM operator consists of a sinusoidal oscillator and EG that adjusts its output ampli-
tude along with Chowning’s FM operator notation (b) a two-operator patch that includes self-
modulation; notice that Operator 1’s output EG acts as the amp EG since it is the very last in the
chain and Chowning’s notation that indicates self-modulation

The SynthLab Synth Projects 267

16.6.4 DX Algorithms

Yamaha produced several DX variants with different numbers of operators. The DX-7 imple-
mented six FM operators arranged in 32 different combinations, while the smaller DX-100 fea-
tured four operators in eight combinations. Since all SynthLab synths use quad-oscillator blocks,
the DX style synth will likewise use four FM operators that implement the DX-100 algorithms,
shown in Figure 16.6, that are simple series and parallel connections of various combinations.
The three algorithms on the bottom row use parallel summing and can sound mellow and soft. The
series algorithms on the first row tend to produce harsher sounds (be careful – you can peel
the paint off your walls with some of them). The eight algorithms do not have specific names, so
the user must select them from a text or graphic GUI control.

16.7 FM/PM Rules

So far, we’ve only discussed the effect of the index of modulation on the FM and PM spectra. As
the index increases, so does the sideband spectral density. The ratio of the carrier and that of the
modulator play an equally important role in the timbre of the sound. Programming a DX-style
synth is challenging because the spectral components follow the complicated Bessel functions as
they undulate with changes in the modulation index. There are a few rules that will help you un-
derstand how the algorithms affect what you hear. These are the FM/PM rules of thumb and are
based on the ratio of the carrier to modulator. You first need to fashion the fc/fm ratio, as shown in
Equation (16.1), where N1 and N2 are integers with no common divisors.

fc N= 1

fm N2
 (16.1)

Figure 16.6 The eight DX-100 FM algorithms

268 The SynthLab Synth Projects

16.7.1 Fundamental Frequency

The fundamental frequency of the resulting patch is:

f f
f c m
o = =

N1 2N (16.2)

Depending on the N1/N2 ratio, the pitch of the resulting note may be fc or fm, or neither.

16.7.2 Spectral Purity

The value of N2 affects the purity of the spectrum – whether it has gaps.

2

N2 = 1 spectrum contains all harmonic multiples

N2 ≥ 2 spectrum is missing every th harmonicN (16.3)

16.7.3 Reflected Frequencies

The value of N2 also governs the way in which negative frequency components are reflected across
the 0 Hz axis.

N N2 2= =1 or 2 all reflected harmonics line up perfectly with (+) harmonics

N2 > 2 none of the reflected harmonics line up with any of the (+) harmonics
 (16.4)

16.7.4 Inharmonicity

As inharmonicity increases, it becomes more difficult to locate the fundamental frequency or pitch
as the sidebands deviate from whole number integer relationships. High inharmonicity is used to
produce bell, gong and struck-metal or wood sounds. The N1/N2 ratio predicts the inharmonicity.

N1 ≥ 5 ifo s low in amplitude, difficult to locate pitch
N2

N N1 2, i≠ ntegers fo does not exist, pure inharmonicity
 (16.5)

16.8 FM Operator

The FMOperator object is a specialized combination of a sinusoidal wavetable oscillator and an
envelope generator that applies its envelope as an output scaling factor, as shown in Figure 16.7(a).
The wavetable oscillator uses a single sinusoidal table for all operations. The update phase only
applies pitch modulation and nothing else – no self hard sync or shape modulation. There are
no waveforms to select because we only use the sinusoid for traditional FM synthesis, but the
 module-core paradigm is still used so that you can design and test your own variations, which
might use different waveforms or EGs. The object is designed and used like an augmented sinusoi-
dal wavetable oscillator and follows the same table initialization and read/interpolate as the others
in Chapter 9. However, its wavetable code demonstrates how to implement phase modulation, and
this code can be lifted and applied to the rest of the wavetable oscillator cores.

The SynthLab Synth Projects 269

16.8.1 Implementing Phase Modulation with SynthClock Oscillators

All of the SynthLab oscillators except the Karplus-Strong algorithm use a SynthClock for the tim-
ing base. The SynthClock object is a simple modulo counter, and it exposes methods to adjust the
instantaneous phase to a new phase point or restore it back to the original counter location. These
methods make phase modulation easy to implement, and you can experiment with any of the os-
cillators, but note that non-sinusoidal waveforms will likely alias and/or produce bloodcurdling
noises, so be careful! The FMOperator object is really a specialized sinusoidal wavetable oscillator
with an additional DX EG member object that controls the oscillator output amplitude and is
scaled with a user-specified IMAX GUI control value. To phase modulate the oscillator, you first set
its PM buffer input with a simple function call. In the render loop, you apply the values from the
PM buffer as phase offsets to the SynthClock. In order to adjust the instantaneous phase, the offset
is removed at the end of each sample render loop. Examine the FMOCore object’s render method
to see the phase modulation and application of the EG value to the operator.

bool FMOCore::render(CoreProcData& processInfo)

// --- audio outputs
float* leftOutBuffer = processInfo.outputBuffers[LEFT _ CHANNEL];
float* rightOutBuffer = processInfo.outputBuffers[RIGHT _ CHANNEL];

// --- PM inputs (which are always audio outputs of another oscillator)
float* pmBufferL = processInfo.fmBuffers[LEFT _ CHANNEL];
float* pmBufferR = processInfo.fmBuffers[RIGHT _ CHANNEL];

Figure 16.7 (a) The block diagram for the FMOperator object includes a self-modulation routing path and
FM intensity control, and (b) the SynthLab implementation block diagram

270 The SynthLab Synth Projects

Before entering the loop, you generate the EG scaling value and pick up the self-modulation
feedback value if non-zero.

// --- get the EG output
dxEG->render(processInfo.samplesToProcess);
egOutput = dxEG->getModulationOutput()->getModValue(kEGNormalOutput);

// --- self modulation
bool selfModulate = parameters->modKnobValue[FMO _ FEEDBACK] > 0.0;

Upon entering the loop, the PM buffers are summed to mono, and the resulting value is used as the
phase offset and scaled with the user’s IMAX GUI control value.

for (uint32 _ t i = 0; i < processInfo.samplesToProcess; i++)
{

// --- PHASE MODULATION
if (pmBufferL && pmBufferR)
{

// --- convert PM buffer to mono
double modValue = parameters->phaseModIndex *

(0.5*pmBufferL[i] + 0.5*pmBufferR[i]);

// --- perform PM operation
oscClock.addPhaseOffset(modValue);

}

Self-modulation works nearly the same way, but we cannot allow a zero-delay feedback loop, so
the outputValue variable below is the previous output from the loop, and it is stored as a member
variable on the object.

else if(selfModulate)
{

double modValue = parameters->phaseModIndex *
parameters->modKnobValue[FMO _ FEEDBACK] * outputValue;

// --- perform PM operation
oscClock.addPhaseOffset(modValue);

}

The wavetable is then read as normal, and the procedure reversed to set up for the next iteration by
removing the original phase offset and performing a modulo wrap that may be needed as a result
of removing (subtracting) the phase offset.

// --- read table and scale with EG value
outputValue = egOutput *

sineTableSource.readWaveTable(oscClock.mcounter);

// --- scale by gain control
outputValue *= outputAmplitude;

The SynthLab Synth Projects 271

// --- write to output buffers
leftOutBuffer[i] = outputValue * panLeftGain;
rightOutBuffer[i] = outputValue * panRightGain;

if ((pmBufferL && pmBufferR) || selfModulate)
{

oscClock.removePhaseOffset();
oscClock.wrapClock();

}

// --- set up for next cycle
oscClock.advanceWrapClock();

16.9 SynthLab-DX Voice Render Phase

The SynthLab-DX creates four FMOperators, resets and initializes them, and forwards note-on
and note-off messages as with all of the other SynthLab oscillator objects. The voice is responsible
for performing the PM modulation operation and summing modulators and carriers, as per the
algorithms in Figure 16.6. Let’s take a look at a couple of examples. First, the FM1 algorithm con-
sists of four operators in series. The code below uses the same numbering scheme as Figure 16.6.

if (parameters->fmAlgorithmIndex == enumToInt(DX100Algo::kFM1))
{

// --- start with op4
fmOp4->render(samplesToProcess);

// --- 4 modulates 3
fmOp3->setFMBuffer(fmOp4->getAudioBuffers());
fmOp3->render(samplesToProcess);

// --- 3 modulates 2
fmOp2->setFMBuffer(fmOp3->getAudioBuffers());
fmOp2->render(samplesToProcess);

// --- 2 modulates 1
fmOp1->setFMBuffer(fmOp2->getAudioBuffers());
fmOp1->render(samplesToProcess);

// --- write to mix buffers
writeToMixBuffer(fmOp1->getAudioBuffers(), samplesToProcess);

}

Now look at algorithm #4, which has two parallel branches. Notice how the modulator outputs are
summed into the standby mix buffers, then applied as the PM buffer for operator #1.

// --- render 4
fmOp4->render(samplesToProcess);

272 The SynthLab Synth Projects

// --- 4 modulates 3
fmOp3->setFMBuffer(fmOp4->getAudioBuffers());
fmOp3->render(samplesToProcess);

// --- render 2
fmOp2->render(samplesToProcess);

// --- sum the two modulator outputs
accumulateToMixBuffer(fmOp3->getAudioBuffers(), samplesToProcess, 0.5);
accumulateToMixBuffer(fmOp2->getAudioBuffers(), samplesToProcess, 0.5);

// --- apply to final operator
fmOp1->setFMBuffer(mixBuffers);
fmOp1->render(samplesToProcess);

// --- write output
writeToMixBuffer(fmOp1->getAudioBuffers(), samplesToProcess);

Lastly, check out algorithm #8, which is comprised of four parallel operators summed together:

// --- all
fmOp4->render(samplesToProcess);
fmOp3->render(samplesToProcess);
fmOp2->render(samplesToProcess);
fmOp1->render(samplesToProcess);

// --- sum
accumulateToMixBuffer(fmOp4->getAudioBuffers(),

samplesToProcess, 0.25);

accumulateToMixBuffer(fmOp3->getAudioBuffers(),
samplesToProcess, 0.25);

accumulateToMixBuffer(fmOp2->getAudioBuffers(),
samplesToProcess, 0.25);

accumulateToMixBuffer(fmOp1->getAudioBuffers(),
samplesToProcess, 0.25);

From this point on, the mix buffers contain the oscillator render and are pushed downstream
into the filters and the rest of the voice architecture, identical to the rest of the synths.

Bibliography

Chowning, John. 1973. The Synthesis of Complex Audio Spectra by Means of Frequency Modulation. Jour-
nal of the Audio Engineering Society, 21:7, pp 526–534

SynthLab Documentation. 2020. www.willpirkle.com/synthlab-docs, Accessed on October 14, 2020

http://www.willpirkle.com

ADSR see envelope generator
AnalogEGCore 100
analog EG emulation 97–100
attack time see envelope generator
AudioBuffer 19

band limited impulse train (BLIT) 142–143
band limited step (BLEP) 143–144; correction

calculation 146–147; implementation strategies
145–146; Lanczsos relationship 148–149;
polynomial implementation 147; residual method
144–145; square wave generation 149–150

biquad filter 3
bitcrushing see quantizing
BPM sync 76
BQFilterCore 199

Casio CZ 89, 108–109
Chowning, John 124, 258, 264–266
ClassicWTCore 134, 236
concave transform 71
constant power 73
convex transform 71
CoreProcData 39
crossfading 73

DCRemovalFilter 215
decay time see envelope generator
delay-free loops 175; resolving 175–179; modified

Härmä method 177–179; Zavalishin’s method
176–177

differentiated parabolic waveform (DPW) 149
digital integrator replacement 174
digitally controlled amplifier (DCA) 3, 87, 106;

calculations 107; EG modulation 106
diode ladder filter 187–190; with analog matched

Nyquist response 191
Down Loadable Sound (DLS): level 1 spec 4; level 2

spec 4
DrumWTCore 134
DXEGCore 101

EG Core 102; rendering 138–139; updating 137–138
envelope generator (EG) 3, 87; analog emulation

97–100; ADSR 92; biased EG: Casio CZ style
109; contours 88; DX-style 101; exercises 108;
exponential EG 96; finite state machine 92; linear
EG 95; note on & note off 93; programming
notes 102–106; reset-to-zero 89; retriggering
101; shutdown 91, 94; timing equations 98–99;
trigger and gate 89–91; Yamaha EX style 109;
unconditional release 91

Exciter 214–216
ExciterEG 215
exciters 210–212; EG shaped noise 211–212;

from reverse filtered PCM samples 212;
windowed noise 211

exponential EG 96

fade-in modulation see ramp modulation
fade-out modulation see ramp modulation
filters 171; self-oscillation 173; virtual analog (VA)

(see virtual analog filters)
filter key track see key track modulation
first order LPF 180; second order state variable 182
FMLFOCore 118
FMOperator 266–272
FM operators 4, 265–267
FM synthesis 264–267; index of modulation 265;

spectral rules 267–268
FracDelayAPF 215
frequency modulation: classical 263–268; linear

75–76

Gibb’s phenomenon 127
glide modulation 32, 78

hard sync 83–85

IFilterBase 193
index of modulation see FM synthesis
IPCMSampleSource 163
IWavetableSource 131–132

Index

274 Index

Karplus-Strong oscillator 3
Karplus-strong model 208; bridge filter 212;

equations 214; exciter 210–211; exercises 223;
extensions to model 222–223; loop filter 210;
pickup position filter 212–213; pluck position filter
212; resonator 208–210

key track modulation 85–86
Korg iElectribeWave 207
Korg iPolySix 96
Korg M1 124, 158
Korg OASYS 207
Korg Prophecy 207
Korg: Wavestation 240
Korg Wavestate 241; Wave Sequencing 1.0 240–241;

Wave Sequencing 2.0 242–21–242
Korg35 VA filters 184–185; with analog matched

Nyquist response 184–185
KSOscillator 218; core 218–222; rendering 221;

updating 220
Kurzweil K2000/2500 158

Lanczsos sigma correction 127
Lane 243, 247
LaneStep 243, 247
Leary, Andy 143, 146
legato mode 42, 90
LFOCore 118; rendering 120; updating 120
linear EG 95
LinearEGCore 100
low frequency oscillator (LFO) 3, 110–140; clocking

112; DC offset 117; delay time 117; exercises
121–122; exponential waveforms 113; fade-in time
117; fundamental waveforms 112–113; scanning
112; sinusoidal approximation 113, 115; shaping
control 117; starting phase 117; unipolar 116

midiEvent 19–20
MIDI unity note 159
mod Knob: strings 7, 71
ModDestination 228
ModMatrix 230; initializing 231; programming 232,

257–259; running 233; transforms 232
ModSource 228
modulation calculations 70; BPM sync 76–77;

crossfading 73; fade-in/out 77–78; hard-sync
83–84; key track 85–86; linear FM 75–76; MMA
transforms 71–72; panning 73; phase distortion
81–83; pitch 79–81; portamento 78–79; PWM 81;
vector joystick 74–75; wave morph 235–236

modulation matrix 4, 225–233; channel routing 228;
intensity 227; sources/destinations 225–227

Modulators 225
module core 37; core strings 37
ModuleCore name and type 57; object 6, 35;

relationship to SynthModule 37–39; testing 58

modules 57; stand-alone mode 60; pitch calculation
79; PWM (see pulse width modulation); quantizing
77, 114, 116; updating 79–81

mono mode 42
Moog ladder filter 185–187; Oberheim variations

204; with analog matched Nyquist
response 187

MorphWTCore 134, 236; rendering 239;
updating 238

multi-samples see PCM samples

noise generators 110
note event lifecycle 43
note number to decay calculation 72–73
note-off phase 10
note-on phase 10
Nyquist analog magnitude matching 173; first order

LPF 180; second order state variable 182; Korg35
LPF 184–185

oscillator 3, 28, 30; clocking 111–112; hard sync 83;
low frequency (see LFO); modulation 75

oscillator, wavetable see wavetable oscillator

PCM samples 157; calculation of phase increment
160; loading 160–161; looping 166; multi-samples
160; playback modes 157–158; reading and
interpolating 164–165; slicing 161; storage 159;
wave file packaging 159

PCMOscillator 166; cores 166–167; exercises
170–171; programming notes 168; rendering 170;
updating 169

PCMSample 162–163
panning 73
phase distortion 81–83
phase modulation 263–268; calculations 269–270; see

also FM synthesis
phase modulation synthesis see FM synthesis
physical modeling 207; exciter 207; Karplus-Strong

model 207–214; resonator 207
pitch calculation for oscillators 79
pitch modulation 79
PluckPosFilter 215
PolyBLEP 147
polyphonic mode 42
polyphony timestamps 50
portamento see glide modulation
pulse width modulation 81

quantizing 77
quantized waveforms 114, 116

ramp modulation 77
random sample and hold 113–114
Redmon’s EG 98–100

Index 275

release time see envelope generator
render phase 10
ResDelayLine 215
ResLoopFilter 215
Resonator 217
reset phase 10
reset-to-zero see envelope generator

samples see PCM samples
sample and hold see random sample and hold
Sequential Circuits Prophet VS 74, 124,

128, 234
SFXWTCore 134
shared pointers 14
shared GUI parameters 15
shared MIDI data 16
shared PCM data 17
shared wavetable data 17
singleton 13–14
sine approximations 113, 115
square law 73
stand-alone operation: filters 61–63; modulators

58–60; oscillators 60–61
stepped waveforms see quantized waveforms
sustain level see envelope generator
SynthClock 112
SynthEngine 3, 6; architecture 12–13; audio rendering

18–19, 24–25, 65–66; construction 18; initialization
and reset 20–21, 64; MIDI processing 23–24,
44–46, 64–65; parameters 21; rendering 22–23;
unison mode 45; use in projects 63

SynthFilter 198–199; cores 199–204; exercises
204–205; rendering 202; updating 200

SynthLab architecture 4–9; delay FX 262–263;
dynamic strings 66–67; filtering 261–262; global
volume 262–263; mixing oscillators 260–261;
programming mod matrix 258–259; rendering
modulators 259–260

SynthLab-DM 1; module design 54–55; loading
module cores 56

SynthLab-DX 2, 258, 263–263–267;
phase modulation 269–270; rendering
271–272

SynthLab-KS 2, 258
SynthLab-PCM 2, 258
SynthLab-VA 2, 258
SynthLab-WS 2, 258
SynthLab-WT 2, 258
SynthLabBankSet 235
SynthLabPCMSource 163
SynthLFO 118–121
SynthModule 6; construction 39–40; I/O ports 33;

members 29; virtual/wrapper functions 36,
40–41

SynthProcessInfo 20

SynthVoice 3, 6; behavior 27; construction 30;
modules 28; note messages 31; parameters 28–29;
rendering 33; resetting 31; updating 31–33

unconditional release 91
unison mode 42; detuning & panning 46
update phase 10

VA1Filter 193–194
VADiodeSubFilter 193–194
VADiodeFilter 193–194
VAFilterCore 193–194, 199; rendering 196–197;

updating 195–196
VAOCore 150
VAOscillator 150
VASVFilter 193–194
VAKorg35Filter 193–194
VAMoogFilter 193–194
VCS3 diode ladder filter 187–191
vector joystick modulation 74–75
vector synthesis 234
velocity to attenuation calculation 71–72
velocity to attack calculation 72–73
virtual analog oscillator 4, 141; continuities 141–142;

exercises 155–156; updating 152
virtual analog filter 3, 171–205; drive control

197–198; first order 180; FGN 180, 182; from
conceptual signal flow graphs 191; from actual
signal flow graphs 183–191; from primitive block
diagrams: Korg35 184–185, 180–182; Moog ladder
185–187; nonlinear processing 191–192; peak-
limiting 192; self-oscillation control 191–192;
state variable 180–182; rendering 153; VCS3 diode
ladder 187–191

voice architecture 4
voice states 47
voice stealing 47–50, 51–52

WaveFolder 162–163
WaveSequencer 243, 247; crossfade-hold operation

245–246; duration settings 245; lanes and steps
247–248; overview 243–245

WaveSliceCore 162
wave banks 234
wave files 159
wave morphing 235–236
wave sequencer 4; status metering 69
wave sequence oscillator 4
wave sequencing 234, 240–243
wavetable 124; aliasing 125; band-limited 125; database

of 130; Fourier synthesis of 124–125; generation
128–129; interpolation 124, 133–134; multi-tables
128; spacing 128–129; static vs. dynamic 130

WavetableDatabase 131–132
wavetable oscillator 124; scanning 140

276 Index

Wisdom Music GeoShred 207
Wolfgang Palm Infinite 235
WSOscillator 248; exercises 255–256; members 250;

methods 249–250; rendering 254–255; updating
252–254

WTOscillator 134; cores 134–135; exercises 139–140
programming notes 135–137; rendering 138–139;
updating 137–138

XHoldFader 243–244

Yamaha DX 263–264; DX-7 124; DX-100 algorithms
267–267, 271–272

Zavalishin see virtual analog filters
zero delay feedback see delay-free

loops

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Preface
	1 SynthLab Introduction
	1.1 What You Need to Know to Use SynthLab Objects and Projects
	1.2 SynthLab Synth Projects
	1.3 Synth Components
	1.4 Basic Software Synth Architecture
	1.5 SynthLab Voice Architecture
	1.6 SynthLab C++ Implementation
	1.7 Why SynthLab Uses This Architecture
	1.8 SynthLab Object Operational Phases
	Bibliography

	2 The Synth Engine
	2.1 Engine Behavior
	2.2 Engine Architecture
	2.3 Shared Data
	2.4 SynthEngine Constructor
	2.5 Audio and MIDI Block Rendering
	2.6 SynthEngine Operational Phases
	Bibliography

	3 Synth Voices, Synth Modules, and Module Cores
	3.1 Voice Behavior
	3.2 SynthVoice Modules
	3.3 SynthVoice Parameters
	3.4 SynthModule Members
	3.5 SynthVoice Construction
	3.6 SynthVoice Operational Phases
	3.7 SynthModules and ModuleCores
	3.8 Module Cores
	3.9 SynthModule/ModuleCore Relationship
	3.10 Review
	Bibliography

	4 Synth Operational Modes: Polyphony and Voice-Stealing
	4.1 The Note-Event Lifecycle
	4.2 SynthEngine MIDI Processing
	4.3 SynthEngine Unison Detuning
	4.4 Voice State and MIDI Event Storage
	4.5 Voice-Stealing
	4.6 Polyphony and Voice Timestamps
	4.7 Review
	Bibliography

	5 Learning and Using the SynthLab Objects & Projects
	5.1 Designing Modules with the SynthLab-DM Projects
	5.2 SynthLab-DM Modules Are Dynamic Linked Libraries
	5.3 Using SynthModules in Your Projects
	5.4 Using SynthEngines in Your Projects
	5.5 SynthEngine GUI Design and Parameter Update
	5.6 Programming the Modulation Matrix
	5.7 Getting WaveSequencer Status Meter Updates
	Bibliography

	6 Modulation: Theory and Calculations
	6.1 SynthLab Mod Knob Mapping
	6.2 MMA Transforms & Calculations
	6.3 Sequential Circuits Vector Joystick Envelope Modulation
	6.4 Linear Frequency Modulation with LFO or EG
	6.5 BPM Sync
	6.6 Quantizing
	6.7 Ramp Modulation: Fade-in and Fade-out
	6.8 Pitch Calculation
	6.9 Pulse-Width Modulation (PWM)
	6.10 Phase Distortion
	6.11 Hard Sync
	6.12 Filter Key Track Modulation
	Bibliography

	7 Envelope Generators and DCA
	7.1 Envelope Generator Fundamentals
	7.2 EG Implementation: Finite State Machine
	7.3 Digital EG Implementation: Rendering the Output
	7.4 Biased EG Output
	7.5 Analog EG Emulation
	7.6 Synth Module: EnvelopeGenerator
	7.7 EG Retrigger Modulation
	7.8 EG Core Programming Notes
	7.9 The Digitally Controlled Amplifier (DCA)
	7.10 Exercises
	Bibliography

	8 Low Frequency Oscillators
	8.1 Noise Oscillators and Generators
	8.2 Oscillator Clocking
	8.3 LFO Waveforms and Rendering Equations
	8.4 Render Modes
	8.5 Waveform Shaping
	8.6 Delay and Fade-in Times
	8.7 Starting Phase
	8.8 DC Offset
	8.9 SynthLFO and Cores
	8.10 LFO Core Programming Notes
	8.11 Exercises
	Bibliography

	9 Wavetable Oscillators
	9.1 Wavetable Fundamentals: Table Lookup
	9.2 Wavetable Objects and Database
	9.3 Wavetable Sources and Database
	9.4 WTOscillator and Cores
	9.5 Wavetable Core Programming Notes
	9.6 Exercises
	Bibliography

	10 Virtual Analog Oscillators
	10.1 VA Oscillator Fundamentals
	10.2 Band Limited Impulse Train (BLIT)
	10.3 Band Limited Step (BLEP)
	10.4 Polynomial BLEP Approximation
	10.5 Choosing the BLEP sinc Source
	10.6 Other VA Algorithms
	10.7 BLEP Square Wave
	10.8 VAOscillator and Core
	10.9 VA Core Programming Notes
	10.10 Exercises
	Bibliography

	11 PCM Sample Playback Oscillators
	11.1 PCM Sample Playback Modes
	11.2 PCM Sample Storage
	11.3 Loading PCM Samples
	11.4 PCM Sources and Database
	11.5 PCMOscillator and Cores
	11.6 PCM Core Programming Notes
	11.7 Exercises
	Bibliography

	12 Synthesizer Filters
	12.1 Design Summary
	12.2 Q and Self-Oscillation
	12.3 Analog Magnitude Matching at Nyquist
	12.4 Zavalishin’s Virtual Analog Filters
	12.5 Resolving Delay-Free Loops in VA Structures
	12.6 VA Filters from Primitive Analog Block Diagrams
	12.7 VA Filters from Signal Flow Graphs
	12.8 VA Filters from Conceptual Signal Flow Graphs
	12.9 Nonlinear Processing and Self-Oscillation Control
	12.10 Synth Filter Objects
	12.11 Input Drive and Output Peak Limiter
	12.12 SynthFilter and Cores
	12.13 Synth Filter Core Programming Notes
	12.14 Exercises
	Bibliography

	13 Karplus-Strong Plucked String Model
	13.1 The Exciter-Resonator
	13.2 The Plucked String
	13.3 The Karplus-Strong Model
	13.4 Pluck Position
	13.5 Karplus-Strong Algorithm Equations
	13.6 Karplus-Strong C++ Objects
	13.7 KSOscillator and KSOCore
	13.8 KSOCore Member Objects
	13.9 Core Programming Notes
	13.10 Extensions to the KS Algorithm
	13.11 Exercises
	Bibliography

	14 The Modulation Matrix
	14.1 Modulation Inputs and Outputs
	14.2 Modulation Routings
	14.3 Mod Matrix Channel Routing
	14.4 ModSource and ModDestination for GUI Controls
	14.5 ModMatrixParameters
	14.6 The ModMatrix Object
	14.7 Initializing the ModMatrix
	14.8 Programming the ModMatrix
	14.9 Mod Matrix Transforms
	14.10 Running the ModMatrix
	Bibliography

	15 Wave Morphing and Wave Sequencing
	15.1 Wave Banks
	15.2 Wave Morphing
	15.3 The MorphWTCore
	15.4 MorphWTCore Programming Notes
	15.5 Wave Sequencing 1.0
	15.6 SynthLab WaveSequencer
	15.7 The WSOscillator Object
	15.8 WSOscillator Programming Notes
	15.9 Exercises
	Bibliography

	16 The SynthLab Synth Projects
	16.1 SynthLab Modulation Matrix
	16.2 SynthLab Render Phase: Modulators
	16.3 SynthLab Render Phase: Quad Oscillator Mixing
	16.4 SynthLab Render Phase: Filtering
	16.5 SynthLab Render Phase: Global Volume and Delay FX
	16.6 SynthLab-DX: the FM Synthesizer
	16.7 FM/PM Rules
	16.8 FM Operator
	16.9 SynthLab-DX Voice Render Phase
	Bibliography

	Index

