
JavaTM on the Bare Metal of Wireless Sensor Devices
The Squawk Java Virtual Machine

Doug Simon
Sun Microsystems Laboratories

16 Network Drive
Menlo Park CA 94025, USA

doug.simon@sun.com

Cristina Cifuentes
Sun Microsystems Laboratories

Level 10, 80 Albert Street
Brisbane QLD 4000, Australia

cristina.cifuentes@sun.com

Dave Cleal
Syntropy Limited

2 Stambourne Way, West Wickham
Kent BR4 9NF, UK

dave@syntropy.co.uk

John Daniels
Syntropy Limited

2 Stambourne Way, West Wickham
Kent BR4 9NF, UK
jd@syntropy.co.uk

Derek White
Sun Microsystems Laboratories

One Network Drive
Burlington MA 01803, USA
derek.white@sun.com

Abstract
The Squawk virtual machine is a small JavaTM virtual machine
(VM) written mostly in Java that runs without an operating system
on a wireless sensor platform. Squawk translates standard class file
into an internal pre-linked, position independent format that is com-
pact and allows for efficient execution of bytecodes that have been
placed into a read-only memory. In addition, Squawk implements
an application isolation mechanism whereby applications are repre-
sented as object and are therefore treated as first class objects (i.e.,
they can be reified). Application isolation also enables Squawk to
run multiple applications at once with all immutable state being
shared between the applications. Mutable state is not shared. The
combination of these features reduce the memory footprint of the
VM, making it ideal for deployment on small devices.

Squawk provides a wireless API that allows developers to write
applications for wireless sensor networks (WSNs), this API is an
extension of the generic connection framework (GCF). Authenti-
cation of deployed files on the wireless device and migration of
applications between devices is also performed by the VM.

This paper describes the design and implementation of the
Squawk VM as applied to the SunTM Small Programmable Ob-
ject Technology (SPOT) wireless device; a device developed at
Sun Microsystems Laboratories for experimentation with wireless
sensor and actuator applications.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—interpreters, run-time environments; D.3.3
[Programming Languages]: Language Constructs and Features—
classes and objects; D.4.7 [Operating Systems]: Organization and
Design—real-time systems and embedded systems; D.4.6 [Op-

Copyright is held by Sun Microsystems, Inc.

VEE’06 June 14–16, Ottawa, Ontario, Canada
ACM 1-59593-332-6/06/0006.

erating Systems]: Security and Protection—authentication; D.2.5
[Software Engineering]: Testing and Debugging—debugging aids

General Terms Languages, Experimentation, Security

Keywords Embedded systems, Java virtual machine, Sun SPOT,
IEEE 802.15.4, Wireless sensor networks

1. Introduction
The pervasive computing vision depicts a future in which computa-
tion is widely embedded in the everyday world, like “smart dust”.
One medium for enabling this vision is the tiny, wireless computer
that connects to the world with sensors and actuators. Despite the
large interest in the area, few significant applications have been
written so far, we believe due to the lack of adequate tools and
languages to aid in the prototyping of applications for that domain.

Processors associated with wireless sensor devices typically
provide small amounts of memory, making it hard for managed run-
time languages like Java to run on these devices, due to the static
memory footprint of the virtual machine (VM) and the dynamic
footprint of the runtime and the applications. Traditionally, wire-
less sensor applications use languages such as C and assembler to
overcome the memory limitations, at the expense of longer appli-
cation development time. However, it is widely accepted that de-
velopment time using managed runtime languages is less than that
of non-managed languages. Sensors and actuators are commonly
used in robots, home appliances such as washing machines and mi-
crowaves, industrial appliances such as motors, set-top boxes, and
many more.

At Sun Microsystems Laboratories, we have been investigating
wireless sensor networks by creating a next generation device we
are calling the SunTM Small Programmable Object Technology, or
Sun SPOT (see Figure 1). The Sun SPOT main board is based
on an ARM-9 processor and has 512 KB of RAM and 4 MB of
flash memory, plus a separate Chipcon 2420 IEEE 802.15.4 radio
chip. Additional sensor boards can be attached: the “demo” sensor
board includes a 3-axis accelerometer, a light sensor, a temperature
sensor, an A/D converter, 8 tri-color LEDs, 5 general purpose I/O
pins, and 4 hi current output pins.

We believe that running a managed runtime language like Java
on a wireless sensor device will simplify application and device

78

Figure 1. Sun SPOT wireless sensor/actuator device, with a
demo sensor board on top, the main processor and radio board
in the middle, and a battery board on the bottom.

driver prototyping, thereby increasing the number of developers
in this domain, as well as their productivity; resulting in more in-
teresting applications sooner. Java brings with it garbage collec-
tion, pointer safety, exception handling, and a mature thread library
with facilities for thread sleep, yield, and synchronization. Standard
Java development and debugging tools can be used to write wire-
less sensor applications. Further, we provide tools for deploying
and monitoring these devices in a graphical user interface called
SpotWorld [SCS05]. This paper concentrates on the Java virtual
machine that is available on the Sun SPOT platform: the Squawk
virtual machine.

The Squawk virtual machine is a Java VM primarily written
in Java and designed for resource constrained devices. Squawk
is compliant with the Connected Limited Device Configuration
(CLDC) 1.1 Java Micro Edition (Java ME) configuration [CLD]
and runs without need for an underlying operating system; com-
monly referred to as running on the bare metal.

The initial port of Squawk to the ARM took one person 2 weeks,
and a full Sun SPOT release, including hardware, networking, and
demo sensor board libraries took two people 6 months.

By running on the bare metal, Squawk avoids the need for
an operating system (OS) in the Sun SPOT, thereby freeing up
memory that would otherwise be consumed by an OS. The OS
functionality provided in the Squawk VM amounts to less memory
than that required by embedded OSs such as embedded Linux. A
lightweight configuration of embedded Linux requires 250 KB of
ROM and 512 KB of RAM [All01]. The Squawk OS functionality
includes the handling of interrupts, networking stack, and resource
management. In Squawk, all device drivers and the 802.15.4 media
access control (MAC) layer are written in Java.

A series of features made Squawk ideal for a wireless sensor
platform. The Squawk JVM:

1. was designed for memory constrained devices,

2. runs on the bare metal on the ARM,

3. represents applications as objects (via the isolate mechanism),

4. runs multiple applications in the one VM,

5. migrates applications from one device to another, and

6. authenticates deployed applications on the device.

An earlier version of the Squawk VM was targetted at a next
generation smart card [SSB03] which had 8 KB of RAM, 32 KB
of non-volatile memory, and 160 KB of ROM. In common, both
Squawk for smart card and Squawk for Sun SPOT were designed
for memory constrained devices and therefore implement a split
VM architecture that uses a more compact bytecode set and pro-
duces suite files to be loaded into the device. Squawk for Sun SPOT

revised that design and extended it to provide support for items 2–6
in the above list.

This paper is organized in the following way. §2 reviews the
literature in the area. The design of the Squawk JVM for Sun
SPOT (§3) summarizes some of the architecture decisions made
for Squawk for smart card, as well as expanding on the new parts
of the design for the Sun SPOT, implementation aspects of the
suite creator and on-device VM are described in §4 and §5, §6
describes Java programming for the Sun SPOT. Last, §7 provides
some experimental results.

2. Related Work
We review Java VMs written in Java and other VMs written in the
language they implement.

2.1 Java VMs Written in Java

We review Java VMs that are written in Java as well as JVMs that
provide some OS support to run on the bare metal.

IBM’s Jikes Research Virtual Machine (RVM), formerly known
as the Jalapeño virtual machine [AAB+99, AAB+00], and the
OVM project [PBF+03, FHV03], are Java VMs written in Java.
They both make use of the GNU classpath to support desktop and
server-level Java libraries. The GNU classpath is a series of J2SE
and J2EE Java libraries that are written in the C language. Both
Jikes and OVM run desktop and server applications, and require
an OS to run on. OVM implements the real-time specification for
Java (RTSJ) and has been used by Boeing to test run an unmanned
plane.

JX [GFWK02] and Jnode [Loh05] are Java operating systems
that implement a Java VM as well as an OS. Security in the OS is
provided through the typesafety of the Java bytecodes. JX runs on
the bare metal on x86 and PowerPC, and Jnode on the x86. They
both access IDE disks, video cards and network interface cards. JX
runs on cell phones and desktops. Jnode runs desktop applications.
The core of JX is written in the C language. Neither VM makes
assurances on the latency to service an interrupt, and both allow for
GC to happen while servicing interrupts.

2.2 Other Language VMs Written in Their Own Language

Smalltalk was the first object oriented language in which every-
thing is built from objects. Smalltalk was inspired by the Simula,
Sketchpad, and Lisp languages. Squeak [IKM+97] was the first us-
able implementation of Smalltalk written in Smalltalk itself. The
Squeak VM is written in a subset of Smalltalk called Slang that can
be translated to C. This allows the VM to be written and debugged
in Smalltalk, yet the translated VM performs well and is easy to
port. The VM can be extended with plugins written in either Slang
or C code.

Klein [USA05] is a VM written in the Self language that im-
plements Self. Klein’s architecture was driven by the insight that
most VMs have three different compilation systems, making the
VM complex and hard to maintain. In the Klein architecture there
is only need for one compiler, which can be used statically as an
ahead-of-time compiler for the system classes of the VM itself, and
dynamically as a JIT compiler. The Klein VM assumes memory
resources typical of that on desktop machines.

3. The Squawk Virtual Machine
The Squawk JVM is the result of an effort to write a J2ME CLDC
compliant JVM in Java that provides OS level mechanisms for
small devices, easing porting and debugging of the VM. The obser-
vation was that most JVMs are written in the C and C++ languages,
even though complex processes performed by the JVM can be bet-

79

ter expressed in the Java language, which offers features such as
type safety, garbage collection, and exception handling.

Squawk came out of earlier similar efforts at Sun Labs on
systems such as the KVM [TBS99]. A large part of its design was
driven by the insight that performing up front transformations on
Java bytecode into a more friendly execution format can greatly
simplify other parts of the VM. Squawk, as its name suggests, was
also inspired by the Squeak Smalltalk VM [IKM+97].

3.1 Split VM Architecture

Resource constrained devices do not normally have enough mem-
ory to implement class file loading on-device. A common design
for these devices is what is known as a split VM architecture,
namely, class file loading is performed on a desktop machine, the
intermediate representation of the file is then deployed onto the de-
vice, and that representation is then run on-device.

Figure 2. The Squawk Split VM Architecture. To the left is the
Suite Creator and to the right is the On-device VM. The Suite
Creator runs on the desktop and the On-device VM runs on the
device. White boxes represent Java code, black boxes represent
C code.

Figure 2 shows Squawk’s split VM architecture, with the class
file preprocessor, called the suite creator, to the left, and the on-
device VM to the right. The Squawk interpreter is written in C. In
future, the interpreter will be rewritten in Java and converted to C in
much the same way that the garbage collector is currently converted
to C. All other parts of the VM are written in Java.

The suite creator transforms the Java bytecodes into a more
compact internal representation known as the Squawk bytecodes.
These bytecodes can be optionally optimized for code-size reduc-
tion. The internal object memory representation of an application
can be serialized and saved into a file, called a suite file.

The on-device VM interprets the suite files on-device, while
servicing interrupts from the device itself.

To support the split VM configuration requires a means for
building and deploying the VM’s bootstrap suite onto the Sun
SPOT device. The suite creator is run in a hosted desktop VM such
as HotSpot, and all Java classes of the on-device VM, and possibly
the debug agent, are fed to the suite creator to produce the bootstrap
suite.

Note that components of the on-device VM that are either writ-
ten (interpreter) or translated (garbage collector) to C are not pro-
cessed in this form. A separate bootloader binary (also written in C)
runs on the Sun SPOT and is responsible for receiving both these

components and the bootstrap suite and flashing them into well-
known locations on the Sun SPOT. The bootloader can then launch
the on-device VM.

3.2 Squawk Bytecodes and Suite File Format

The Squawk bytecodes are a compact version of Java bytecodes
and were optimized for space, in-place execution, and to simplify
garbage collection as follows:

• Space optimization: commonly used Java bytecodes are two
bytes instead of three bytes. For example, Squawk bytecodes
contain 2-byte branches, more 1-byte load/store/const instruc-
tions, 2-byte field access, and 2-byte invoke. There is an escape
mechanism in place for float and double instructions, as well as
widened operands.

• In-place execution optimization: symbolic references to other
classes, fields, and methods are resolved into (direct) pointers,
object offsets, and method table offsets, respectively, eliminat-
ing the constant pool and dereferencing into it.

• Simplification of garbage collection (GC) optimization: local
variables are re-allocated such that slots are partitioned to hold
only pointer or non-pointer values, allowing for one pointer
map per method. Further, the operand stack is guaranteed to
contain only the operands for certain instructions whose exe-
cution may result in a memory allocation; i.e., empty operand
stack at GC points. This is achieved by means of inserting spills
and fills.

Both these optimizations obviate the need for stack maps and
analysis during the collection, simplifying GC, at the expense
of requiring more slots in the activation records. Each method
only requires a single pointer map and there is no need to scan
the operand stack at GC points.

Suite files were designed as objects that contain a collection
of Squawk-internal class data structures, including Squawk byte-
codes. Suite files are pre-processed sets of class file designed to
be executed in-place (i.e., they contain position-independent byte-
code). The serialized version of an application’s object memory (a
graph of objects) is stored in the suite file; all pointers in the serial-
ized object graph are relocated to canonical addresses. Classes in a
suite file can refer to classes in the same suite or a parent(s) suite.
For example, an application suite depends on a sensor library suite,
which in turn depends on the VM’s bootstrap suite. This chain of
suites forms a transitive class closure.

Suite files are deserialized by the VM on-device and relocated
by a single pass over the object memory using a pointer map that
was stored with the suite file. This mechanism greatly improves
VM startup time and provides a faster alternative to standard class
file loading.

Results presented in [SSB03] when comparing the sizes of class
files as oppossed to suite files on a set of desktop benchmarks show
that, on average, suite files are 38% the size of class files; these
results are corroborated with the benchmarks used in this paper (see
§7.4).

Note that the suite files are not compressed, this was a design de-
cision made to avoid uncompressing of files on-device and to allow
in-place execution of the application without any extra overhead.

4. Suite Creator Implementation
4.1 Data Structures

Squawk optimizes a number of its core data structures to save
space. In this section we describe the choices made for object
layout, method objects, and a class’ symbolic information.

80

Object layout

Non-array objects have a single 32-bit word header (the class
pointer) and array objects have a two word header (the class pointer
and the array’s length).

All Java objects must support hashcode and monitor operations.
In order to save space, the data associated with these relatively
infrequent operations is stored separately from the objects them-
selves. For in-RAM objects, this data is bundled into an Objec-
tAssociation object that is interposed between the original object
and the object’s class. For objects stored in ROM, the hashcode is
a function of an object’s address, and the monitor (if needed) is
stored in a per-isolate hashtable.

Method objects

Methods are encoded as modified byte arrays with a variable length
header containing information needed to execute the method (e.g,
exception tables, pointer to defining class, number of parameters
and local variables, etc.). The array contains the bytecode. An
encoding of 4 words is used for the common case of methods with
no handlers, less than 32 parameters, less than 32 locals, and less
than 32 stack locations.

String objects

Strings containing only ASCII characters are encoded as a special
type of byte array and all other strings are encoded with a modified
type of char array. This is contrasted with the standard implementa-
tion of a string as two objects (a String instance and a char array).
As an example, on a 32-bit platform, the string “squawk” occupies
16 bytes in Squawk (8 byte header, 8 byte body) as opposed to 48
in HotSpot (8 byte header and 16 byte body for the String ob-
ject, and 12 byte header and 12 byte body for the char array in the
String object).

Symbols and metadata

Symbols for a class (names and signatures of fields and methods,
and access flags) are encoded in a byte array. The method body
metadata (line number table and local variable tables) are stored
separately.

The symbolic information for a set of classes can be stripped to
a varying degrees by the translator, or discarded entirely if they are
never to be linked against by classes in a subsequent translation.

4.2 Bytecode Optimizations

Simple bytecode optimizations were thought useful due to the na-
ture of the VM code: Squawk is written using an object-oriented
approach, using setter and getter accessor methods wherever pos-
sible. Any such accessors that are determined to be non-virtual by
static analysis are inlined. Other small static or final methods are
also inlined.

Inlining exposes more optimization opportunities, therefore, the
translator also performs simple optimizations that reduce the size
of the bytecodes: constant folding, and constant and copy propaga-
tion. While all optimizations are done at a method level, the current
implementation requires that the intermediate representation for all
methods be available in order to do the inlining transformation.

The complete size-reducing benefit of these optimizations re-
quires dead code elimination of dead stores, dead loads, and un-
reachable code. This would remove the methods that are always in-
lined and cannot be linked against by further translations (i.e. they
are private or their symbols are stripped). This analysis is not yet
implemented in Squawk.

Verifier

Clearly, any set of transformations can potentially introduce errors
into the translated code. To catch some of these errors, a Squawk

bytecode verifier was designed, to verify the correctness of the
generated Squawk bytecode. The Squawk bytecode verifier was
designed to be similar to the Java verifier. For example, it needs
to check that stack sizes are consistent across different execution
paths, it needs to determine the level of consistency of stack, local,
and parameter types across different execution paths, it needs to
check that no pops are done on an empty stack, and it needs to
check type safety.

However, the Squawk bytecode verifier has to differ from a Java
verifier due to the nature of some of the Squawk bytecodes: some
Squawk bytecodes place further constraints on the operand stack
(e.g., invokevirtual expects only the operands of the invocation
to be on the stack), and other bytecodes require the verifier to keep
track of constant integer values (e.g., invokeslot and findslot
which replace the standard lookupswitch Java bytecode). As no
stack maps1 are available, an iterative data flow analysis for locals
is used.

5. On-device VM Implementation
5.1 Garbage Collection

Squawk implements a mark and compact generational garbage
collector, Lisp 2 [JL96]. This collector is non-preemptible, which
has implications for handling interrupts in a device driver written
in Java.

The Lisp 2 collector uses two generations and performs three
passes over the heap during the compaction phase. This algorithm
preserves the order of objects and is suitable for nodes of varying
sizes. A sliding window is used for the young generation. Slices
are used to obviate the need for an extra pointer-sized field in the
header of each object to store a forwarding address. In Squawk,
the same algorithm is used for marking and compaction regardless
of whether a full or partial collection is being performed. This
is a preference for simplicity over performance. A bit vector is
used for the entire heap: mark bits for the collection space and
write-barrier bits for the old generation. This bit vector uses 3%
of the memory available for the object heap. The collector has been
extended slightly to support deep-copying of an object graph.

The garbage collector is written in a subset of the Java language
and converted to C by means of a limited Java to C convertor based
on the upcoming Java 1.6 [Mus05], which has an API for accessing
the abstract syntax trees of the Java source compiler. Annotations of
the Java source code were used to simplify the translation process.

Executing the collector as compiled C code linked with the
interpreter as opposed to Java bytecode being interpreted by the
interpreter improved the performance of the collector by a factor of
10.47x on the benchmarks reported in this paper.

5.2 Thread Scheduler

Being a bare metal VM, Squawk implements green threads. Green
threads emulate multi-threaded environments without relying on
any native operating system capabilities. They run code in user
space that manages and schedules threads. Green threads switch
control when control is explicitly given up by a thread (e.g.,
Thread.yield()), or when a thread performs a blocking oper-
ation (e.g., read()).

In Squawk, the thread scheduler supports blocking in native
methods: a thread is blocked on an event queue polled by the
scheduler, and events correspond to an interrupt.

1 A stack map is a data structure created by the CLDC preverifier that
is stored in CLDC class files. Stack maps specify the types in the local
variables and operand stack slots at various points within the code. They’re
used to optimize verification in a JVM by effectively making verification a
one pass operation for each method.

81

Thread rescheduling is done at backward branches in applica-
tion code. Squawk’s system code is non-preemptible, which greatly
simplifies the VM design, and assumes that most time will be spent
executing application code.

5.3 Interrupt Handling and Device Driver Support

The Squawk VM handles interrupts coming from the Sun SPOT
device. The device driver enables the device’s interrupt. The device
driver thread blocks waiting for the VM to signal an event. When
an interrupt occurs, an assembler interrupt handler sets a bit in an
interrupt status word (ISW) and disables the interrupt to avoid re-
peats. At each VM reschedule point, the ISW is checked, the event
signalled, the scheduler resumes the device driver thread, which in
turns handles the interrupt and (typically) re-enables the interrupt.
The VM reschedules every 1,000 backward branches and when it
wakes up, either due to an event that has happened (typically an
interrupt on the SPOT) or a timed wait that has completed (that is,
one or more threads that were sleeping are now ready to go). Device
drivers are written in Java making use of a peek and poke interface
to the device’s memory.

The interrupt latency is thus dependent on the time from the
global interrupt handler running until the next VM schedule. This
is optimal if the VM is idle. If the VM is executing bytecodes in
another thread, the penalty is quite small as the VM reschedules
after a certain number of backward branches. There is some unpre-
dictability in this case according to how close to the next resched-
ule the interrupt occurs. However, if the VM is executing a garbage
collection, the reschedule is delayed until after the GC completes,
hence deteriorating the latency to service the interrupt.

In the case where a simple application has no active threads
other than the one waiting for an interrupt, we see an average
latency of 0.1 milliseconds. Where other threads are executing
and creating garbage, we’ve recorded worst case latencies of the
order of 13 milliseconds, although the mode is still around 0.15
milliseconds for an 100 KB heap size. Note that no real-time claims
are made about this interrupt handling mechanism.

6. Java Programming for the Sun SPOT
The Sun SPOT devices combine an interesting and customizable
set of hardware features with the simplicity of Java application
development. This section provides more details on the features
of a Sun SPOT device, and by examples, the flavor of application
development.

6.1 Application Isolation

In Squawk, each application is represented by a Java object. This
object is an instance of the class Isolate, and can be used to
query the status of the associated application, and even directly af-
fect that application through methods such as start(), pause(),
resume(), and exit(), thereby allowing for the reification of ap-
plications.

The Squawk Isolate class is an implementation of an isolation
mechanism similar to that of Java Specification Request (JSR) 121:
Application Isolation API Specification [JSR05, Cza00]. Isolates
are analogous to processes in an operating system: each isolate
has resources that are shared amongst the threads of that isolate.
In Squawk the immutable state of an isolate is shared, e.g., byte-
code, string constants, and parts of classes. Non-shared class state
includes static fields, class initialization state, and class monitors.

Isolates have a simple API: an isolate object is instantiated
by providing the application’s name and its arguments. For ex-
ample, the following sample code instantiates an isolate for the
com.sun.spots.SelfHibernator application and passes the url
argument to the application. It then starts the isolate and sends an
output stream to the isolate.

Isolate isolate =
new Isolate ("com.sun.spots.SelfHibernator",

url());
isolate.start();
send (isolate, outStream);
...

Application isolation is implemented by placing application
specific state such as class initialization state and class variables
inside the isolate object. The VM is always executing in the context
of a single current isolate and access to this state is indirected to
the relevant data in the isolate object. This indirection prevents
two applications from interfering with each other via access to
class variables or even by synchronizing on shared immutable data
structures (such as instances of java.lang.Class).

Isolate Migration

In Squawk, applications can be checkpointed and stored to a file
by using the serialization mechanism used with suite creation as
well as the deep-copy support in the GC. During checkpointing,
the status of each thread, including all temporary variables, can be
serialized to a stream for storage. Because each application can be
serialized to a stream, that stream can be read into another Squawk
VM to reconstitute an isolate on the destination device, skipping
the step of storing it onto disk. This effectively migrates the isolate
between VMs.

We have started simple experiments with isolate migration, and
can currently move running applications from one Sun SPOT to an-
other, or from one desktop or server to another. When moving to an
architecture with a different endianness, the appropriate translation
is performed.

Isolate migration and checkpointing may be reminiscent of sim-
ilar facilities available in, say, Smalltalk snapshots and the auto-
matic persistent memory management extension for the Spotless
VM [SMES01]. In Smalltalk snapshots, the snapshot may wake up
on a different machine, with different Ethernet address, different
display size, and several other different hardware capabilities. In
the extensions to the Spotless VM, the automatic memory manage-
ment provided orthogonal persistence including thread state. Java
programs could be suspended and at a later time resumed on the
same device or a different device, as suspended programs could be
beamed between Palm organizers.

In Squawk however, an individual application is the granularity
of serialization. Before moving, the isolate must close all open
connections to the external world and record relevant information,
so that upon waking it can restore the connections. The waking
isolate must sense the new environment, and reconnect accordingly.
In principle, it may not be possible to successfully connect to the
new environment. Thus we expect isolate migration to be utilized
by developers in specific situations where such problems are known
to be manageable.

We have added a moveTo(IPAddress ip) method for isolates,
to facilitate our early experiments. With this method, an application
can itself decide to move from one device to another. We expect this
facility could be used for load balancing, or for scripting a single
client server application that moves rather than writing two appli-
cations that connect. Isolate migration could be especially useful
to effect an in-the-field replacement of one device by another (e.g.,
with fresh batteries) by letting the user simply pull the software
from the old device onto the new. A summer intern wrote an appli-
cation that migrated itself home upon encountering an exception, so
that it could be debugged on the programmer’s workstation before
being sent back into the field.

82

6.2 Accessing Sensors in the Demo Sensor Board

The demo sensor board library is written in Java and relies on pe-
ripheral classes that have been packaged in the com.sun.squawk.
peripheral domain. The library is 400 lines of commented Java
code.

An application can access the accelerometer and get its X, Y
and Z coordinates as follows:

Accelerometer3D acc =
DemoSensorBoard.getAccelerometer();

RangeInput x = acc.getX();
RangeInput y = acc.getY();
RangeInput z = acc.getZ();

A particular LED (numbered 1 to N) can be accessed, turned
on, and set to a particular red, green and blue color combination in
the following way:

SensorBoardColouredLED led =
SensorBoardColouredLED.getLed1();

led.setOn();
led.setRGB (50,60,10);

To endlessly changes the LED color by displaying either red,
green or blue based on the direction of the accelerometer’s motion,
the following code can be written:

int lastX = 0,lastY = 0,lastZ = 0;
while(true) {

int xValue = x.getValue();
int yValue = y.getValue();
int zValue = z.getValue();

int r = Math.abs(xValue-lastX) > 35 ? 255:0;
int g = Math.abs(yValue-lastY) > 35 ? 255:0;
int b = Math.abs(zValue-lastZ) > 35 ? 255:0;

led.setRGB(r,g,b);

lastX = xValue;
lastY = yValue;
lastZ = zValue;

}

6.3 Accessing the Radio Through the Wireless API

The Sun SPOT has a multilayer communications stack as shown in
Figure 3.

Figure 3. The Sun SPOT Radio Stack

The two lowest levels of this stack partially implement the
802.15.4 standard. This standard is targetted at devices with low
data rates (of 250 kbps, 40 kbps, and 20 kbps), with multi-month
to multi-year battery life and very low complexity. It operates on
an unlicensed, international frequency band. A radio that supports
this standard can be accessed by means of the devices unique
IEEE address and a channel. This implementation provides robust

single-hop communication between Sun SPOTs with clear channel
checking, packet acknowledgement and retries.

The lowpan multiplexes traffic for up to 255 protocols over
the radio connection between two Sun SPOTs or between a host
application and a Sun SPOT. The intention of this design is that
researchers can build their own protocol handlers above that level.
However, to facilitate simple applications, two example protocols
have been implemented using the GCF framework.

The generic connection framework (GCF) is part of J2ME, and
defines a hierarchy of interfaces and classes that create connections
(such as HTTP, datagram, or streams), and perform I/O. The GCF
provides a generic approach to connectivity and is defined in the
javax.microedition.io package. The GCF is based on stan-
dard uniform resource locators (URLs) to indicate the connection
types to create (e.g., http, file, sms, socket, etc.).

The two example protocols provided are a streaming connection
and a datagram-style connection. The URL for a streaming radio
connection type is as follows, where address is the unique IEEE
(MAC) address of the Sun SPOT device to be communicating to,
and port is the channel to be used:

radio://{address}:{port}

An application can open a stream over the radio and then operate
on that connection. For example, the following code will open a
radio connection to Sun SPOT device 1020 on channel 42, and will
output the number 5 onto that radio stream:

StreamConnection conn = (StreamConnection)
Connector.open("radio://1020:42");

DataOutputStream output =
conn.openDataOutputStream();

output.writeInt(5);
output.flush();

The form of a datagram-style URL is as follows:

radiogram://{address}|broadcast:{port}

The radiogram protocol allows for broadcasting to multiple
listeners in addition to normal point-to-point communications. The
following code shows a radiogram being broadcast on channel 10:

DatagramConnection sendConn = (DatagramConnection)
Connector.open("radiogram://broadcast:10");

dg.writeUTF("My message");
sendConn.send(dg);

and the following code receives a radiogram on channel 10:

DatagramConnection recvConn = (DatagramConnection)
Connector.open("radiogram://:10");

recvConn.receive(dg);
String answer = dg.readUTF();

An application can also send a radiogram to a specific Sun
SPOT device. In the following example, the message “Hello world”
is sent to the remote Sun SPOT at address 1020 on channel 42. The
connection established between both Sun SPOTs can then wait for
receiving a datagram from the remote Sun SPOT:

StreamConnection conn = (StreamConnection)
Connector.open("radiogram://1020:42");

Datagram dg =
conn.newDatagram(conn.getMaximumLength());

dg.writeUTF("Hello world");
conn.send(dg); // send the datagram
conn.receive(dg); // reuse the datagram to receive

// from remote SPOT

83

The Sun SPOT radio range is 90 meters. Other facilities exist to
reduce transmission power so that Sun SPOTs only communicate
with other Sun SPOTs in close range.

6.4 Debugging Support

The Squawk JVM allows applications on SPOT devices to be
debugged using Java debugging environments that support the Java
Debug Wire Protocol (JDWP) [JDW], such as NetBeans and JDB.
Due to strict memory constraints on the SPOT device, Squawk
does not implement JDWP fully on the device, but splits the work
between three components, as shown in Figure 4. There is a debug
proxy that runs on the developer’s workstation, a debug agent that
is used to control the application being debugged and communicate
with the debug proxy, and a small debug agent support in the VM
itself. The debug isolate and debug proxy communicate using a
subset of the JDWP known as the Squawk Debug Wire Protocol
(SDWP).

Figure 4. The Squawk Debug Architecture

This split architecture allows many of the memory-consuming
components of a Java Platform Debugger Architecture (JPDA)-
compliant debugging environment to be located on the develop-
ment workstation instead of in Squawk, reducing memory over-
head. In particular, the debug proxy on the workstation has access
to the original class files that went into the suites on the device,
so it has access to line number tables and method, field, and local
variable names that may have been stripped from the suites.

By default, Squawk is build with SDWP support, as well as a
second low-level debugger to aid in debugging the hardware. Each
of these debuggers adds a 10% overhead on the interpreter loop, by
checking whether a breakpoint has been set or not.

6.5 Authentication of Deployed Applications

In a split VM implementation, assurances need to be given as to the
authenticity of the file to be run on-device, given that someone may
tamper with the file to be deployed from the translator (the desktop
part of the VM) and such file may bring down the VM on the device
(something not permitted in Java VMs).

At suite creation time, a digital signature is applied to the suite
using a private key (stored in the desktop). The on-device VM
checks the validity of the suite at deploy time, by authenticating
the suite’s signature using its public key (stored on-device). If the
signature is authenticated, the suite is installed on the device. The
public and private key pairs are generated at SDK installation time.

7. Experimental Results
We measured a variety of data on the Sun SPOT platform running
medium-sized Java applications that are used in the object oriented
community; Richards and Delta Blue; the Game of Life; a Math ap-
plication that measures integer and long computation performance;
and the Java ME GrinderBench benchmarks used in cell phones;
Chess, Crypto, KXML, Parallel, and PNG.

The Richards benchmark, a medium-sized language benchmark
(400-500 lines) simulates the task dispatcher in the kernel of an
operating system. The original program by Richards was written
in BCPL. Richards (gibbons) is Gibbons’ translation into Java of
a version of the benchmark in C; the code is not very object-
oriented. Richards (deutsch no acc) is Deutsch’s object-oriented
implementation of this benchmark, where some of the task state
is moved into separate objects. There are several variations to
each: Richards (gibbons final) defines classes and methods to be
final where possible, Richards (gibbons no switch) replaces an 8-
valued integer with three booleans and the switch in the scheduler is
replaced by tests of these variables, Richards (deutsch acc virtual)
encapsulates all object state so that it is accessed via methods,
Richards (deutsch acc final) virtual calls are made non-virtual by
making classes and methods final where possible, and Richards
(deutsch acc interface) has all classes inheriting from an interface
class, simulating the most object-oriented framework-like behavior.

DeltaBlue is a constraint solver benchmark of about 1000 lines
of code. The Game of Life simulates a cellular automaton which in
turn simulates life of cells in a grid. The Math benchmark tests the
performance of integer and long operations.

The benchmarks in the GrinderBench suite are as follows:
Chess is a chess playing engine that is used to determine a set
of chess moves, Crypto is a suite of algorithms including DES,
DESede, IDEA, Blowfish, and Twofish, measuring the performance
of Java implementations in cryptographic transactions, KXML
measures XML parsing and/or DOM tree manipulation, Parallel
exercises a Java implementation’s ability to perform its user inter-
face while interacting with the Internet, having multiple threads
with some communication threads running on the background,
and PNG shows how fast a Java implementation can decode a
PNG photo image of a typical size used on a mobile phone. The
GrinderMarkTM is a single number score that the Embedded Micro-
processor Benchmark Consortium (EEMBC) provides, in addition
to scores based on individual benchmark applications within the
GrinderBench suite.

7.1 Static Footprint: Interpreted JVMs on the ARM

We provide static footprint measurements for two different ver-
sions of Squawk: Squawk 1.0 (Squawk with CLDC 1.0 libraries,
no debugging support, and no authentication of suite support), and
Squawk 1.1 (Squawk with CLDC 1.1 (floating point) libraries,
SDWP debugging support, authentication of suite files, a partial im-
plementation of the Information Module Profile (IMP), and a sec-
ond low-level debugger used to debug the hardware). Squawk 1.0
measurements were collected on an ARM7-based Sun SPOT with
256 KB of RAM and 2 MB of flash, and Squawk 1.1 measure-
ments were collected on an ARM9-based Sun SPOT with 512 KB
of RAM and 4 MB of flash.

The Squawk 1.0 interpreter executable is 80 KB and ran out of
RAM. The rest of the VM and its libraries (CLDC 1.0, network-
ing (IEEE 802.15.4 media access control (MAC) layer), radio li-
brary to drive the Chipcon radio, and hardware and sensor inte-
gration/control libraries) occupy 270 KB and ran out of flash. The
demo sensor board library is 20 KB.

The Squawk 1.1 interpreter executable is 149 KB, the rest of
the VM is 363 KB and the libraries (CLDC 1.1, networking (IEEE
802.15.4 media access control (MAC) layer), radio library to drive

84

VM Target Debugging Support VM CLDC libraries Sun SPOT libraries
Squawk 1.0 ARM7tdmi No 80 KB 270 KB
Squawk 1.1 ARM920T Yes 149 KB 363 KB 156 KB
KVM 1.1 ARMv4l No 131 KB 504 KB n/a
KVM d 1.1 ARMv4l Yes 198 KB 504 KB n/a

Table 1. Static Footprint of Interpreted JVMs Running on an ARM

the Chipcon radio, and hardware and sensor integration/control
libraries) occupy 156 KB. The demo sensor board library is 20 KB.

The size difference between Squawk 1.0 and Squawk 1.1 are
due to the new functionality added to the VM in a short amount of
time in order to obtain Java ME 1.1 compliance. The codebase has
not been cleaned up at this point in time.

Table 1 shows comparisons of the Squawk footprint against the
KVM CLDC 1.1 as compiled on an ARMv4l Linux machine. Two
versions of the KVM were compiled: KVM 1.1, the production
build, excluding the ROMizing library, and KVM d 1.1, the same
build including KDWP support.

As seen in the table, Squawk 1.1’s size is comparable to that of
KVM 1.1 and KVM d 1.1. Both Squawk 1.1 and KVM 1.1 provide
CLDC 1.1 libraries, and both Squawk 1.1 and KVM d 1.1 provide
debugging support that allows developers to debug Java programs
with any JDWP-compatible debugger.

7.2 Sun SPOT Memory Map

Squawk runs out of flash memory on the (ARM9-based) Sun SPOT.
The Sun SPOT flash is very low power with 1 million cycles/sector
endurance. Out of the 4 MB of flash, one third is reserved for sys-
tem code, not all of which is in use, and two thirds are reserved for
applications and data. Figure 5 shows the distribution of memory
for the different components of the Squawk VM and associated li-
braries. The system memory is configured as follows: 256 KB are
reserved for the VM binary; 149 KB are in use at present, 512 KB
are reserved for the VM suite; 363 KB are used, 64 KB of which
are for the debugger (the debug agent support in the VM), 448 KB
are reserved for the library suite; 156 KB are in user, and 64 KB
are reserved and used by the bootloader. The user memory has two
application slots, each of 384 KB, and 2,040 KB of data space avail-
able to applications.

The Sun SPOT has 512 KB of SRAM. Less than 20% of SRAM
is reserved for system memory, the rest is available for application
objects. Figure 6 shows the distribution of RAM memory. The
system memory is configured as follows: 16 KB are used by the
page tables, 8 KB are used by the C stack, 8 KB are used by the
GC stack, 16 KB are used by the C heap, 5 KB are used by C data,
and 14 KB are used at startup. The Java heap has 459 KB reserved
for it.

7.3 Performance: Interpreted JVMs on the ARM

Table 2 shows results obtained from running Squawk 1.1 on a
180 MHz 32-bit ARM920T Sun SPOT and the KVM 1.1 on a Sharp
Zaurus 200 MHz 32-bit ARMv4l Linux machine. The Richards
results for Squawk show that, as expected, performance degrades
when virtual accessors and interfaces are introduced, and that the
use of finals slightly improves the performance. The KVM shows
a similar trend, though it performs much worse when virtual acces-
sors and interfaces are introduced.

Table 3 shows preliminary data for the performance of Squawk
CLDC 1.1, compared to the KVM CLDC 1.0, when using the
GrinderBench benchmarks. Squawk was run on a Sun SPOT
ARM920T configured with 460 KB of heap. The KVM data was
provided by Sun’s Java ME team and was run on an ARM926EJ-S
60 MHz with 1 MB of Java heap.

Figure 5. Sun SPOT Flash Memory

Figure 6. Sun SPOT RAM Memory

85

Benchmark Squawk (ARM920T 180 MHz) ms KVM (ARMv4l 200 MHz) ms
Richards (gibbons) 1,296 980
Richards (gibbons final) 1,287 948
Richards (gibbons no switch) 1,412 1,262
Richards (deutsch no acc) 1,895 2,118
Richards (deutsch acc virtual) 3,314 6,002
Richards (deutsch acc final) 3,303 3,119
Richards (deutsch acc interface) 3,664 4,555
DeltaBlue 792 470
Game of Life 6,699 5,848
Math int 6,764 4,077
Math long 27,282 12,813

Table 2. Runtime Performance of Interpreted JVMs Running on an ARM

VM MHz Heap Chess Crypto KXML Parallel PNG GrinderMark
Squawk 1.1 180 460 KB 264 550 452 593 563 456.73
KVM 1.0 60 1 MB 288 269 399 272 244 290.01

Table 3. GrinderBench Results

The data shows that the Squawk JVM performs in the general
ballpark of KVM; i.e., that Squawk is comparable in performance
to other interpreted JVMs despite the fact the JVM itself is mainly
written in Java.

7.4 Suite File vs Class file Sizes

We compare the sizes of Java .class files, Java compressed .class file
(.jar file), and the corresponding Squawk .suite file. The Grinder-
Bench benchmarks require input data, such data is stored in re-
source files and can account for up to 20% of the size of the com-
bined .class and resource files. Table 4 shows the results of measur-
ing the size of the Java class files, compressed JAR file equivalent,
and the corresponding Squawk suite files on a SPOT.

As seen in Table 4, the compounded size of the suite files is
37% the size of standard class and resources files, and 56% and
90% the size of compressed JAR files. This latter figure is large
when resource files are included in the JAR file: JAR files compress
both code and data, whereas the Squawk suite files only compress
code by using a different representation of the Java bytecodes, and
it does not compress data in any way. The first set of data is more
representative of how Java applications get deployed and used on a
Sun SPOT.

7.5 Bytecode Optimization

We present measurements of the bytecode optimizer as running
the Richards benchmarks on a desktop machine. Future work will
integrate the bytecode optimizer into the Squawk for Sun SPOT
release, without affecting debuggability of the optimized class files.

Figure 7 shows three pieces of data: applications running with-
out any optimizations (the base line at 100%), applications opti-
mized with constant folding and constant and copy propagation,
and applications optimized with inlining and the previous optimiza-
tions. Note that the benefits of these optimizations will be better
seen once dead code elimination is implemented in Squawk.

As seen in Figure 7, inlining of methods greatly improves the
performance of the more object-oriented versions of the Richards
benchmark, reducing execution time to almost half when all object
state is encapsulated and accessed via methods.

7.6 Radio Performance

The radio communicates over-the-air at 250 kbps, and has an on-
board ring buffer large enough for at least one radio packet. If a

second packet is received before the first is read from the buffer,
and both packets are reasonably large, then the second packet will
be lost.

The radio stack is designed so that data does not get copied
through the layers and consequently garbage is kept to a minimum.
As a result, applications that do little processing and generate
minimal garbage can deal with data at a continuous rate faster than
250 kbps, making it possible to receive packets near continuously.
This is especially so for smaller packets where the buffer may hold
more than one.

Also, for most practical applications, packets do not arrive con-
tinuously and the presence of the buffer means the actual process-
ing rate is not as high. Nevertheless, for applications that do signif-
icant processing and receive lots of packets in very quick succes-
sion, packets may be lost.

If the packets being lost are point-to-point from another Sun
SPOT, that Sun SPOT will not get acknowledgements and will
therefore retry, making things slower. If the pakcets are broadcast
packets, then neither sender nor receiver will know that the packets
were missed. This is the nature of the IEEE 802.15.4 protocol. If
an application needs to guarantee delivery of broadcast packets, an
acknowledgement scheme at the application level is needed.

It’s worth pointing out that the same considerations apply if a
packet is lost due to radio interference. Hence, a design to solve the
interference problem will also solve the overflow issues.

8. Conclusions
The Squawk Java VM is a small, mostly written in Java JVM that
can easily be ported to run on other platforms.

Squawk was designed for small, resource constrained devices,
and can run without need for an underlying operating system on
the Sun SPOT device. Squawk’s architecture is that of a split VM
architecture, where class loading is done on the desktop, and exe-
cution is done on-device. A file format known as suites is used to
transfer applications from the desktop to the device.

Facilities easily implemented in Squawk, such as the isolation
mechanism and isolate migration, are of much interest and use
in writing wireless sensor network applications, as isolates can
be reified, and applications can be migrated from one device to
another.

86

Benchmark resources files class files JAR file suite file suite/(class+resource) suite/jar
Richards (gibbons) 0 10,975 7,968 4,072 0.37 0.51
Richards (gibbons final) 0 10,981 7,973 4,080 0.37 0.51
Richards (gibbons no switch) 0 10,865 7,972 4,156 0.38 0.52
Richards (deutsch no acc) 0 16,560 11,637 6,044 0.36 0.52
Richards (deutsch acc virtual) 0 21,442 13,180 8,040 0.37 0.61
Richards (deutsch acc final) 0 21,440 13,191 8,040 0.37 0.61
Richards (deutsch acc interface) 0 22,632 14,131 8,040 0.39 0.63
DeltaBlue 0 27,584 16,478 9,212 0.33 0.56
Game of Life 0 8,467 5,444 3,472 0.41 0.64
Math 0 2,224 2,122 1,264 0.57 0.60
Subtotal 0 153,170 100,096 56,420 0.37 0.56
Chess 58,878 133,435 33,780 33,780 0.25 0.57
Crypto 9,954 89,954 60,690 55,232 0.55 0.91
KXML 19,109 111,346 66,318 57,732 0.44 0.87
Parallel 38,731 99,747 49,848 49,848 0.50 1.29
PNG 15,472 49,401 46,025 33,404 0.51 0.73
Subtotal 142,144 483,883 256,661 229,996 0.37 0.90

Table 4. Class File, JAR, and Suite File Size Comparison in Bytes

Figure 7. Results of Performing Bytecode Optimizations on the Richards Benchmarks

Squawk provides a wireless API for the IEEE 802.15.4 protocol,
which extends on the generic connection framework (GCF) and
provides for radio and radiogram connection types. The radiogram
connection allows for normal point-to-point communication, as
well as broadcasting to multiple listeners.

Results show that, even without performance tuning, the Squawk
JVM performs reasonably well when compared to other interpreted
JVMs, even though Squawk is mainly written in Java. Squawk’s
size is small despite implementing OS-level functionality to run on
the bare metal, and the suite files it generates are about one third of
the size of standard Java class files.

Acknowledgments
The original design and implementation of Squawk was due to Nik
Shaylor.

The initial drive for the Squawk on Sun SPOTs was due to John
Nolan. John also implemented the demo sensor board library and
some of the initial applications on the Sun SPOTs.

We would like to thank Mario Wolczko, Greg Wright, Mikel
Lujan, Mike Van Emmerik, and Randy Smith for comments and
suggestions on ways of improving the presentation of this paper.

Thanks also go to Bill Pittori for providing access to a Linux/X86
and ARMv4l machines to compile and collect KVM data, Simon
Long for collecting some of the data for this paper, Eric Arseneau
and Martin Morissette for contributing to the CLDC 1.1 confor-
mance, Eric, Vipul Gupta and Christian Puhringer for the design
and implementation of the suite signing architecture, and Nancy
Snyder for the diagrams in this paper.

For more information on Squawk refer to http://research.
sun.com/projects/squawk and for more information on the Sun
SPOT project refer to http://www.sunspotworld.com

87

References
[AAB+99] B. Alpern, D. Attanasio, J. Barton, A. Cocchi, S.F. Hummel,

D. Lieber, M. Mergen, T. Ngo, J. Shepherd, and S. Smith.
Implementing Jalapeño in Java. In Proceedings ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), Denver,
Colorado, November 1999. ACM Press.

[AAB+00] B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P. Cheng,
J.D. Choi, A. Cocchi, S.J. Fink, D. Grove, M. Hind, S.F.
Hummel, D. Lieber, V. Litnivoc, M.F. Mergen, T. Ngo, J.R.
Russell, V. Sarkar, M.J. Serrano, J.C. Shepherd, S. Smith,
V.C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño
virtual machine. IBM System Journal, 39(1), February 2000.

[All01] D. Allison. Embedded Linux applications: An overview.
http://www-128.ibm.com/developerworks/linux/
library/l-embl.html, 2001.

[CLD] JSR 139 - CLDC 1.1. http://jcp.org/aboutJava/
communityprocess/final/jsr139/index.html.

[Cza00] G. Czajkowski. Application isolation in the JavaTM virtual
machine. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages
and Applications OOPSLA, pages 354–366, Minneapolis,
Minnesota, October 15–19 2000.

[FHV03] C. Flack, T. Hosking, and J. Vitek. Idioms in OVM. Technical
Report CSD-TR-03-017, Purdue University, Department of
Computer Science, 2003.

[GFWK02] M. Golm, M. Felser, C. Wawersich, and J. Kleinoeder. The
JX operating system. In Proceedings of the USENIX Annual
Technical Conference, pages 45–58, Monterey, CA, June
2002.

[IKM+97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical Smalltalk
written in itself. In Proceedings ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA). ACM Press, October 1997.

[JDW] Java Platform Debugger Architecture - Java Debug Wire
Protocol. http://java.sun.com/products/jpda/doc/
jdwp-spec.html.

[JL96] R. Jones and R. Lins. Garbage Collection–Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, Chichester, England, 1996.

[JSR05] JSR 121 - Application isolation API specification.
http://jcp.org/aboutJava/communityprocess/
pfd/jsr121/index.html, 2005.

[Loh05] S. Lohmeier. Jini on the Jnode Java OS. Online article at
http://monochromata.de/jnodejni.html, June 2005.

[Mus05] Java 1.6 Mustang. https://mustang.dev.java.net/,
2005.

[PBF+03] K. Palacz, J. Baker, C. Flack, C. Grothorff, H. Yamauchi,
and J. Vitek. Engineering a customizable intermediate rep-
resentation. In Proceedings of the Workshop on Interpreters,
Virtual Machines and Emulators (IVME), pages 67–76. ACM
Press, June 2003.

[SCS05] R. Smith, C. Cifuentes, and D. Simon. Enabling JavaTM for
small wireless devices with Squawk and Spotworld. OOP-
SLA Workshop Bringing Software to Pervasive Computing,
Oct 16 2005.

[SMES01] D. Schneider, B. Mathiske, M. Ernst, and M. Seidl. Au-
tomatic persistent memory management for the Spotless
JavaTM virtual machine on the Palm connected organizer. In
Proceedings of the JavaTM Virtual Machine Research and
Technology Symposium (JVM’01). USENIX, April 2001.

[SSB03] N. Shaylor, D. Simon, and B. Bush. A Java virtual machine
architecture for very small devices. In Proceedings of
the Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 34–41. ACM Press, June
2003.

[TBS99] A. Taivalsaari, B. Bill, and D. Simon. The Spotless
system: Implementing a JavaTM system for the Palm
connected organizer. Technical Report SMLI TR-99-73,
Sun Microsystems Research Laboratories, Mountain View,
California, February 1999.

[USA05] D. Ungar, A. Spitz, and A. Ausch. Constructing a metacir-
cular virtual machine in an exploratory programming envi-
ronment. In Companion Proceedings to the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Lan-
guages and Applications OOPSLA, pages 11–20. ACM Press,
October 2005.

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

