
Java maps and sets [Bono] 1

Java Map and Set collections

• Exceptions poll from last time.

• Comparator example (unofficial HW problem

from last time)

• Java Set container

– idea

– interface

• Java Map container

– idea

– interface

– concordance example

– (Next lecture: iterating over a map)

Announcements

• Next set of course material videos available on

binary search and search trees. Due by Tu 11/5

lecture.

• Reminder: MT 2 on Tues, 11/12 (2 weeks away)

• MT 2 Sample exams available

Java maps and sets [Bono] 2

Additional example of implementing an

interface
• Problem: sort an array of Rectangle’s in increasing order by area.

• Do not implement your own sort method!

public static void sortIncrByArea(

 Rectangle[] rects) {

 Arrays.sort(

Stacks & Queues [Bono] 3

Java Collections

• Collection is an interface in Java

• Linear collections:

 ArrayList, LinkedList, Stack, Queue

– ordering of elements depended on order and type of

insertion (i.e. by the client)

• Two others today: Set and Map

– ordering is determined internally by the class based on

value of the element

– goal: want Set or Map to be able to efficiently search by

that value.

Java maps and sets [Bono] 4

Set ADT

(ADT = abstract data type)

Operations:

• add an element (no duplicate elements added)

• remove an element

• ask if an object is in the set

• list all the elements

– (order of visiting depends on the kind of set created)

Java maps and sets [Bono] 5

Simple applications of Sets

• Determine the number of different words in a text

file.

• Spell-checker (Ex from Section 15.3.2 of text)

Java maps and sets [Bono] 6

Java maps and sets [Bono] 7

Java Set interface

• Two implementations:

 Set<ElmtType> s = new HashSet<ElmtType>();

– fastest. for when you don't care about order when iterating,

or if you don’t need to iterate.

– ElmtType must support equals() and hashCode()

 Set<ElmtType> s = new TreeSet<ElmtType>();

– for when you need to visit element in sorted order.

– ElmtType must implement Comparable (has compareTo)

• Normally use interface type for object variable. E.g.,

Set<String> uniqueWords =

 new TreeSet<>();

Java maps and sets [Bono] 8

Java Set interface (cont.)
Set<String> mySet =

 new TreeSet<String>(); creates empty set

mySet.add("the");

 if wasn't there, adds it and returns true,

 o.w., returns false and set unchanged

mySet.remove("blob");

 if it was there, removes it and returns true,

 o.w., returns false and set unchanged

mySet.contains("the")

 returns true iff "the" is in the set

size() isEmpty()

Iterating over a Set
• Iterator is also an interface

• Order elements visited depends on kind of Set involved.

• Can iterate over other Collections like we did with

LinkedList. E.g.,

Set<String> mySet = …;

...

Iterator<String> iter =

 mySet.iterator();

while (iter.hasNext()) {

 String word = iter.next();

 System.out.println(word);

 // or do something else with it

}

Java maps and sets [Bono] 9

Who owns elements in a Set?

• Like with ArrayList/LinkedList elements

are not "owned" by the set: i.e., no defensive copy

made. (fine for those classes)

• safest if ElmtType is an immutable type (e.g.,

String, Integer)

if not . . .

• Unsafe to mutate element contents while it's in the

Set: recall, organized by the value of elements

• example next slide . . .

Java maps and sets [Bono] 10

Illustration of invalidating a Set by mutating a

value while it’s part of the Set
Set<Point> setOfPoints = . . .

Point p = new Point(3, 5);

setOfPoints.add(p);

. . .

p.translate(10, 20); // BAD -- invalidates set

Java maps and sets [Bono] 11

Another example of invalidating the Set

• While iterating over the set:

• Note: iterator next() returns a reference to the element:

Set<Point> setOfPoints = . . .

. . .

int x = 4;

int y = 1;

Iterator<Point> iter =

 setOfPoints.iterator();

while (iter.hasNext()) {

 Point p = iter.next();

 p.translate(x, y); // BAD -- invalidates set

 x++;

 y++;

}

Java maps and sets [Bono] 12

How many different words in a file?

public static int numUnique(Scanner in) {

Java maps and sets [Bono] 13

Java maps and sets [Bono] 14

Map ADT

• A map stores a collection of (key,value) pairs

• keys are unique: a pair can be identified by its key

Operations:

• add a new (key, value) pair (called an entry)

• remove an entry, given its key

• lookup a value, given its key

• update the value part of an entry, given its key

• list all the entries

– (order of visiting depends on the kind of map created)

Example: map of students and their

scores

Java maps and sets [Bono] 15

Xiao

Lan

Nira

Joe

100

87

50

Key set
Value

set

Mary

Java maps and sets [Bono] 16

Java Map interface

• Creation is same as Set, but two type parameters for

generic class.

 Map<KeyType, ValueType> map =

 new HashMap<KeyType,ValueType>();

– fastest. for when you don't care about order when iterating,

or if you don’t need to iterate.

– KeyType must support equals() and hashCode()

 Map<KeyType, ValueType> map =

 new TreeMap<KeyType,ValueType>();

– for when you need to visit element in sorted order by keys.

– KeyType must implement Comparable (has compareTo)

Java maps and sets [Bono] 17

Java Map interface (cont.)

• Create an empty map:

 Map<String, Integer> scores =

 new TreeMap<String, Integer>();

• Note: put operation can be used in two ways:

• Suppose we do the two operations below in sequence:

 scores.put("Joe", 98); // inserts

 if key wasn't there, adds it and returns null,

 o.w., returns the old value that went with this key

 scores.put("Joe", 100); // updates

 changes Joe's score to 100. if "Joe" hadn't been

 there before, this would have added him.

Java maps and sets [Bono] 18

Java Map interface (cont.)

Map<String, Integer> scores =

 new TreeMap<String, Integer>();

scores.remove("Joe");

 if key was there, removes it and returns

 the value that went with this key,

 o.w., returns null and map is unchanged

Integer score = scores.get("Joe");

 return the value that goes with "Joe",

 or null if "Joe" is not in the map

boolean isThere = scores.containsKey("Joe");

More about get

• Can't just use return value of get as valid object

reference, because it returns null sometimes:

Map<String, Integer> scores = new HashMap<>();

int score = scores.get("Joe"); // crashes

instead…

Integer scoreI = scores.get("Joe");

if (scoreI != null) {

 int score = scoreI; // safe to unwrap Integer

}

Java maps and sets [Bono] 19

Java maps and sets [Bono] 20

Map seen as an array

• Map ADT is sometimes called an associative array

 System.out.println(scores.get(“Joe”));

• ArrayList index syntax, but it’s not random access

• But it is fast:
– TreeMap: get, put, remove O(log n) each.

– HashMap: get, put, remove O(1) each (!)

• E.g., Need an “array” indexed by a String?

 . . . use a Map

Java maps and sets [Bono] 21

Example: concordance

Problem: find the number of occurrences of each

word in a text document.

– Why?

– (Variation also finds the page numbers or line numbers

where those words occur in the document.)

Java maps and sets [Bono] 22

Example: concordance (cont.)

• Similar to finding frequencies of student scores
(from earlier in the semester):

// sample scores: 72 99 84 99 72 85 72 80

// scores are all in range [0..100]

int[] freq = new int[101];

for each score

 freq[score]++;

• Can we use an array in the same way for this
problem?:

 Find the number of occurrences of each word in a text
document.

	Slide 1: Java Map and Set collections
	Slide 2: Announcements
	Slide 3: Additional example of implementing an interface
	Slide 4: Java Collections
	Slide 5: Set ADT
	Slide 6: Simple applications of Sets
	Slide 7: Java Set interface
	Slide 8: Java Set interface (cont.)
	Slide 9: Iterating over a Set
	Slide 10: Who owns elements in a Set?
	Slide 11: Illustration of invalidating a Set by mutating a value while it’s part of the Set
	Slide 12: Another example of invalidating the Set
	Slide 13: How many different words in a file?
	Slide 14: Map ADT
	Slide 15: Example: map of students and their scores
	Slide 16: Java Map interface
	Slide 17: Java Map interface (cont.)
	Slide 18: Java Map interface (cont.)
	Slide 19: More about get
	Slide 20: Map seen as an array
	Slide 21: Example: concordance
	Slide 22: Example: concordance (cont.)

