Java Map and Set collections

Exceptions poll from last time.

Comparator example (unofficial HW problem
from last time)

Java Set container
— 1dea

— 1nterface

Java Map container
— 1dea

— Interface

— concordance example

— (Next lecture: iterating over a map)
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Announcements

 Next set of course material videos available on
binary search and search trees. Due by Tu 11/5
lecture.

 Reminder: MT 2 on Tues, 11/12 (2 weeks away)
« MT 2 Sample exams available

Java maps and sets [Bono]



Additional example of implementing an
interface

* Problem: sort an array of Rectangle’s in increasing order by area.

* Do not implement your own sort method!

public static void sortIncrByArea (
Rectangle|[] rects) {

Arrays.sort(
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Java Collections

e Collection 1s an interface in Java
 Linear collections:
ArrayList, LinkedList, Stack, Queue

— ordering of elements depended on order and type of
insertion (1.e. by the client)

* Two others today: Set and Map

— ordering 1s determined internally by the class based on
value of the element

— goal: want Set or Map to be able to efficiently search by
that value.
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Set ADT

(ADT = abstract data type)

Operations:

e add an element (no duplicate elements added)
* remove an element

 ask i1f an object 1s 1n the set

e list all the elements

— (order of visiting depends on the kind of set created)
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Simple applications of Sets

 Determine the number of different words in a text
file.

* Spell-checker (Ex from Section 15.3.2 of text)
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Java Set interface

* Two implementations:
Set<ElmtType> s = new HashSet<ElmtType>() ;

— fastest. for when you don't care about order when iterating,
or 1f you don’t need to iterate.

— ElmtType must support equals () and hashCode ()

Set<ElmtType> s = new TreeSet<ElmtType>() ;

— for when you need to visit element 1n sorted order.
- ElmtType must implement Comparable (has compareTo)

* Normally use interface type for object variable. E.g.,

Set<String> uniqueWords =
new TreeSet<>() ;
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Java Set interface (cont.)

Set<String> mySet =
new TreeSet<String>() ; creates empty set

mySet.add ("the") ;

if wasn't there, adds it and returns true,
0.w., returns false and set unchanged

mySet.remove ("blob") ;
if 1t was there, removes it and returns true,

0.w., returns false and set unchanged

mySet.contains ("the")
returns true 1ff "the" 1s in the set

size () isEmpty ()
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[terating over a Set

« Iterator isalso an interface
* Order elements visited depends on kind of Set involved.

 (an tterate over other Collections like we did with
LinkedList. E.g.,
Set<String> mySet = ..;

Iterator<String> iter =
mySet.iterator() ;

while (iter.hasNext()) {
String word = iter.next();

System.out.println (word) ;
// or do something else with it
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Who owns elements in a Set?

* Like with ArrayList/LinkedList clements

are not "owned" by the set: 1.e., no defensive copy
made. (fine for those classes)

 safest 1f EImtType 1s an immutable type (e.g.,
String, Integer)

if not . . .

 Unsafe to mutate element contents while it's in the
Set: recall, organized by the value of elements

« example next shide . . .
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[llustration of invalidating a Set by mutating a
value while 1t’s part of the Set

Set<Point> setOfPoints = .
Point p = new Point(3, 5);
setOfPoints.add (p) ;

p.translate (10, 20); // BAD -- invalidates set
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Another example of invalidating the Set

« While iterating over the set:

 Note: 1terator next () returns a reference to the element:
Set<Point> setOfPoints = .

int x = 4;
int y =1;
Iterator<Point> iter =
setOfPoints.iterator () ;
while (iter.hasNext()) {
Point p = iter.next();
p.translate(x, y); // BAD -- invalidates set

X++;
y++;
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How many different words 1n a file?

public static int numUnique (Scanner in) {
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Map ADT

* A map stores a collection of (key,value) pairs

* keys are unique: a pair can be identified by its key
Operations:

* add a new (key, value) pair (called an entry)

* remove an entry, given its key

* lookup a value, given its key

» update the value part of an entry, given its key

list all the entries

— (order of visiting depends on the kind of map created)

Java maps and sets [Bono] 14



Example

Key set

: map of students and their
SCores

Value
set
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Java Map iterface

» Creation 1s same as Set, but fwo type parameters for
generic class.

Map<KeyType, ValueType> map =
new HashMap<KeyType,ValueType>() ;

— fastest. for when you don't care about order when iterating,
or 1f you don’t need to iterate.

- KeyType must support equals () and hashCode ()

Map<KeyType, ValueType> map =
new TreeMap<KeyType,ValueType>() ;

— for when you need to visit element in sorted order by keys.
—- KeyType must implement Comparable (has compareTo)
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Java Map interface (cont.)

e Create an empty map:

Map<String, Integer> scores =
new TreeMap<String, Integer>() ;
* Note: put operation can be used in two ways:

* Suppose we do the two operations below 1n sequence:

scores.put("Joe", 98); // inserts

if key wasn't there, adds i1t and returns null,
0.w., returns the old value that went with this key

scores.put("Joe", 100); // updates

changes Joe's score to 100. 1f "Joe" hadn't been
there before, this would have added him.
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Java Map interface (cont.)

Map<String, Integer> scores =
new TreeMap<String, Integer>()

scores.remove ("Joe") ;
if key was there, removes it and returns
the value that went with this key,
0.w., returns null and map is unchanged

Integer score = scores.get('"Joe");

return the value that goes with "Joe",
or null if "Joe" is not in the map

boolean isThere = scores.containsKey ("Joe") ;
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More about get

« Can't just use return value of get as valid object
reference, because 1t returns null sometimes:

Map<String, Integer> scores = new HashMap<>() ;
int score = scores.get("Joe"); // crashes

instead...

Integer scorel = scores.get('"Joe");
if (scoreIl '= null) {

int score = scorel; // safe to unwrap Integer
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Map seen as an array

Map ADT 1s sometimes called an associative array
System.out.println(scores.get (“Joe”)) ;

ArrayList index syntax, but 1t’s not random access

But it 1s fast:

— TreeMap: get, put, remove O(log n) each.
— HashMap: get, put, remove O(1) each (!)

E.g., Need an “array” indexed by a String?

... use a Map
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Example: concordance

Problem: find the number of occurrences of each
word 1n a text document.
— Why?
— (Variation also finds the page numbers or line numbers
where those words occur 1n the document.)
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Example: concordance (cont.)

« Similar to finding frequencies of student scores
(from earlier 1n the semester):

// sample scores: 72 99 84 99 72 85 72 80
// scores are all in range [0..100]

int[] freq = new int[101];

for each score
freq[score] ++;

» Can we use an array in the same way for this
problem?:

Find the number of occurrences of each word 1n a text

document.
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