Java Map and Set collections

Exceptions poll from last time.

Comparator example (unofficial HW problem
from last time)

Java Set container
— 1dea

— 1nterface

Java Map container
— 1dea

— Interface

— concordance example

— (Next lecture: iterating over a map)

Java maps and sets [Bono]

Announcements

 Next set of course material videos available on
binary search and search trees. Due by Tu 11/5
lecture.

 Reminder: MT 2 on Tues, 11/12 (2 weeks away)
« MT 2 Sample exams available

Java maps and sets [Bono]

Additional example of implementing an
interface

* Problem: sort an array of Rectangle’s in increasing order by area.

* Do not implement your own sort method!

public static void sortIncrByArea (
Rectangle|[] rects) {

Arrays.sort(

Stacks & Queues [Bono]

Java Collections

e Collection 1s an interface in Java
 Linear collections:
ArrayList, LinkedList, Stack, Queue

— ordering of elements depended on order and type of
insertion (1.e. by the client)

* Two others today: Set and Map

— ordering 1s determined internally by the class based on
value of the element

— goal: want Set or Map to be able to efficiently search by
that value.

Java maps and sets [Bono] 4

Set ADT

(ADT = abstract data type)

Operations:

e add an element (no duplicate elements added)
* remove an element

 ask i1f an object 1s 1n the set

e list all the elements

— (order of visiting depends on the kind of set created)

Java maps and sets [Bono]

Simple applications of Sets

 Determine the number of different words in a text
file.

* Spell-checker (Ex from Section 15.3.2 of text)

Java maps and sets [Bono]

Java Set interface

* Two implementations:
Set<ElmtType> s = new HashSet<ElmtType>() ;

— fastest. for when you don't care about order when iterating,
or 1f you don’t need to iterate.

— ElmtType must support equals () and hashCode ()

Set<ElmtType> s = new TreeSet<ElmtType>() ;

— for when you need to visit element 1n sorted order.
- ElmtType must implement Comparable (has compareTo)

* Normally use interface type for object variable. E.g.,

Set<String> uniqueWords =
new TreeSet<>() ;

Java maps and sets [Bono] 7

Java Set interface (cont.)

Set<String> mySet =
new TreeSet<String>() ; creates empty set

mySet.add ("the") ;

if wasn't there, adds it and returns true,
0.w., returns false and set unchanged

mySet.remove ("blob") ;
if 1t was there, removes it and returns true,

0.w., returns false and set unchanged

mySet.contains ("the")
returns true 1ff "the" 1s in the set

size () isEmpty ()

Java maps and sets [Bono]

[terating over a Set

« Iterator isalso an interface
* Order elements visited depends on kind of Set involved.

 (an tterate over other Collections like we did with
LinkedList. E.g.,
Set<String> mySet = ..;

Iterator<String> iter =
mySet.iterator() ;

while (iter.hasNext()) {
String word = iter.next();

System.out.println (word) ;
// or do something else with it

Java maps and sets [Bono]

Who owns elements in a Set?

* Like with ArrayList/LinkedList clements

are not "owned" by the set: 1.e., no defensive copy
made. (fine for those classes)

 safest 1f EImtType 1s an immutable type (e.g.,
String, Integer)

if not . . .

 Unsafe to mutate element contents while it's in the
Set: recall, organized by the value of elements

« example next shide . . .

Java maps and sets [Bono] 10

[llustration of invalidating a Set by mutating a
value while 1t’s part of the Set

Set<Point> setOfPoints = .
Point p = new Point(3, 5);
setOfPoints.add (p) ;

p.translate (10, 20); // BAD -- invalidates set

Java maps and sets [Bono] 11

Another example of invalidating the Set

« While iterating over the set:

 Note: 1terator next () returns a reference to the element:
Set<Point> setOfPoints = .

int x = 4;
int y =1;
Iterator<Point> iter =
setOfPoints.iterator () ;
while (iter.hasNext()) {
Point p = iter.next();
p.translate(x, y); // BAD -- invalidates set

X++;
y++;

Java maps and sets [Bono] 12

How many different words 1n a file?

public static int numUnique (Scanner in) {

Java maps and sets [Bono] 13

Map ADT

* A map stores a collection of (key,value) pairs

* keys are unique: a pair can be identified by its key
Operations:

* add a new (key, value) pair (called an entry)

* remove an entry, given its key

* lookup a value, given its key

» update the value part of an entry, given its key

list all the entries

— (order of visiting depends on the kind of map created)

Java maps and sets [Bono] 14

Example

Key set

: map of students and their
SCores

Value
set

Java maps and sets [Bono]

15

Java Map iterface

» Creation 1s same as Set, but fwo type parameters for
generic class.

Map<KeyType, ValueType> map =
new HashMap<KeyType,ValueType>() ;

— fastest. for when you don't care about order when iterating,
or 1f you don’t need to iterate.

- KeyType must support equals () and hashCode ()

Map<KeyType, ValueType> map =
new TreeMap<KeyType,ValueType>() ;

— for when you need to visit element in sorted order by keys.
—- KeyType must implement Comparable (has compareTo)

Java maps and sets [Bono] 16

Java Map interface (cont.)

e Create an empty map:

Map<String, Integer> scores =
new TreeMap<String, Integer>() ;
* Note: put operation can be used in two ways:

* Suppose we do the two operations below 1n sequence:

scores.put("Joe", 98); // inserts

if key wasn't there, adds i1t and returns null,
0.w., returns the old value that went with this key

scores.put("Joe", 100); // updates

changes Joe's score to 100. 1f "Joe" hadn't been
there before, this would have added him.

Java maps and sets [Bono] 17

Java Map interface (cont.)

Map<String, Integer> scores =
new TreeMap<String, Integer>()

scores.remove ("Joe") ;
if key was there, removes it and returns
the value that went with this key,
0.w., returns null and map is unchanged

Integer score = scores.get('"Joe");

return the value that goes with "Joe",
or null if "Joe" is not in the map

boolean isThere = scores.containsKey ("Joe") ;

Java maps and sets [Bono] 18

More about get

« Can't just use return value of get as valid object
reference, because 1t returns null sometimes:

Map<String, Integer> scores = new HashMap<>() ;
int score = scores.get("Joe"); // crashes

instead...

Integer scorel = scores.get('"Joe");
if (scoreIl '= null) {

int score = scorel; // safe to unwrap Integer

Java maps and sets [Bono]

19

Map seen as an array

Map ADT 1s sometimes called an associative array
System.out.println(scores.get (“Joe”)) ;

ArrayList index syntax, but 1t’s not random access

But it 1s fast:

— TreeMap: get, put, remove O(log n) each.
— HashMap: get, put, remove O(1) each (!)

E.g., Need an “array” indexed by a String?

... use a Map

Java maps and sets [Bono]

20

Example: concordance

Problem: find the number of occurrences of each
word 1n a text document.
— Why?
— (Variation also finds the page numbers or line numbers
where those words occur 1n the document.)

Java maps and sets [Bono] 21

Example: concordance (cont.)

« Similar to finding frequencies of student scores
(from earlier 1n the semester):

// sample scores: 72 99 84 99 72 85 72 80
// scores are all in range [0..100]

int[] freq = new int[101];

for each score
freq[score] ++;

» Can we use an array in the same way for this
problem?:

Find the number of occurrences of each word 1n a text

document.

Java maps and sets [Bono]

22

	Slide 1: Java Map and Set collections
	Slide 2: Announcements
	Slide 3: Additional example of implementing an interface
	Slide 4: Java Collections
	Slide 5: Set ADT
	Slide 6: Simple applications of Sets
	Slide 7: Java Set interface
	Slide 8: Java Set interface (cont.)
	Slide 9: Iterating over a Set
	Slide 10: Who owns elements in a Set?
	Slide 11: Illustration of invalidating a Set by mutating a value while it’s part of the Set
	Slide 12: Another example of invalidating the Set
	Slide 13: How many different words in a file?
	Slide 14: Map ADT
	Slide 15: Example: map of students and their scores
	Slide 16: Java Map interface
	Slide 17: Java Map interface (cont.)
	Slide 18: Java Map interface (cont.)
	Slide 19: More about get
	Slide 20: Map seen as an array
	Slide 21: Example: concordance
	Slide 22: Example: concordance (cont.)

