Inheritance and Interfaces

what 1s inheritance?

examples & Java API examples
inheriting a method

overriding a method
polymorphism

Object

— toString

interfaces
— Ex: sorting and Comparable interface

Inheritance and Interfaces [Bono]



Announcements

 If you haven't already: time to get started on PA 3:
Step 1. Play a game!

Inheritance and Interfaces [Bono] 2



So far: classes for code reuse

* One of the benetits of OOP 1s code reuse.

application-specific code

Java API

ArrayList
Rectangle

Inheritance and Interfaces [Bono]



What 1s inheritance for?

A more flexible form of code reuse

— from a library: can customize library code to use with
our application (major example: GUI code)

— 1n an application: can take advantage of commonalities
between different kinds of objects — may have different
code inside them, but are used 1n similar ways in the
application.

Inheritance and Interfaces [Bono] 4



Customizing library code

* Customize library code to use with our application
» Library code calls our code

Java API

Swing sort

application-specific code

Inheritance and Interfaces [Bono] 5



Inheritance

terminology: a subclass (or derived class) inherits
from a superclass (or base class)

subclass class is a specialization of the superclass
— add or change functionality
— reuse code and interface

— can use subclass objects in place of superclasss objects.

inheritance models /5-4 or 1S-A-KIND-OF
relationship

Some examples of this:
— Dog IS-A Mammal

— Manager IS-A Employee
— Ford IS-A Car

Inheritance and Interfaces [Bono]



Inheritance: what it isn’t

e review: inheritance models IS-A

e 1nheritance 1s not for HAS-A

— Examples of HAS-A:

« Car HAS Wheels
* ArrayList HAS Elements

— use containment for HAS-A
 a superclass 1s not a generic type

— e.g., List vs. ListofInts vs. ListofStrings

— Java generics do this:  ArrayList<Integer>,
ArrayList<String>

Inheritance and Interfaces [Bono]



Some examples of inheritance

Employee
Sl%gpe N
Circle Triangle Rectangle Manager
JComponent

| g |

CarComponent CoinSimComponent

Inheritance and Interfaces [Bono]



Inheriting a method

CarComponent class from textbook:

CarComponent 1s a subclass of JComponent:
public class CarComponent

extends JComponent {
getWidth () method is inherited from JComponent

CarComponent has no method definition for
getWidth ()

Example of calling the inherited method in client
code:

CarComponent carComponent = ..;

carComponent.getWidth(...) ;

Inheritance and Interfaces [Bono] 9



Inheriting a method (cont.)

* Example where CarComponent itself calls the
inherited method:

public class CarComponent extends JComponent {
public void paintComponent (Graphics g) {

int x = this.getWidth() - 60;

Inheritance and Interfaces [Bono]

10



Overriding a method

e Making a subclass and
* overriding a method from the superclass

public class CarComponent extends JComponent {

public void paintComponent (Graphics g) {

// code to draw a car on the screen

Inheritance and Interfaces [Bono]

11



Not method overriding (1)

* method overloading:

public class String {
public String substring(int begin, int end) { .. }

// return the substring that goes from the
// specified index to the end of the string

public String substring(int begin) { .. }

Inheritance and Interfaces [Bono] 12



Not method overriding (2)

* Method signature different from the one defined in
the superclass (also overloading):

public class CarComponent extends JComponent {

public void paintComponent (int length) {
// code to draw a car on the screen

}
public void paintComponent (Graphics g, int x) {

// code to draw a car on the screen

Inheritance and Interfaces [Bono] 13



Not method overriding (3)

 Two unrelated classes with the same method name
and params:

// no inheritance - this paintComponent is
// unrelated to JComponent’s version
public class Foo {

public void paintComponent (Graphics g) {

Inheritance and Interfaces [Bono] 14



Some characteristics of inheritance

* Can assign up the type hierarchy safely:
JComponent comp = new CarComponent(..);

or

myFrame .add (new CarComponent(..));

\ )

formal param type JComponent

Inheritance and Interfaces [Bono]

15



Swing using CarComponent

« Java Swing framework code doesn’t know about
CarComponent

» Java Swing code can later safely call:
component.paintComponent (g) ;

\
Lo
compile-time type is JComponent

« CarComponent’s paintComponent gets called
(run-time type)

Inheritance and Interfaces [Bono]

16



Polymorphism

* Varying what actual method 1s called at run-time
via method overriding: polymorphism

e Overriding / polymorphism 1s type-safe:

— All JComponent subclasses have to either
inherit paintComponent or override it.

Inheritance and Interfaces [Bono]

17



How 1s it type-safe?
public class CarComponent extends JComponent {..

// overridden from JComponent:
public void paintComponent (Graphics g) {..}

// CarComponent-specific function:
public Wheels getWheels () {..}

}

(Reminder: Foo defines paintComponent, it’s not a subclass of

JComponent)
myFrame.add (new Foo ()) ; // 1
JComponent comp = new CarComponent(); // 2
comp .paintComponent (g) ; // 3
Wheels w = comp.getWheels () ; // 4
CarComponent carComp = (CarComponent) comp; // 5
carComp.getWheels () ; // 6

Asynchronous participation: Link to Inheritance poll

Inheritance and Interfaces [Bono]

18


https://pollev.com/multiple_choice_polls/uDZ4PO5wEqqVuC1j0F9RA/respond

Object class

Object 1s the highest class in the hierarchy
Every other Java class 1s a subclass of Object
(Might be a few levels down a hierarchy.)

Means all objects have some methods in common:
public class Object ({

public String toString() {..}

public boolean equals (Object other)
{..}

Inheritance and Interfaces [Bono] 19



toString method

* Defined for all objects

e String “+” operator uses 1t automatically to convert your
object type to a string:

System.out.println("My account: " + bankAccount);

e (Calls Object toString behind the scenes
e Default (Object) version prints weird stuff (hashcode)

e Convention: override toString to print out all the field
names and values for debugging purposes

 Most Java classes override toString to do this.

e Ex: Person class

Inheritance and Interfaces [Bono] 20



Example of defining toString

public class Person ({
private String name;
private int favoriteNumber;
private Point geoCoord;
public String toString () ({
return "Person|[name=" + name
+ ", favoriteNumber=" + favoriteNumber

+ " ,geocoord=" + geoCoord
// calls Point toString

+H] II;

Inheritance and Interfaces [Bono]

21



Interfaces

interface and implements are Java keywords

Like a superclass, but has no implementation of its
own:

— no Instance variables

— no method bodies

Defines the headers for methods an implementing
class must implement

class that implements the interface. ..

— may also have other methods
— may implement multiple interfaces simultaneously

Inheritance and Interfaces [Bono] 22



Application of interfaces: Sorting 1n Java

The sorting problem:

10

12

17

22

25

43

52

86

Inheritance and Interfaces [Bono]

23




Sorting example

Java library provides Arrays.sort method

Sort 1s overloaded for int[], double][], etc.:
int[] myArr = ..;
Arrays.sort (myArr) ;

Uses < to compare two elements.

But how to use sort on array of your own object
types?

Student[] studArr = ..;

Arrays.sort (studArr) ;

— problem: < not defined for Student

— What does it mean for one student to be less than
another?

Inheritance and Interfaces [Bono]

24



Sorting example (cont.)

* We can define what less-than means for Students

* But we don't want to have to implement a sort
function ourselves.

... And then retmplement for the next element-type we
want to sort, etc.

* Solution: Sort has a version that works if our
element-type implements the Comparable

interface:

class Arrays {

public static void sort (Comparable[] arr);

Inheritance and Interfaces [Bono]

25



Ex: implementing an interface

« Part of Java library 1s Comparable i1nterface:

— 1mplementing this interface means you can compare
two objects of your type (less than, greater than)

— ... using a method called compareTo.

— Some Java classes are Comparable, ¢.g., String,
LocalDate (from Lab 2)

 Example: make Student class comparable so we
can sort arrays of students using Java sort method

Inheritance and Interfaces [Bono]

26



Comparable interface

* A class i1s Comparable if it implements the
compareTo method.

public interface Comparable<Type> ({
int compareTo (Type other) ;

}

(Speical Topic 10.5 covers generic version of Comparable)

Inheritance and Interfaces [Bono]

27



Comparable interface (cont.)

Implementing comparable means clients can
compare two objects of your type

String implements Comparable:
a.compareTo (b) ;
— returns avalue <0 1fa<b

— returns avalue >0 1fa>b

— returns O ifa=">b

What do we need to do to make our class
comparable:
— Declare that the class implements Comparable

— Implement compareTo method for our class

Inheritance and Interfaces [Bono]

28



Implementing Comparable

class Student implements Comparable<Student> {
private String firstName;
private String lastName;
private int score;

public int compareTo (Student b) ({

int lastDiff = lastName.compareTo (b.lastName) ;

if (lastDiff !'= 0) {
return lastDiff;

}

else { // last names are equal
return firstName.compareTo (b.firstName) ;

}

Inheritance and Interfaces [Bono] 29



Back to sorting-students problem

 What code do you need to write?
1. Make Student class implement Comparable

— part of that 1s to implement compareTo

2. Now can use Java’s sort method on an array of
Students:

Student|[] studArr =

[
eee J

Arrays.sort (studArr) ;

« Arrays.sort callsthe compareTo method we
defined

Inheritance and Interfaces [Bono]

30



Code examples on-line

In Vocareum code directory for today’s lecture:

Person class (with toString) and tester program
that shows the limits of when toString will

automatically get invoked.
compareEx subdirectory:

— Student class that overides toString and equals
— Student class also implements Comparable

- Comparator for two Student objects (part of readings:
Special Topic 14.4)

— Example prog that uses both of these to sort an array of
Student’s two different ways.

Inheritance and Interfaces [Bono] 31



Summary: Why extend a Java class or
implement a Java interface?

A common use of inheritance is to extend classes or
implement interfaces defined by some library:

— This 1s a way to plug in application specific code so other parts of
the library can call our method without having to know anything
about our exact class.

Form of reusability. Today’s examples:

— can reuse all the Swing GUI code with our own GUI
app (Swing 1s an application framework)

— can reuse the fast Java sort method to sort our own
data

Enables us to customize parts of the Java library for our
application

Inheritance and Interfaces [Bono] 32



