
Inheritance and Interfaces [Bono] 1

Inheritance and Interfaces
• what is inheritance?
• examples & Java API examples
• inheriting a method
• overriding a method
• polymorphism
• Object

– toString
• interfaces

– Ex: sorting and Comparable interface

Announcements

• If you haven't already: time to get started on PA 3:
Step 1. Play a game!

Inheritance and Interfaces [Bono] 2

So far: classes for code reuse

• One of the benefits of OOP is code reuse.

Inheritance and Interfaces [Bono] 3

application-specific code

Java API

uses

String

Rectangle

Scanner
ArrayList

What is inheritance for?

A more flexible form of code reuse

– from a library: can customize library code to use with
our application (major example: GUI code)

– in an application: can take advantage of commonalities
between different kinds of objects – may have different
code inside them, but are used in similar ways in the
application.

Inheritance and Interfaces [Bono] 4

Customizing library code
• Customize library code to use with our application
• Library code calls our code

Inheritance and Interfaces [Bono] 5

Java API

application-specific code

uses

Swing
sort

Inheritance and Interfaces [Bono] 6

Inheritance
• terminology: a subclass (or derived class) inherits

from a superclass (or base class)
• subclass class is a specialization of the superclass

– add or change functionality
– reuse code and interface
– can use subclass objects in place of superclasss objects.

• inheritance models IS-A or IS-A-KIND-OF
relationship

• Some examples of this:
– Dog IS-A Mammal
– Manager IS-A Employee
– Ford IS-A Car

Inheritance and Interfaces [Bono] 7

Inheritance: what it isn’t

• review: inheritance models IS-A
• inheritance is not for HAS-A

– Examples of HAS-A:
• Car HAS Wheels
• ArrayList HAS Elements

– use containment for HAS-A
• a superclass is not a generic type

– e.g., List vs. ListofInts vs. ListofStrings
– Java generics do this: ArrayList<Integer>,

ArrayList<String>

Inheritance and Interfaces [Bono] 8

Some examples of inheritance

Shape

Circle Triangle Rectangle

Employee

Manager

CarComponent

JComponent

CoinSimComponent

Inheriting a method
• CarComponent class from textbook:
• CarComponent is a subclass of JComponent:
 public class CarComponent
 extends JComponent {

• getWidth() method is inherited from JComponent
• CarComponent has no method definition for
getWidth()

• Example of calling the inherited method in client
code:
CarComponent carComponent = …;
carComponent.getWidth(…);

Inheritance and Interfaces [Bono] 9

Inheriting a method (cont.)

• Example where CarComponent itself calls the
inherited method:

 public class CarComponent extends JComponent {

 public void paintComponent(Graphics g) {
 . . .

 int x = this.getWidth() - 60;
 . . .

 }
 }

Inheritance and Interfaces [Bono] 10

Overriding a method

• Making a subclass and
• overriding a method from the superclass

 public class CarComponent extends JComponent {
 . . .

 public void paintComponent(Graphics g) {
 // code to draw a car on the screen
 }
 }

Inheritance and Interfaces [Bono] 11

Not method overriding (1)

• method overloading:

public class String {
 public String substring(int begin, int end) { … }

// return the substring that goes from the
// specified index to the end of the string
public String substring(int begin) { … }
. . .

}

Inheritance and Interfaces [Bono] 12

Not method overriding (2)

• Method signature different from the one defined in
the superclass (also overloading):

 public class CarComponent extends JComponent {
 . . .

 public void paintComponent(int length) {
 // code to draw a car on the screen
 }

 public void paintComponent(Graphics g, int x) {

 // code to draw a car on the screen
 }
 }

Inheritance and Interfaces [Bono] 13

Not method overriding (3)

• Two unrelated classes with the same method name
and params:

 // no inheritance – this paintComponent is
 // unrelated to JComponent’s version
 public class Foo {
 public void paintComponent(Graphics g) {
 . . .
 }

 . . .
 }

Inheritance and Interfaces [Bono] 14

Some characteristics of inheritance
• Can assign up the type hierarchy safely:

 JComponent comp = new CarComponent(…);

 or

myFrame.add(new CarComponent(…));

Inheritance and Interfaces [Bono] 15

Swing using CarComponent

• Java Swing framework code doesn’t know about
CarComponent

• Java Swing code can later safely call:
 component.paintComponent(g);

• CarComponent’s paintComponent gets called
(run-time type)

Inheritance and Interfaces [Bono] 16

Polymorphism

• Varying what actual method is called at run-time
via method overriding: polymorphism

• Overriding / polymorphism is type-safe:

– All JComponent subclasses have to either
inherit paintComponent or override it.

Inheritance and Interfaces [Bono] 17

How is it type-safe?
public class CarComponent extends JComponent {…
 // overridden from JComponent:

 public void paintComponent(Graphics g) {…}

 // CarComponent-specific function:
 public Wheels getWheels() {…}

}
(Reminder: Foo defines paintComponent, it’s not a subclass of

JComponent)

myFrame.add(new Foo()); // 1
JComponent comp = new CarComponent(); // 2
comp.paintComponent(g); // 3
Wheels w = comp.getWheels(); // 4
CarComponent carComp = (CarComponent) comp; // 5
carComp.getWheels(); // 6

Inheritance and Interfaces [Bono] 18

Asynchronous participation: Link to Inheritance poll

https://pollev.com/multiple_choice_polls/uDZ4PO5wEqqVuC1j0F9RA/respond

Object class
• Object is the highest class in the hierarchy
• Every other Java class is a subclass of Object
• (Might be a few levels down a hierarchy.)
• Means all objects have some methods in common:
 public class Object {
 public String toString() {…}
 public boolean equals(Object other)
 {…}

 . . .
 }

Inheritance and Interfaces [Bono] 19

toString method
• Defined for all objects
• String “+” operator uses it automatically to convert your

object type to a string:

 System.out.println("My account: " + bankAccount);

• Calls Object toString behind the scenes
• Default (Object) version prints weird stuff (hashcode)
• Convention: override toString to print out all the field

names and values for debugging purposes
• Most Java classes override toString to do this.
• Ex: Person class

Inheritance and Interfaces [Bono] 20

Example of defining toString

public class Person {
 private String name;
 private int favoriteNumber;
 private Point geoCoord;
 public String toString() {
 return "Person[name=" + name
 + ",favoriteNumber=" + favoriteNumber
 + ",geocoord=" + geoCoord

 // calls Point toString
 +"]”;
 }
 . . .
}

Inheritance and Interfaces [Bono] 21

Interfaces

• interface and implements are Java keywords
• Like a superclass, but has no implementation of its

own:
– no instance variables
– no method bodies

• Defines the headers for methods an implementing
class must implement

• class that implements the interface…
– may also have other methods
– may implement multiple interfaces simultaneously

Inheritance and Interfaces [Bono] 22

Application of interfaces: Sorting in Java

Inheritance and Interfaces [Bono] 23

12 10 86 52 17 43 22 25

0 1 2 3 4 5 6 7

10 12 17 22 25 43 52 86

0 1 2 3 4 5 6 7

The sorting problem:

Sorting example
• Java library provides Arrays.sort method
• Sort is overloaded for int[], double[], etc.:
 int[] myArr = …;
 Arrays.sort(myArr);

• Uses < to compare two elements.
• But how to use sort on array of your own object

types?
 Student[] studArr = …;
Arrays.sort(studArr);

– problem: < not defined for Student
– What does it mean for one student to be less than

another?
Inheritance and Interfaces [Bono] 24

Sorting example (cont.)
• We can define what less-than means for Students
• But we don't want to have to implement a sort

function ourselves.
… And then reimplement for the next element-type we
want to sort, etc.

• Solution: Sort has a version that works if our
element-type implements the Comparable
interface:

 class Arrays {
 . . .
 public static void sort(Comparable[] arr);

Inheritance and Interfaces [Bono] 25

Ex: implementing an interface

• Part of Java library is Comparable interface:
– implementing this interface means you can compare

two objects of your type (less than, greater than)
– . . . using a method called compareTo.
– Some Java classes are Comparable, e.g., String,
LocalDate (from Lab 2)

• Example: make Student class comparable so we
can sort arrays of students using Java sort method

Inheritance and Interfaces [Bono] 26

Comparable interface

• A class is Comparable if it implements the
compareTo method.

 public interface Comparable<Type> {
 int compareTo(Type other);
}

(Speical Topic 10.5 covers generic version of Comparable)
Inheritance and Interfaces [Bono] 27

Comparable interface (cont.)
• Implementing comparable means clients can

compare two objects of your type
• String implements Comparable:
• a.compareTo(b);

– returns a value < 0 if a < b
– returns a value > 0 if a > b
– returns 0 if a = b

• What do we need to do to make our class
comparable:
– Declare that the class implements Comparable
– Implement compareTo method for our class

Inheritance and Interfaces [Bono] 28

Implementing Comparable
class Student implements Comparable<Student> {
 private String firstName;
 private String lastName;
 private int score;
 …
 public int compareTo(Student b) {
 int lastDiff = lastName.compareTo(b.lastName);

 if (lastDiff != 0) {
 return lastDiff;
 }
 else { // last names are equal
 return firstName.compareTo(b.firstName);
 }
 }
}

Inheritance and Interfaces [Bono] 29

Back to sorting-students problem
• What code do you need to write?

1. Make Student class implement Comparable
– part of that is to implement compareTo

2. Now can use Java’s sort method on an array of
Students:

 Student[] studArr = …;
. . .
Arrays.sort(studArr);

• Arrays.sort calls the compareTo method we
defined

Inheritance and Interfaces [Bono] 30

Code examples on-line
• In Vocareum code directory for today’s lecture:
• Person class (with toString) and tester program

that shows the limits of when toString will
automatically get invoked.

• compareEx subdirectory:
– Student class that overides toString and equals
– Student class also implements Comparable
– Comparator for two Student objects (part of readings:

Special Topic 14.4)
– Example prog that uses both of these to sort an array of
Student’s two different ways.

Inheritance and Interfaces [Bono] 31

Summary: Why extend a Java class or
implement a Java interface?

• A common use of inheritance is to extend classes or
implement interfaces defined by some library:
– This is a way to plug in application specific code so other parts of

the library can call our method without having to know anything
about our exact class.

• Form of reusability. Today’s examples:
– can reuse all the Swing GUI code with our own GUI

app (Swing is an application framework)
– can reuse the fast Java sort method to sort our own

data
• Enables us to customize parts of the Java library for our

application
Inheritance and Interfaces [Bono] 32

