CSCI 104L Lecture 2: Recursion

Analyzing recursive functions

Exercise 1. How can you analyze something like this?

```c
void recurse (int *A, int size) {
    if (size <= 1) return;
    //do stuff (taking O(1) time)
    recurse(first half of A, size/2);
    recurse(second half of A, size/2);
}
```

Exercise 2. Find a recurrence relation, and analyze the runtime:

```c
int binarySearch(int t, int *b, int lo, int hi) {
    if (hi < lo) return -1; //nothing to search, it's not in the array.
    else {
        int mid = (hi+lo)/2; //the middle of the array, rounded down.
        if (t == b[mid]) return mid; //found it!
        else if (t < b[mid]) return binarySearch(t, b, lo, mid-1); //search left.
        else return binarySearch(t, b, mid+1, hi); //search right.
    }
}
```

Exercise 3. Find a recurrence relation, and analyze the runtime for foo(0, n-1, 0):

```c
int *a;
void foo(int left, int right, int digit) {
    for (int i = left; i <= right; i++) a[i] += digit;
    if (right > left) {
        foo(left, (left+right)/2, 0);
        foo((left+right)/2+1, right, 1);
    }
}
```

Exercise 4. Analyze the runtime for the following recurrence relation:

\[f(n) = 2f \left(\frac{n}{2} \right) + \Theta(n \log n) \]
Exercise 5. You have an n dollar debt. Every day, you can either pay 1 or 3 dollars towards that debt. How many different ways are there to pay off your debt?

XKCD # 140 Delicious: I’m currently in the I Have Cheese phase of this cycle.

Recursive Definitions

You can define other things recursively, not just functions.

- A string of lower-case letters is either: (1) the empty string, or (2) a letter ‘a’-‘z’ followed by a string of lower-case letters.
- A non-negative integer is either: (1) the number 0, or (2) $n+1$, where n is a non-negative integer.
- A palindrome is either: (1) the empty string, or (2) a single letter ‘a’-‘z’, or (3) a string xPx, where x is a single letter ‘a’-‘z’, and P is a palindrome.
- A simple algebraic expression is either:
 1. A number.
 2. A variable.
 3. $(A+B)$, where A and B are simple algebraic expressions.
 4. $(A*B)$, where A and B are simple algebraic expressions.