
1

CS104: Data Structures & Object-Oriented Programming

Summer 2021 - Midterm Exam
06/30/21, 10:00 AM – 12:00 PM + 15 min. to upload
(Submit on Gradescope by 12:15 PM)

[Complete all the information in the box below.]

Name:_(No need to fill this out since you are on Gradescope)_

Student ID: __________________ Email: ______________@usc.edu

Lecture section (Circle One):

Ques. Your score Max score Time

1 8 10 min.

2 9 12 min.

3 8 13 min.

4 7 20 min.

5 8 25 min.

6 10 40 min.

Total 50

Note: The last page is scratch paper. Submit it with your exam

Redekopp

9:30 a.m.

2

Data structures and algorithms that may be used for certain problems

In each problem you may assume the use of the following:

• std::sort(vector<T>& values) which will perform an n*log(n) sort in ascending order'

• std::find(iterator first, iterator last, T target) which finds the target in Θ(n)

Assume the various STL containers are available:

• vector<T>: Traditional array-based list with O(1) operations:

o push_back(), back(), operator[]

• singly<T>: A singly-linked list (with tail pointer) with O(1) operations:

o back(), front(), push_back(), push_front(), and pop_front()

• queue<T>: Implements a queue with O(1) operations:

o front(), push(), and pop()

• stack<T>: Implements a stack with O(1) operations:

o top(), push(), and pop()

• set<T>: Standard set implementation with O(log n) operations:

o insert(), erase(), find()

• map<K,V>: Standard map implementation with O(log n) operations:

o insert(pair<K,V>), erase(key), find(key)

3

1. (8 pts.) Abstract Data Types: Choose the best abstract data type (List, Set, Map, PQ,

Queue, Stack) given the description of the desired data structures below. Be as specific as

possible (don't answer List if a Queue is applicable). Also show what types would be used

as template arguments (e.g. map<string, int> or stack<double>). If multiple "best"

options exist, choose either. Give a SHORT 1-2 sentence justification for your choice (don't

waste time on a long explanation...it won't help you get any more credit than a short

answer).

1.1. A structure to support the following: an academic advisor wants to track the students

she advises each day over the course of a semester. Given a day, she'd like to quickly

check if she advised a particular student and also be able to quickly go from one day's

students to the next or previous day's students.

1.2. A structure for storing the percentage of people vaccinated in each US state (and

quickly be able to update that percentage).

1.3. A structure to store the answers on a website like StackOverflow.com. The answers

should be displayed in order of "upvotes" from highest number of upvotes to least.

1.4. A structure to track who is in each checkout/cashier lane and their order for an entire

grocery store where customers may choose a checkout line (given by an integer) to

then wait in.

4

2. Heaps (9 pts.)

Given the following array numbers: [6, 12, 3, 11, 14, 8, 1, 7, 15, 9, 2] (the

number 6 is in position 0 and 2 in position 10), find the min-heap that is a result of calling

the make-heap (build-heap) algorithm that uses heapify on the array and that runs in

linear time.

In the area below show the final array contents (similar to the format we showed above).

For full credit, you must also show your work at each step in the algorithm by drawing the

complete tree representation (not array form, but tree form) after each heapify step until the

algorithm is complete. Hint: You don't need to call heapify on EVERY node but can start a

certain location. For each call, you need only show the relevant part of the tree that heapify

operats on. Gradescope: Upload a picture or PDF of your work in the file upload area below.

Final array contents after the algorithm completes:

[__, __, __, __, __, __, __, __, __, __, __]

Diagrams of intermediate trees after each heapify call (indicate what location you start

your heapify call on).

5

3. Linked Lists and Recursion (8 pts.)

Given the code in the image below answer the following questions regarding a call to

 llmystery(head, 2) assuming head points to the linked list of values:

1 2 3 4 5

Answer the following questions:

3.1. True/False: Will the original linked list be modified (values or pointers)? _______

3.2. On the next page, show what will be printed by the code, and further show a call tree

(box diagram) of the recursive calls (with relevant arguments) made during execution.

6

Show what will be printed by the call to llmystery(head, 2)

Upload a diagram of the call tree (box diagram) of the recursive calls made during

execution.

7

4. Class Organization, Heaps, and BSTs (7 pts.)

Complete your code in the provided `bst-heap.h` at the bottom of the file. You will

NOT be able to compile and test this code because we do not provide the

implementation of the base `BST<Key>` class. Assume it is provided and works.

We will visually grade your MaxHeap<Key> class assuming the BST class works.

Suppose you are provided a complete, templated binary search tree (BST) class:

BST<Key>. It does not necessarily guarantee balance. We will assume type Key supports

all the basic comparison operators: <, >, ==, !=, etc.

You are now asked to write a MaxHeap<Key> class to implement a max heap (priority

queue). It should use the BST<Key> class to implement it (though how to structure the

relationship between these two is part of the question and left to you to decide). You may

assume no duplicate keys are added to the heap.

Your MaxHeap<Key> must implement the following public interface using the standard

definitions of the push, pop, and top operations. If top() or pop() is called on an empty

heap, throw std::out_of_range exception.

template <typename Key>

class Heap /* your choice */

{

public:

 Heap();

 ~Heap();

 void push(const Key& newKey);

 void pop();

 const Key& top() const; // throws std::out_of_range if empty

private:

 // add any data members or helper functions as necessary

};

4.1. Finish the implementation of the class / functions in the provided `bst-heap.h`.

• Your implementation should utilize/re-use as much (as reasonable) of the `BST<Key>`

implementation to avoid unnecessary code. (There may be some duplication in your Heap

implementation, but be judicious...if a BST operation can already accomplish a task, try to

use it)

• Your runtime does not need to match that of a traditional Heap

4.2. Analyze the runtime of your `top()` implementation (show a very short

justification or work).

http://ee.usc.edu/~redekopp/cs104/su21/mt/bst-heap.h

8

5. Binary Trees and Recursion (8 pts.)

Use the provided skeleton file remdepth.cpp to complete the code.

Write a recursive function: Node* remDepth(Node* root, int depth) to delete all

nodes BELOW a certain depth from a binary tree (not necessarily BST), and return the

pointer to the (potentially now NULL) root. Your implementation MAY NOT use loops

anywhere. You may define helper function(s), as necessary.

An example, showing how we define depth and how the function should work is illustrated

below.

Other examples: A call to remdepth(root, 0) would cause the entire tree to be deleted,

in which case you should return nullptr. A call to remdepth(root, 1) would cause all

nodes except the root to be deleted.

If no nodes are below the specified depth, simply do nothing (i.e. do not alter the tree in any

way).

Your code should run in Theta(n), where n is the number of nodes in the tree.

http://ee.usc.edu/~redekopp/cs104/su21/mt/remdepth.cpp

9

6. STL and ADTs (10 pts.)

Use the provided skeleton file travel.cpp to complete the code.

In this problem you may only use: map<K,V>, set<K>, stack<T>, and queue<T>. No vector, deque, or

list.

Tommy, the forgetful tourist, enjoys travelling around the country. You will write a class Tourist, to

help him plan and track his travels. This class will implement 4 primary functions:

 addPlaceToVisit()

 visitNextLocation()

 currentLocation()

 previousVisit()

Tommy talks to people who tell him about fun locations he should visit. Locations are represented

by the name of the place and its x,y coordinates (e.g. latitude and longitude). He adds them to his

"places to visit itinerary" via a call to addPlaceToVisit() which should quickly check if they are

already on his itinerary of places to visit, and if not, store the location. When he's ready to travel to

the next location he calls visitNextLocation() which chooses a new place to visit, removes it

from his places to visit, and updates his current location. By default you can choose any place on

his itinerary to go next, but for bonus points, you should ensure that he visits places on his itinerary

in order from west to east (i.e. visitNextLocation() should always give the west-most (lowest

x-value) unvisited location.

Further, he wants to track where he's visited because he often leaves one of his belongings

somewhere he visited and needs to keep going back to previous locations to find his lost

belongings. This process is accomplished by (potentially many) calls to previousVisit() which

should retrace the locations he visited before his current location from most-to-least recently

visited. To keep things simple, once he finds his item at a location, the next call to

visitNextLocation() should resume his travels by going to the next new place to visit (rather

than returning back through the same locations he was just at looking for his items).

As an example, suppose Tommy hears about locations: B, A, C, A, E, D and adds them to his places to

visit (removing the duplicate A). By making multiple calls to visitNextLocation he visits to A, B, C,

then D (let's assume these are in west-to-east order). At location D he realizes he left his USC hat

somewhere. By making calls to previousVisit() he will retrace his steps to C and then B at which point

he finds his hat. From there a call to visitNextLocation would yield the only unvisited location that

remains on his places to visit: E. But if he arrives at E and realizes he also lost his earbuds, a new

sequence of calls to previousVisit() should yield D, C, B, and so on. Thus, when we return to

previously visited locations we cannot forget that order but must restore those locations when we start

traveling to new locations via calls to visitNextLocation.

Any other behavior not specified here is left to your discretion. (You need not add any features we

have not specified.) However, you must adhere to the runtime requirements given in the function

prototypes in the Tourist class declaration.

http://ee.usc.edu/~redekopp/cs104/su21/mt/travel.cpp

10

Intentionally blank for scratch work. Please turn it in with your exam:

Name: __ Section time: _____________

