
 Heap Coding Practice for Midterm (CSCI 104 Spring 2024)

 You have a 5-ary Pokémon MinHeap that uses a vector container of std::pair based on

 0-indexing. The std::pair has a .first of rarity (double) and a .second of name (std::string). The

 heap property is based on the rarity of a Pokémon. Assume that you have working

 implementations of trickleUp() and trickleDown() if you need it.

 Here’s the class you will be using (incomplete but it’s enough to do the problem):

 PROBLEM 1.1:

 A Pokémon was found to be more common than originally anticipated. We want to update our

 data structure to reflect that. You can assume that the value of new_rarity will always be greater

 than the Pokémon’s current rarity. To do this, implement:

 More specifically, you should:

 1. Search the MinHeap for a Pokémon name that matches the target_name parameter. If a

 matching name cannot be found, throw std :: invalid_argument () .

 2. If a matching name is found, update the correct Pokémon’s rarity and make sure you

 maintain the heap property (remember that rarity can only increase in this problem).

 PROBLEM 1.2:

 What is the runtime complexity of Pokemon_MinHeap :: updateRarity() ? Justify your answer.

 Answer:

 PROBLEM 2.1:

 We want to hunt down the rarest Pokémon possible.

 Implement void Pokemon_MinHeap :: defeat () to defeat the rarest Pokémon.

 More specifically, you should:

 1. Throw an std :: underflow_error () if there is nothing to remove.

 2. If there is something to remove, remove the rarest Pokémon (the Pokémon with the

 lowest rarity value) while maintaining the heap property.

 PROBLEM 2.2:

 What is the runtime complexity of Pokemon_MinHeap :: defeat () ?

 Answer:

 PROBLEM 3.1:

 Now that you have a hopefully working defeat implementation, we now want to defeat the x

 rarest Pokémon based on user inputs. To do this, implement

 void Pokemon_MinHeap :: multi_defeat (int x) .

 More specifically, you should:

 1. Check if there are enough Pokémon to defeat based on x and check if x is at least 1. If

 either check fails, throw std :: underflow_error () .

 2. If the checks are successful, defeat x amount of Pokémon by updating the MinHeap and

 maintaining the heap property. You are also allowed to use your coded implementations

 from previous problems (assume they work properly).

 PROBLEM 3.2:

 What is the runtime complexity of Pokemon_MinHeap :: multi_defeat () ? Use Big-O

 notation.

 Answer:

 PROBLEM 4.1 (unrelated to previous problems):

 When is trickleUp() normally used?

 Answer:

