Heap Coding Practice for Midterm (CSCI 104 Spring 2024)
You have a 5-ary Pokémon MinHeap that uses a vector container of std::pair based on
0-indexing. The std::pair has a .first of rarity (double) and a .second of name (std::string). The
heap property is based on the rarity of a Pokémon. Assume that you have working
implementations of trickleUp() and trickleDown() if you need it.

Here’s the class you will be using (incomplete but it’s enough to do the problem):

Pokemon_MinHeap {

updateRarity(std::string target_name, new_rarity);
defeat();
multi_defeat(X);

::vector< std::pair< , std::string> > pokemons;
trickleDown(X);
trickleUp(X);

PROBLEM 1.1:
A Pokémon was found to be more common than originally anticipated. We want to update our
data structure to reflect that. You can assume that the value of new_rarity will always be greater

than the Pokémon’s current rarity. To do this, implement:

void Pokemon MinHeap: :updateRarity(std::string target name, double new rarity)

More specifically, you should:

1. Search the MinHeap for a Pokémon name that matches the target name parameter. If a

matching name cannot be found, throw EiSSEEERN NSRS RICEae St 9]

2. If a matching name is found, update the correct Pokémon’s rarity and make sure you

maintain the heap property (remember that rarity can only increase in this problem).

PROBLEM 1.2:

What is the runtime complexity of eiasieIIIUERIEIEEI SRRt ets ERa-EhsRaa®) ? Justify your answer.

Answer:

PROBLEM 2.1:

We want to hunt down the rarest Pokémon possible.

Implement S IS S I VER S EET RIS C-EA@) to defeat the rarest Pokémon.

More specifically, you should:

1. Throw an ESSEEIERE SRR N-raasra®) if there is nothing to remove.
2. If there is something to remove, remove the rarest Pokémon (the Pokémon with the

lowest rarity value) while maintaining the heap property.

PROBLEM 2.2:

What is the runtime complexity of |eia eI MRUERSIE ST RIENs CEA=EEN)

Answer:

PROBLEM 3.1:
Now that you have a hopefully working defeat implementation, we now want to defeat the x
rarest Pokémon based on user inputs. To do this, implement

Pokemon MinHeap::multi defeat (x)B

More specifically, you should:

1. Check if there are enough Pokémon to defeat based on x and check if x is at least 1. If

either check fails, throw EjSSEEIIIIe ER S NI Sacra] -
2. If'the checks are successful, defeat x amount of Pokémon by updating the MinHeap and
maintaining the heap property. You are also allowed to use your coded implementations

from previous problems (assume they work properly).

PROBLEM 3.2:

What is the runtime complexity of I8 kemon MinHeap::multi defeat () ? Use Big-O
notation.

Answer:

PROBLEM 4.1 (unrelated to previous problems):
When is trickleUp() normally used?

Answer:

