
‭Heap Coding Practice for Midterm (CSCI 104 Spring 2024)‬

‭You have a 5-ary Pokémon MinHeap that uses a vector container of std::pair based on‬

‭0-indexing. The std::pair has a .first of rarity (double) and a .second of name (std::string). The‬

‭heap property is based on the rarity of a Pokémon. Assume that you have working‬

‭implementations of trickleUp() and trickleDown() if you need it.‬

‭Here’s the class you will be using (incomplete but it’s enough to do the problem):‬

‭PROBLEM 1.1:‬

‭A Pokémon was found to be more common than originally anticipated. We want to update our‬

‭data structure to reflect that. You can assume that the value of new_rarity will always be greater‬

‭than the Pokémon’s current rarity. To do this, implement:‬

‭More specifically, you should:‬

‭1.‬ ‭Search the MinHeap for a Pokémon name that matches the target_name parameter. If a‬

‭matching name cannot be found, throw‬‭std‬‭::‬‭invalid_argument‬‭()‬‭.‬



‭2.‬ ‭If a matching name is found, update the correct Pokémon’s rarity and make sure you‬

‭maintain the heap property (remember that rarity can only increase in this problem).‬

‭PROBLEM 1.2:‬

‭What is the runtime complexity of‬‭Pokemon_MinHeap‬‭::‬‭updateRarity()‬‭? Justify your answer.‬

‭Answer:‬

‭PROBLEM 2.1:‬

‭We want to hunt down the rarest Pokémon possible.‬

‭Implement‬‭void‬‭Pokemon_MinHeap‬‭::‬‭defeat‬‭()‬‭to defeat‬‭the rarest Pokémon.‬

‭More specifically, you should:‬

‭1.‬ ‭Throw an‬‭std‬‭::‬‭underflow_error‬‭()‬‭if there is nothing‬‭to remove.‬

‭2.‬ ‭If there is something to remove, remove the rarest Pokémon (the Pokémon with the‬

‭lowest rarity value) while maintaining the heap property.‬

‭PROBLEM 2.2:‬

‭What is the runtime complexity of‬‭Pokemon_MinHeap‬‭::‬‭defeat‬‭()‬‭?‬

‭Answer:‬

‭PROBLEM 3.1:‬

‭Now that you have a hopefully working defeat implementation, we now want to defeat the‬‭x‬

‭rarest Pokémon based on user inputs. To do this, implement‬

‭void‬‭Pokemon_MinHeap‬‭::‬‭multi_defeat‬‭(‬‭int‬‭x‬‭)‬‭.‬



‭More specifically, you should:‬

‭1.‬ ‭Check if there are enough Pokémon to defeat based on x and check if x is at least 1. If‬

‭either check fails, throw‬‭std‬‭::‬‭underflow_error‬‭()‬‭.‬

‭2.‬ ‭If the checks are successful, defeat‬‭x‬‭amount of Pokémon‬‭by updating the MinHeap and‬

‭maintaining the heap property. You are also allowed to use your coded implementations‬

‭from previous problems (assume they work properly).‬

‭PROBLEM 3.2:‬

‭What is the runtime complexity of‬‭Pokemon_MinHeap‬‭::‬‭multi_defeat‬‭()‬‭? Use Big-O‬

‭notation.‬

‭Answer:‬

‭PROBLEM 4.1 (unrelated to previous problems):‬

‭When is trickleUp() normally used?‬

‭Answer:‬


