Lab 13: Probability
We have a fair coin. We flip it 2 times. What is the probability of getting at least one head?

**Trial:** flipping a coin 2 times

**Sample space:** set of all possible outcomes for any trial

**Size of out sample space:** \( |H, T|^2 = 4 \)

**Event:** any subset of the sample space

\[ \frac{3}{4} \]
Definitions Continued

- $S =$ sample space of equally likely outcomes
- $E =$ event of $S$
- THEN, the probability of $E$ is:

\[ P(E) = \frac{|E|}{|S|} \]
Complements

- **Complement**: probability the event DOESN’T occur
  - Event = E
  - Complement = $\bar{E}$,

- **Complement rule**: the probability of an event and its complement should add up to 1
  \[ P(\bar{E}) = 1 - P(E) \]

- Sometimes easier to first compute complement
  - What is the probability of at least one head?
  - \[ 1 - \frac{1}{4} = \frac{3}{4}. \]
Sum Rule

- Given a sequence of pairwise disjoint (mutually exclusive) events $E_1, E_2, E_3$, the probability of these events occurring is the sum of the probability of each event:

$$P(\bigcup E_1 \cup E_2 \cup E_3 \cup \ldots) = P(E_1) + P(E_2) + P(E_3) + \ldots$$

Events $E_i$ and $E_j$ are mutually exclusive if $E_i \cap E_j = \emptyset$. In other words, they cannot occur at the same time.
Suppose we draw a card from a standard deck of cards.
What is the probability that the card we draw is a **king** or **queen**?

Solution: let event $E_1$ be the event of getting a Queen, and event $E_2$ be the event of getting a King. There are 4 Queens and 4 Kings in a standard deck of 52 cards, so $P(E_1) = 4/52$, and $P(E_2) = 4/52$. Thus, the probability of drawing a Queen or King is $4/52 + 4/52 = 8/52$. 
Subtraction Rule

- Also called the inclusion-exclusion principle
- Used when we want to compute the probability of union of events that are not mutually exclusive

\[ P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \]
Suppose we draw a card from a standard deck of cards.

What is the probability that the card we draw is a queen or heart?

**Solution:** Let event $E_1$ be the event of getting a Queen, and event $E_2$ be the event of getting a Heart. These two events are no longer mutually exclusive: both events can occur simultaneously if we draw a Queen of hearts. There are 4 Queens, 13 Hearts, and 1 Queen of hearts in a standard deck of 52 cards. Thus, $P(E_1) = 4/52$, $P(E_2) = 13/52$, and $P(E_1 \cap E_2) = 1/52$. Thus, the probability of drawing a Queen or Heart is $4/52 + 13/52 - 1/52 = 16/52$. 
Conditional Probability

- Means the probability of an event occurring, given another event
- “The probability of B given A”

\[ P(B | A) = \frac{P(A \cap B)}{P(A)} \]

INDEPENDENCE

- If likelihood of B occurring does not depend on A

\[ P(B \mid A) = P(B). \]
Conditional Probability Example

- We draw a card from deck
- We know card is face (A)
- What is the probability the card is a king? (B)

First, let's compute \( P(A) \). There are 52 cards in a deck. Each deck has 13 ranks, 3 of which have “faces” (Jack, Queen, King). Each rank comes in 4 suits, yielding a total of \( 3 \times 4 = 12 \) face cards in a deck. Thus, assuming a well shuffled deck where all outcomes are equally likely, the probability of event A is \( 12/52 \).

Next, we need to compute \( P(A \cap B) \). Of the 12 possible face cards one can draw, 4 are Ks. \( P(A \cap B) \), the probability of drawing a face card AND a K, is \( 4/52 \).

Finally, we can compute \( P(B) \): \( (4/52)/(12/52) = 4/12 = 1/3 \)
Random Variables

- A mapping from the sample space to set of real numbers
- Flipping 2 coins
  - Sample space has 4 elements
  - Random variable $X$ denotes the number of heads in each outcome

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$X$ Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>2</td>
</tr>
<tr>
<td>HT</td>
<td>1</td>
</tr>
<tr>
<td>TH</td>
<td>1</td>
</tr>
<tr>
<td>TT</td>
<td>0</td>
</tr>
</tbody>
</table>

Probability distribution of random variable $X$

- $P(X = 0) = 1/4$
- $P(X = 1) = 2/4$
- $P(X = 2) = 1/4$
Expectation

- Random variable $X$
- **Expected value** of $X$ is $E(X)$, the weighted average of $X$
- Linearity of expectation: to calculate the expectation of a sum of random variables
  \[
  E(X_1 + \cdots + X_n) = E(X_1) + \cdots + E(X_n)
  \]
- Multiplying a random variable by a scalar constant multiplies its expected value by that constant
- Adding a constant to a random variable adds that constant to its expected value

\[
E(X) = \sum_{s \in S} P(s) \cdot X(s)
\]

For random variable $X$ and constants $a$ and $b$:

\[
E(aX + b) = a \cdot E(X) + b
\]

Both of the above holds even if random variables are not independent!
We roll 2 fair dice. Let $X$ be the sum of each roll. What is $E(X)$?

Solution: the probability distribution of $X$ is:

- $P(X = 2) = 1/36$
- $P(X = 3) = 2/36$
- $P(X = 4) = 3/36$
- $P(X = 5) = 4/36$
- $P(X = 6) = 5/36$
- $P(X = 7) = 6/36$
- $P(X = 8) = 5/36$
- $P(X = 9) = 4/36$
- $P(X = 10) = 3/36$
- $P(X = 11) = 2/36$
- $P(X = 12) = 1/36$

But there is really a simpler way to solve this:

Let $X_1, X_2$ be random variables that denote the value on the first and second die, respectively. We can see that $X = X_1 + X_2$, therefore by the linearity of expectation, $E(X) = E(X_1 + X_2) = E(X_1) + E(X_2)$.

We know that $E(X_1) = E(X_2) = \frac{1}{6}(1 + 2 + 3 + 4 + 5 + 6)$, hence $E(X) = 7$.

Thus:

$$E(X) = 2 \times (1/36) + 3 \times (2/36) + \ldots + 12 \times (1/36) = 7.$$
1. In Charlie and the Chocolate Factory, Willy Wonka invites 5 lucky children to tour his factory. He randomly distributes 5 golden tickets in a batch of 1000 chocolate bars. You purchase 5 chocolate bars, hoping that at least one of them will have a golden ticket.
   - What is the probability of getting at least 1 golden ticket?
   - What is the probability of getting 5 golden tickets?

2. Scrooge is getting ready for the 104 Duck Fashion Show. Scrooge has 3 hats (yellow, black, green), 9 shirts (3 of which are yellow, and 6 of which are green), and 7 bowties (all of which are blue). Scrooge selects each of his outfit uniformly at random and independently. What is the probability that his hat and shirt will be different colors?

3. You roll a fair die 6 times. What is the probability that no number appears twice?

4. Earlier in March, meerkats Howell and Midra in the Taronga Western Plains Zoo gave birth to 5 meerkat pups. You are told that at least 4 pups are female. Given this information, what is the probability that all 5 are female? (Hint: it is not 1/2)

5. Two cookies are pulled out at random and eaten from a jar containing 7 chocolate chip cookies and 6 snickerdoodles. Let $X$ be a random variable denoting the number of snickerdoodles pulled out.
   - What is the probability distribution of $X$?
   - What is the expected value of $X$?