
Backtracking
CSCI 104 Lab 9

Introduction: Graph Algorithms

● What are graphs useful for? Why do we represent data with graphs as
compared to “unordered collections”?
○ They help describe relationships between elements within different

systems

Graph Algorithms

● The information conveyed in graphs helps us solve many different types of
problems, ex:
○ Arrangement: ex. Alphabetically sort a database
○ Networking: ex. Shortest path to take between two cities (roads = edges)
○ Optimization: ex. Shortest path to visit every city (traveling salesman)
○ Matching: ex. Match every patient to a doctor
○ Any many more!!!

Introduction: Graph Algorithms

● The baseline graph algorithms to getting to solve all sorts of complicated
problems are:
○ Breadth first search

■ Visiting neighbors in “concentric rings”, a.k.a. With a FIFO queue
○ Depth first search

■ Visiting neighbors by “digging deep”, a.k.a. With a LIFO stack

…Backtracking?

● Backtracking is a type of graph algorithm that is used to solve constraint
satisfaction problems, i.e. the final state of the graph must meet a certain list
of requirements

● Examples of this include:
○ Sudoku (what we are doing today)
○ N-Queens
○ Map coloring (3-color, 4-color, etc.)
○ And many more!

…Backtracking?

● The general backtracking algorithm is a modification of depth first search
● Apply a change to our current state
● if it’s valid, then we continue down that path, adding new changes (depth first

search!!!)
○ If we find a solution, great! Return and all done
○ If there are no more possible valid options and we haven’t hit an end

state yet, then we “undo” our last change, return false, and are brought
back up to the previous state where we can try a different option

Example

● Numbers by arrows are the order the backtracking algo visits nodes in

Pseudocode

● This is a very general idea!
(i.e. lab code is not this
simple)

● Not ALL backtracking algos
will return a bool

● Sometimes you check
state/validity at multiple
points in the function

● Etc.

Time Complexity?

● Backtracking is not that efficient :(
● Different problems that backtracking solves take more or less time, so there is

no set time complexity
○ N-Queens problem has an upper bound of O(n!) time, where n is the

number of queens
○ Map coloring has an upper bound of O(n * m^n), where n is the number

of nodes (countries) and m is the number of colors used

Time Complexity?

● More efficient than DFS though!
○ This is because as soon as backtracking determines a potential solution

is invalid, it backtracks and tries other things; DFS would keep going
● Example on next slide

Time Complexity?

● DFS map coloring

DFS keeps coloring green until all states colored; only when done it realizes it’s invalid!

Initial state

adds color; map
not done

adds color; map
not done

Time Complexity?

● Backtracking map coloring

Backtracking will immediately stop when it realizes something is invalid

Initial state

adds color; valid,
but map not done

adds color;
INVALID!!!
backtrack

adds next
color option;
valid, but
map not
done

The Lab

● Fill in the solveHelper function in Sudoku.cpp
● While there is no backtracking for current PA, PAs 5 and 6 will both have :)
● Show passing tests to TA/CP

