Counting

Important Rules:

● **Product rule:**
 ○ If procedure can be broken up into sequence of k tasks
 ○ \(n_1 \) ways to do first task, \(n_2 \) ways to do second task, \(n_k \) ways to do kth task
 ○ \(n_1 \times n_2 \times \ldots \times n_k \) ways to do the procedure

● **Sum rule:**
 ○ If procedure can be done in \(n_1 \) ways OR \(n_2 \) ways
 ○ \(n_1 \) and \(n_2 \) have zero overlap
 ○ \(n_1 + n_2 \) ways to do the task
Counting

Important Rules (cont.):

● **Subtraction rule:**
 ○ If procedure can be done in n₁ ways OR n₂ ways
 ○ n₁ and n₂ have overlap n₃
 ○ $n_1 + n_2 - n_3$ ways to do the task

● **Division rule:**
 ○ If procedure can be done in n ways
 ○ For each way, it is identical to d-1 other ways
 ○ $\frac{n}{d}$ ways to do a task
Counting

Important Rules (cont.):

- **Permutation**: ordered arrangement of r elements from a set of n
 \[P_n^r = \frac{n!}{(n-r)!} \]

- **Combination**: unordered arrangement of r elements from a set of n (n choose r)
 \[C_n^r = \binom{n}{r} = \frac{n^P_r}{r!} = \frac{n!}{r! (n-r)!} \]
Counting

<table>
<thead>
<tr>
<th></th>
<th>Does order matter?</th>
<th>Is repetition allowed?</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-permutation without</td>
<td>Yes</td>
<td>No</td>
<td>$\frac{n!}{(n-r)!}$</td>
</tr>
<tr>
<td>repetition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r-permutation</td>
<td>Yes</td>
<td>Yes</td>
<td>n^r</td>
</tr>
<tr>
<td>with repetition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r-combination without</td>
<td>No</td>
<td>No</td>
<td>$\frac{n!}{r! \times (n-r)!}$</td>
</tr>
<tr>
<td>repetition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r-combination</td>
<td>No</td>
<td>Yes</td>
<td>$\binom{n-1+r}{r}$</td>
</tr>
<tr>
<td>with repetition</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Counting

How many different ways are there to distribute 9 cookies to 4 children so that each child gets at least one cookie?
Counting

- The cookies are indistinguishable while the children are distinguishable, so Stars and Bars is a good option to use.
 - 9 stars = cookies
 - 3 bars to separate children

- Problem: Using the Stars and Bars equation will give sequences with children getting no cookies.
 - How do we make sure each child gets at least one cookie with this method?
Probability

Important Rules:

- Probability of event E:
 - $S =$ sample space of equally likely outcomes
 - $P(E) = |E| / |S|$

- Complement: probability that event does not occur
 - $P(\bar{E}) = 1 - P(E)$
Probability

Important Rules:

- **Conditional Probability:** probability of B given A

\[
P(B|A) = \frac{P(A \cap B)}{P(A)}
\]

- If likelihood of B occurring does not depend on A, then B is independent of A:

\[
P(B \mid A) = P(B).
\]
Suppose there are two bags in a box, which contain the following marbles:

- Bag 1: 7 red marbles and 3 green marbles.
- Bag 2: 2 red marbles and 8 green marbles.

If we randomly select one of the bags and then randomly select one marble from that chosen bag, what is the probability that it’s a green marble?
Probability

- Green marble could come from Bag 1 or Bag 2, which will affect the chances of drawing a green marble.

- We need to use the Law of Total Probability:
 - For any partition of the sample space into disjoint events $F_1, ..., F_k$:
 \[p(E) = p(E|F_1) \times p(F_1) + ... + p(E|F_k) \times p(F_k) \]
Hashtables

Consider a hash table of size 7 with a loading factor of 0.5, the resize function is $2n + 3$, where n is the size of the hash table. *(an insertion may end with the loading factor being ≥ 0.5; the next insertion would cause the resize).*

When resizing, keys are inserted in the order they appear index-wise in the old hashtable.
The hash function is \((3k + 4) \mod n\), using quadratic probing. Insert 3, 11, 10, 6, 8, 23.

<table>
<thead>
<tr>
<th>Key</th>
<th>HashFunc(key)</th>
<th>Loading Factor Before Insert</th>
<th>Probe Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hashtables

More questions to consider:

1. What are the benefits of double hashing over things like linear or quadratic probing?
2. No examples of a double collision came up. If there was a double collision, what index do we go to next?
3. Can you explain the benefits of resizing?
4. Are probes ever guaranteed to go to distinct locations? If yes, what are the conditions for this to happen?
Bloom Filters

Q: What are the benefits and drawbacks of using a bloom filter?
Bloom Filters

Q: Which is possible, false positives or false negatives?
Bloom Filters

Q: Let’s say we have a bloom filter with 19 indices, 3 universal hash functions. 5 of the bits are set. What is the probability of getting a false positive?
Number Theory

Q: Say \(\gcd(a, b) = 1 \) and \(\gcd(a, c) = 1 \). What is \(\gcd(a, b*c) \)?
Q: Is 257 prime?
Number Theory

Q: What is the ones digit of 7^{100}?
Number Theory

Q: Given that $5x \equiv 6 \pmod{8}$, find x.
Coding

Suppose you are given an integer array \textit{nums} of unique elements. \textbf{Return all possible subsets} of the array (in other words, the power set). The solution can be in any order, and you must not include duplicate subsets.

- Example:
 - Input: \texttt{nums = [1,2,3]}
 - Output: \texttt{[[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]]}

- How many subsets are possible?
 - Each element can be included or not included in the subset
 - For an array of \textit{n} elements, this would be \textbf{2n total subsets}
Coding

We need to explore all possible combinations of the array’s elements -> backtracking!

- We will start building a subset that is initially empty
- We will iterate through the array and add the current number to our subset
 - Recursively build the subset without the letters we have already used (adjust the range of our loop)
 - Backtrack by removing the number we added and proceed to the next iteration of the loop
- In each recursive call, we will have a new subset that will be a part of our solution