
Lab 8: BST (and AVL)
CSCI104



REMEMBER: Heaps

● COMPLETE d-ary tree
○ All levels except the last are completely filled
○ All leaves in last level are to the left side

● Every parent is “better” than both of its 
children

● Min Heap: node is less than or equal to 
all children

● Max Heap: node is greater than or equal 
to all children

Could this be a heap??



Binary Search Trees (BST)

● Not necessarily a complete or full tree
● Left children (left subtree) hold values 

LESS THAN or equal to parent’s values
● Right children (right subtree) hold values 

GREATER THAN parent’s value



Traversals: Pre-Order, In-Order, Post-Order

● All traverals operate on EVERY node eventually–just in different orders



Traversals in C++

For a BST, what is special 
about operating on elements 
using an in-order traversal? 
If we were printing integers 
using this traversal, what 
would the output look like?



Why BSTs? SEARCHING!

● Enable (potentially) faster searching
● Why do we say potentially? What is an example where the search is 

slow, even if it’s a valid BST?



Why BSTs? SEARCHING!

Faster search: O(logn)Slower search: O(n)
Basically like a linked list



Search Function

● Can do it iteratively or recursively

Recursive 
example



Search Example



Balanced Binary Tree

● Height-balancing 
property: heights of 
each subtree differ by 
no more than 1

● Avoids the slower 
search times!

● Keeps the height of the 
tree log(n) A is balance, B is not



Maintaining BST Property

● REMEMBER: BST Property = left subtree node keys less than parent’s and 
right subtree node keys greater than parent’s

● Maintained by smart insertion and deletion
● Insert function

○ Traverse the tree based on key to be inserted
○ Insert once you encounter a situation where you cannot traverse further

● Remove function
○ Need to choose which node to promote
○ If node you want to remove has 0 children: just remove it
○ If node you want to remove has 1 child: promote the child of the node
○ If node you want to remove has 2 children: swap with its predecessor OR successor



Self-Balancing BSTs

● We will be focusing on AVL trees
● You keep the tree balanced even after insertions or deletions
● This involves using rotations!

○ Foundation of AVL trees



Single Rotations 
RIGHT



Single Rotations 
LEFT



Double Rotations
RIGHT LEFT



Double Rotations 
LEFT RIGHT



AVL Insert and Remove

● Insert
○ Insert as you would in a BST
○ Fix the tree if it is unbalanced after inserting the node (ROTATION)

■ Need at most 1 rotation (either a single or double rotation)
● Remove

○ Remove as you would in a BST
○ Keep traversing up the tree and fixing tree if unbalanced (ROTATIONS)

■ You may need multiple rotations to fully fix the tree



The Lab

● Implement the rangeSum function, 
isBalanced function (will be helpful for 
your PA!), and levelOrder function

● Use make to run all tests; show a TA/CP


