Lab 8: BST (and AVL)

CSCI104

Heap Data Structure

REMEMBER: Heaps
i /@\/\/\ /\/\/\

@ ® ® @ O © ® @

e COMPLETE d-ary tree RRFHEE Max Heap

o All levels except the last are completely filled | 06 |
o Allleaves in last level are to the left side

e Every parent is “better” than both of its
children

e Min Heap: node is less than or equal to
all children

e Max Heap: node is greater than or equal
to all children

Could this be a heap??

Neither
complete nor
full.

Binary Search Trees (BST) Q@

e Not necessarily a complete or full tree ?Eii'.mte nor
e Left children (left subtree) hold values
LESS THAN or equal to parent’s values O
e Right children (right subtree) hold values —— /O\)
GREATER THAN parent’s value R [Fulland complete |
©
@ Q
O (1) (*)
® O & O ©
e Figure 3-2: A Binary Search Tree
Figure 3-3: An Unbalanced Binary Search Tree

Traversals: Pre-Order, In-Order, Post-Order

e All traverals operate on EVERY node eventually—just in different orders

e “Pre”:visit the parent “pre-* (before) visiting left and right sub-trees.
e “In”":visit the parent “in™-between visiting left and right sub-trees.
e “Post”: visit the parent “post-* (after) visiting left and right sub-trees.

Pre-Order Traversal In-Order Traversal Post-Order Traversal
// Operate on current node // Recurse left // Recurse left
// Recurse left // Operate on current node // Recurse right
// Recurse right // Recurse right // Operate on current node

// return // return // return

void pre_order(Nodex node) {
if (node == nullptr) return;
print(node);

TraverSaIS In C++ pre_order(node->left);

pre_order(node->right);
If

void in_order(Nodex node) {

if (node == nullptr) return;
For a BST, what is special in_order(node->left);
about operating on elements PIEnE nouels
_ p_ 9 in_order(node->right);
using an in-order traversal? }

If we were printing integers
using this traversal, what void post_order(Nodex node) {
’ if (node == nullptr) return;

would the output look like? post_order (node->left);

post_order(node->right);
print(node);

Why BSTs? SEARCHING!

e Enable (potentially) faster searching
e Why do we say potentially? What is an example where the search is
slow, even if it's a valid BST?

Why BSTs? SEARCHING!

Figure 3-2: A Binary Search Tree

Figure 3-3: An Unbalanced Binary Search Tree

Slower search: O(n) Faster search: O(logn)
Basically like a linked list

Search Function

e Can do it iteratively or recursively

To search for key X ina BST, we compare Xto the current node.

If the current node is null, X must not reside in the tree.

If Xis equal to the current node, simply return the current node.

If it is less than the current node, we check the left subtree.

Else, it must be greater than the current node, so we check the right subtree.

Or, in code:

// Finds the node with value == val inside the bst. Returns nullptr if not found
Nodex find(Nodex root, int val) {
if (root == nullptr) return nullptr;

if (root->val == val) return root; Recursive
if (root->val > va eturn(find(root->left, val); examp|e
return(find(root->right, val

Sea rC h Exa m p I e Operation: find(6) // We begin at the root

Let’s walk through this:

e Current node = 8, 6 < 8, therefore go left.
e Currentnode = 3, 6 > 3, therefore go right.
e Currentnode = 6, 6 = 6, we've found the node.

Operation: find(@) // We begin at the root

Let’s walk through this one too:

Current node = 8, O < 8, therefore go left.
Current node = 3,0 < 3, therefore go left.
Current node = 1,0 < 1, therefore go left.
Current node = null. Ois not in the tree.

Balanced Binary Tree

Height-balancing
property: heights of
each subtree differ by
no more than 1

Avoids the slower
search times!

Keeps the height of the
tree log(n)

79

A is balance, B is not

Maintaining BST Property

e REMEMBER: BST Property = left subtree node keys less than parent’s and
right subtree node keys greater than parent’s
e Maintained by smart insertion and deletion

e Insert function

o Traverse the tree based on key to be inserted
o Insert once you encounter a situation where you cannot traverse further

e Remove function

Need to choose which node to promote

If node you want to remove has 0 children: just remove it

If node you want to remove has 1 child: promote the child of the node

If node you want to remove has 2 children: swap with its predecessor OR successor

@)

o O O

Self-Balancing BSTs

e We will be focusing on AVL trees
e You keep the tree balanced even after insertions or deletions

e This involves using rotations!
o Foundation of AVL trees

Single Rotations ('c
RIGHT ® > “ | /u\
& N @ ©

Left unbalanced Tree Right Rotation Balanced Tree

Right rotate on z

Single Rotations

LEFT

Right unbalanced tree Left Rotation Balanced

Before After
Left rotate on z

Balance factor =2-0 =2

DOUbIe RotatiOnS Balance factor = 2-0 = 2 o

RIGHT LEFT O N
o (&) Q= @

Right rotate on y, then left rotate on z

Balance factor = 2-0 = 2 Balance factor= 28 = 2

Double Rotations (
LEFT RIGHT - ﬁ’ —_ Gj(Dé

Left rotate on y, then right rotate on z

AVL Insert and Remove

e Insert

o Insert as you would in a BST
o Fix the tree if it is unbalanced after inserting the node (ROTATION)
m Need at most 1 rotation (either a single or double rotation)

e Remove
o Remove as you would in a BST

o Keep traversing up the tree and fixing tree if unbalanced (ROTATIONS)
m You may need multiple rotations to fully fix the tree

Initial Tree

e Implement the rangeSum function,) °
isBalanced function (will be helpful for Insert 14
your PA!), and levelOrder function Insert 3

Remove 3

e Use make to run all tests; show a TA/CP

Remove 4

