
Midterm 1 Review
CSCI 104

Runtime
Recall our formulas:

● Arithmetic Series:

● Geometric Series:

● Harmonic Series:

Runtime
Let’s determine the runtime of this algorithm:

Recursion
Given the heads of two sorted linked lists, return the merged, sorted linked list.

Adapted from merge sort.

Head vs. Tail Recursion
● Tail recursion is when you return the function call, i.e. there is no more code

to execute below the recursive call
○ Ex. return recursiveFunc(int param)

● Tail recursion is great because then the program doesn’t have to “go back” to
that call to execute code
○ Functions are basically a collection of statements that sit on the call stack
○ By using tail recursion instead of head, there’s only one version of the function sitting on the call

stack

● Whenever there is code below a return statement to be executed, i.e. after
making the recursive call the program has to revisit that instance of the call,
then it’s head recursion
○ There can multiple versions of the function sitting on the call stack, so is less efficient both time

and memory wise

ADTs

ADTs
1. In operating systems, multiple processes can happen concurrently with the use

of threads. What ADT could you use to store processes, where they are
assigned to threads based on the order in which they were first requested?
a. What if processes were now instead handled by their level of importance?

2. Say you’re a teacher and you want to keep track of your students and their
emergency contacts. What data structure should you use?

3. Say you want to keep track of every single line of code you write in a C++
class. What data structure should you use?

4. Say you’re trying to write a simple Towers of Hanoi implementation. What data
structure should you use for each peg?
*In Towers of Hanoi, you can only remove the top ring

Stacks & Queues
Given this directed graph, use a stack and a queue to find a path from
node 0 to node 3. Show the current state of the stack and queue in each iteration
of the search and break ties from the node’s value, pushing higher numbered
neighbors on first. Do not revisit nodes!

Heaps
Review: Store a heap in an array

Array starting at index 0, given location i:

Parent Location: (i - 1) / 2

Left Child: 2i + 1

Right Child: 2i + 2

Pushing + Popping a Heap
Push:

1. Insert to next index (bottom of tree)
2. Swap with parent until it’s not

“better than” its parent, or is now
the root

Pop:

1. Swap 0th element (thing to be
popped) with last element, delete

2. Swap root element down til in
correct spot

Heap Example
Given the array: [1, 5, 2, 25, 15, 10, 20, 50, 60, 3]

What does it look like as a binary heap in tree form? Is it a valid heap? If it is,
what type of heap? If it isn’t, what swap(s) do we need to make to make it
valid?

Inheritance
Explain the difference between public, protected, and private inheritance.

How does the visibility of inheritance affect:

- Public member variables?
- Protected member variables?
- Private member variables?

Inheritance Example
- What can Island access?
- What can Atoll access?

Inheritance Example
Island is now a PRIVATE
GeographicFeature.

- What can Island access?
- What can Atoll access?

Iterators
● Way to iterate (i.e. visit) every single item in a collection
● Usually, sets and maps are unordered collections of data, i.e. there is no

obvious way to visit the data, unlike a vector (array)
● Iterators are objects that point, usually temporarily, at an object within a

container; good way to abstract the method that is being used to iterate, so
you don’t personally have to code that!

● Ex.
○ std::set<int>::iterator it;

for(it = mySet.begin(); it != mySet.end(); ++it)
Std::cout << *it << std::endl;

Tips + Questions
● If you get stuck on a problem, move on! You may know how to do other ones,

so try to get as many points as possible, then come back if you have time

● Topics especially to note: ADTs, basic recursion, inheritance, runtime analysis

● Recommended resources: lecture notes, PAs (generally), Practice Midterm!!!!

● Questions?

