
Midterm 1 Review
CSCI 104

Runtime
Recall our formulas:

● Arithmetic Series:

● Geometric Series:

● Harmonic Series:

Runtime
Let’s determine the runtime of this algorithm:

Runtime
Let’s walk through it line-by-line!

True True True True Truenums :

● Line 2: We declare an array of size n: how much time does this take?

Runtime

● Outer for loop will go from i: 2 -> n:
○ (i = 2): j: 2 -> n/2
○ (i = 3): j: 2 -> n/3
○ (i = 4): j: 2 -> n/4
○ What is the pattern here?

● What is the work inside the nested for loop?
● What is the total runtime of the nested for loops?

True True True True Truenums :

BONUS: What does this algorithm do?

Recursion
Given the heads of two sorted linked lists, return the merged, sorted linked list.

Adapted from merge sort.

Recursion
Step 1: What is the base case? Hint: there may be more than 1 base case

Base Cases: If one of the lists is null.

What should happen? Return the non-null list. (or just return null if both are null)

Recursion
Step 2: What is the recursive case?

Recursive Case: We need to update the next pointer without losing track of the
head of the list we will return.

What should happen? How do we do that?

1. First, check which list currently has the smaller value at the front
2. For whichever list has the smaller head, then we want to:

a. Update that node’s NEXT (everything behind it) recursively – this is the trust fall!
b. Return that pointer

Recursion

Head vs. Tail Recursion
● Tail recursion is when you return the function call, i.e. there is no more code

to execute below the recursive call
○ Ex. return recursiveFunc(int param)

● Tail recursion is great because then the program doesn’t have to “go back” to
that call to execute code
○ Functions are basically a collection of statements that sit on the call stack
○ By using tail recursion instead of head, there’s only one version of the function sitting on the call

stack

● Whenever there is code below a return statement to be executed, i.e. after
making the recursive call the program has to revisit that instance of the call,
then it’s head recursion
○ There can multiple versions of the function sitting on the call stack, so is less efficient both time

and memory wise

ADTs

ADTs
1. In operating systems, multiple processes can happen concurrently with the use

of threads. What ADT could you use to store processes, where they are
assigned to threads based on the order in which they were first requested?
a. What if processes were now instead handled by their level of importance?

2. Say you’re a teacher and you want to keep track of your students and their
emergency contacts. What data structure should you use?

3. Say you want to keep track of every single line of code you write in a C++
class. What data structure should you use?

4. Say you’re trying to write a simple Towers of Hanoi implementation. What data
structure should you use for each peg?
*In Towers of Hanoi, you can only remove the top ring

ADTs
1. Queue of processes. Ex. std::queue<Process*>

a. Priority queue of processes. std::priority_queue<Process*>. Heap could
also work.

2. Map, where students are the key and the emergency contact is the value. Ex.
std::map<Student*, EmergencyContact*>

3. List of all the lines, since C++ is executed sequentially. Use the index as the line
number. Ex. std::list<std::string>

4. The pegs are handled last in, first out, so it should be a stack of rings. Ex.
std::stack<Ring*>

Stacks & Queues
Given this directed graph, use a stack and a queue to find a path from
node 0 to node 3. Show the current state of the stack and queue in each iteration
of the search and break ties from the node’s value, pushing higher numbered
neighbors on first. Do not revisit nodes!

Stack
Given this directed graph, use a stack and a queue to find a path from
node 0 to node 3. Show the current state of the stack and queue in each iteration
of the search and break ties from the node’s value (higher #s first). Do not revisit
nodes!

Initial Stack:

| 0 |
—------

Pop 0, push
neighbors

Next:
| 1 |
| 2 |
| 3 |
—------

Pop 1, push
neighbors

Next:
| 4 |
| 5 |
| 2 |
| 3 |
—------

Pop 4, push
neighbors
(none)

Next:
| 5 |
| 2 |
| 3 |
—------

Pop 5, push
neighbors
(none)

Next:
| 2 |
| 3 |
—------

Pop 2, push
neighbors

Next:
| 3 |
| 3 |
—------

Pop 3;
found!

Note- depending on when you check
if/mark a node visited, you may/may not
push 3 on in the second to last step!

Queue
Given this directed graph, use a stack and a queue to find a path from
node 0 to node 3. Show the current state of the stack and queue in each iteration
of the search and break ties from the node’s value (higher #s first). Do not revisit
nodes!

Initial Queue:

| 0 |
—------

Pop 0, push
neighbors

Next:
| 1 |
| 2 |
| 3 |
—------

Pop 3; found!

Heaps
Review: Store a heap in an array

Array starting at index 0, given location i:

Parent Location: (i - 1) / 2

Left Child: 2i + 1

Right Child: 2i + 2

Pushing + Popping a Heap
Push:

1. Insert to next index (bottom of tree)
2. Swap with parent until it’s not

“better than” its parent, or is now
the root

Pop:

1. Swap 0th element (thing to be
popped) with last element, delete

2. Swap root element down til in
correct spot

Heap Example
Given the array: [1, 5, 2, 25, 15, 10, 20, 50, 60, 3]

What does it look like as a binary heap in tree form? Is it a valid heap? If it is,
what type of heap? If it isn’t, what swap(s) do we need to make to make it
valid?

3

Invalid heap because
of last element in the
array

Make it a min heap by
swapping 3 up twice

Inheritance
Explain the difference between public, protected, and private inheritance.

How does the visibility of inheritance affect:

- Public member variables?
- Protected member variables?
- Private member variables?

Inheritance Example
- What can Island access?
- What can Atoll access?

Island:

● GetArea(), GetFeatureName(),
setArea(), setFeatureName()

Atoll:

● GetArea(), GetFeatureName(),
setArea(), setFeatureName(),
GetOcean()

Inheritance Example
Island is now a PRIVATE
GeographicFeature.

- What can Island access?
- What can Atoll access?

Island:

● GetArea(), GetFeatureName(),
setArea(), setFeatureName()

Now all private

Atoll:

● GetOcean()

Iterators
● Way to iterate (i.e. visit) every single item in a collection
● Usually, sets and maps are unordered collections of data, i.e. there is no

obvious way to visit the data, unlike a vector (array)
● Iterators are objects that point, usually temporarily, at an object within a

container; good way to abstract the method that is being used to iterate, so
you don’t personally have to code that!

● Ex.
○ std::set<int>::iterator it;

for(it = mySet.begin(); it != mySet.end(); ++it)
Std::cout << *it << std::endl;

Tips + Questions
● If you get stuck on a problem, move on! You may know how to do other ones,

so try to get as many points as possible, then come back if you have time

● Topics especially to note: ADTs, basic recursion, inheritance, runtime analysis

● Recommended resources: lecture notes, PAs (generally), Practice Midterm!!!!

● Questions?

