
Lab 5: Heaps/PQs
CSCI104

(Priority Queues)

What is a Priority Queue?

● implementation possibilities:
○ array (sorted or unsorted)
○ linked list
○ binary tree
○ heap** most efficient! → always keeps track of what is best

● FIFO (first in first out) [queue]
● LIFO (last in first out) [stack]
● PQ: whatever in, “best” out

operations:
● push() - add any node
● pop() - remove the best node
● top() - return the value of the best node

So what is a heap?

● A tree where every parent is better than its children
● Two representations:

as a complete d-ary tree as an array

heap property

notice the indices: the index of the (parent of node i) = i/2

(this changes if the first element is at index 0!)

https://www.hackerearth.com/practice/notes/heaps-and-priority-queues/

Heap Property

● Min Heap: node is less than or
equal to all its children

● Max Heap: node is greater than
or equal to all its children

Heaps

Which one is a min heap and which one is a max heap?

Questions to Think About

● Where in the tree is the “best” item at any given time?
○

● For a binary heap, does it matter which child is on the left and which child
is on the right? Why or why not?
○

● In what data structure is there an ordering property between the left and
right children and why is it necessary for that data structure and not in
heaps?
○

THE ROOT

NOPE, every parent just needs to be better than children

BST, for the search operation

Store Heaps in Array

● Array starting with index 1
○ Parent(i) = i/2
○ Left_child(p) = 2p
○ Right_child(p) = 2p+1

● Array starting with index 0
○ Parent(i) = (i-1)/2
○ Left_child(p) = 2p+1
○ Right_child(p) = 2p+2

● Think about how this changes for 3-ary,
4-ary, or 5-ary heap

Heap operations

Push:

- where should we add the item?
- what index is that?
- how do we make sure the new node is in the right place when we’re done?

Pop:

- what nodes/indices can we delete?
- how do we swap the “best” node into that node?
- how do we ensure we haven’t swapped something into the wrong place?

Top: where does the “best” node live?

Heap operations (contd)

push():

1. add it wherever it’s easiest! (the first open index)
2. “trickle up” to find its correct spot (keep going while it’s better than its parent)

In general:

1. Do whatever you’re trying to do, ignoring the heap property
2. Now re-satisfy the heap property!! **

push

Heap operations (contd)

pop():

1. make it easy to remove (switch it into the last spot)
2. remove original best
3. “trickle down” to find correct spot for whatever you just swapped (keep going

while it’s worse than its best child)

what would be the runtimes of
these operations?

pop

The Lab

part 1: implement pop()

● think about indices, the heap property
● use vector operations and swap
● check your implementation with

part 2: a simple game using the heap you just created

● run

show both for checkoff!

