Lab 4: Inheritance

CSCI 104



Inheritance

Reasoning behind it?

e Makes logical sense in the context of object-oriented programming
o We define objects with classes; nice to say something “is” something else,
ex. A square “is” a polygon
e This“isa” relationship isn’t just great logically, it’s great for our code!
o Allows us to share and reuse code
o Ex.Don't have to define the variable “num_sides” twice for polygon
example if a square can use the general polygon code
m Codereuseisimportant on avery large scale



Association

e Thisis another term commonly used in object oriented programming that’s
good to be familiar with

e Inheritance ="“is a”, association = “has a”

e Association is for when classes are related, but can’t be described in terms of
each other

e Forexample, apurse “is a” bag, and a purse “has a” wallet and “has a” chapstick



Polymorphism

e FEasily confused with inheritance, since they generally rely on each other
e Inheritance is what’s used to create relationships between your classes
o What logically connects things and allows for shared code
e Polymorphism is more based on the program, and how it decides to handle your
classes’ relationships
o Polymorphism is specifically the thing where you call a function that is
defined at multiple levels of inheritance, and the correct definition of the
functionis called!



class Animal {
public:
Animal(string n) {
name = n;

}
virtual ~Animal(){}

virtual void printNoise() {
cout << "Animal noise!" << endl;
ik
private:
string name;
}

class FarmhouseAnimal : public Animal {
public:
FarmhouseAnimal(string n, string o)
ownerName = o;

i}

virtual ~FarmhouseAnimal(){}

virtual void printNoise() override {
cout << "Moo" << endl;

b

private:
string ownerName;

: Animal(n) {

class Pig : public FarmhouseAnimal {

public:
Pig(string n, string o, bool m)
likesMud = m;

virtual ~Pig() {}

void printNoise() override {
cout << "0ink" << endl;

private:
bool likesMud;

FarmhouseAnimal(n, o) {




int main() {
Animalx an = new Pig("Annie", "Farmer Bridget", true);
an->printNoise();

delete an;
return 0;




int main() {
Animalx an = new Pig("Annie", "Farmer Bridget", true);
an—>printNoise();

root@docker:/work$ g++ -g -Wall Example.cpp -0 ex
root@docker:/work$ ./ex

delete an; .
Oink

return 0;




virtual void printNoise() {
cout << "Animal noise!" << endl;

}

virtual void printNoise() override {
cout << "Moo" << endl;

void printNoise() override {
cout << "0ink" << endl;




Pure Virtual Functions

e Okay, but no animal actually says “Animal noise!” except maybe humans
and talented parrots

e We should leave this to our children classes to define, and not even
attempt to define it ourselves

e Enter: pure virtual functions! Pure virtual functions is a way for a class
to say: | will NOT define this function, and it’s totally up to my children to do

e \When we have a pure virtual function in a class, we cannot instantiate
(i.e. create an object of) the class, since not all of it’s functions are
defined!



class Animal {
public:
Animal(string n) {
name = n;

virtual ~Animal(){}

virtual void printNoise() = 0;

private:
string name;

Example.cpp:55:12: warning: deleting object of abstract class type 'Animal' whic
h has non-virtual destructor will cause undefined behavior [-Wdelete-non-virtual
-dtor]

55 | delete an;
| A~




Private, Protected, and Public

e Private, protected, and public are C++ keywords that define access levels for
classes and how other classes can use them

Haserelass Type of Inheritence

member

accons Protected Private
specifier

(Hidden) (Hidden) (Hidden)
e Why are these words on both axes of this table???
e They are both variable/function access specifiers and can define inheritance




Base class
member
access
specifier

Type of Inheritence

,,,,,

class Pig : public FarmhouseAnimal {
public:
Pig(string-n, string o, bool m)

likesMud = m;,

~Pig() {}

void printNoise() override {
cout << "0ink" << endl;

private:
bool likesMud;

: FarmhouseAnimal(n, o) {




Private, Protected, and Public

Bascoles Type of Inheritence

member

aCC?SS Protected Private
specifier

Protected Protected Protected Private
Private Not accessible Not accessible Not accessible
(Hidden) (Hidden) (Hidden)

e Public means any outside class (and itself) can access / use / call / etc.
e Protected means only children classes (and itself) can access / use / call / etc.
e Private meansonly ITSELF (not even children!!!) can access / use / call / etc.




TO DO:

e ‘git pull’ the lab4 folder within the labs repo (should be familiar by now!)

e Read the write up on bytes

e Work onthelabin your docker environment

e Get checked off



