
Lab 4: Inheritance

CSCI 104

Inheritance

Reasoning behind it?

● Makes logical sense in the context of object-oriented programming
○ We define objects with classes; nice to say something “is” something else,

ex. A square “is” a polygon

● This “is a” relationship isn’t just great logically, it’s great for our code!

○ Allows us to share and reuse code

○ Ex. Don’t have to define the variable “num_sides” twice for polygon

example if a square can use the general polygon code

■ Code reuse is important on a very large scale

Association

● This is another term commonly used in object oriented programming that’s

good to be familiar with

● Inheritance = “is a”, association = “has a”

● Association is for when classes are related, but can’t be described in terms of

each other

● For example, a purse “is a” bag, and a purse “has a” wallet and “has a” chapstick

Polymorphism

● Easily confused with inheritance, since they generally rely on each other

● Inheritance is what’s used to create relationships between your classes

○ What logically connects things and allows for shared code

● Polymorphism is more based on the program, and how it decides to handle your
classes’ relationships
○ Polymorphism is specifically the thing where you call a function that is

defined at multiple levels of inheritance, and the correct definition of the

function is called!

Polymorphism Example with Animals

● grandparent class Animal, parent
class FarmhouseAnimal, child Pig

Polymorphism Example with Animals

● grandparent class Animal, parent class FarmhouseAnimal, child Pig

What will be outputted??

(look back at previous slide)

Polymorphism Example with Animals

● “Oink” will! This is because of polymorphism.

● Why isn’t it “Moo “from the FarmhouseAnimal class, or “Animal Noise”??

● Polymorphism allows parent classes to be able to reach down and access
their children’s overridden definition of a function

● Wait… but how does C++ know how to do this? Is it always this easy?

Virtual Functions

● The reason the concept of polymorphism was able to be leveraged was
because we used some special C++ keywords

● Use the keyword virtual before a function
signature for polymorphism

● For children classes when overriding the
parent function, put override at the end

● If you are the last child class (i.e. you won’t
have any children that will override the
function), then you don’t have to put virtual at the beginning

Pure Virtual Functions

● Okay, but no animal actually says “Animal noise!” except maybe humans
and talented parrots

● We should leave this to our children classes to define, and not even
attempt to define it ourselves

● Enter: pure virtual functions! Pure virtual functions is a way for a class
to say: I will NOT define this function, and it’s totally up to my children to do

● When we have a pure virtual function in a class, we cannot instantiate
(i.e. create an object of) the class, since not all of it’s functions are
defined!

Pure Virtual Functions
● Better Animal printNoise()

● We can still have an Animal* pointer, we
just wouldn’t be able to do something like:
Animal* an = new Animal(“Aayushi”);

A final note on the use of virtual keywords:

● Make sure that if you are trying to use polymorphism, you define a virtual
destructor! Otherwise, the compiler will give a warning. You don’t even
have to put anything in it, it’s just so it can call the right one and delete
everything

Private, Protected, and Public

● Private, protected, and public are C++ keywords that define access levels for

classes and how other classes can use them

● Why are these words on both axes of this table???

● They are both variable/function access specifiers and can define inheritance

Private, Protected, and Public

Keyword used to
define type of
inheritance

Keyword used to
define member
functions/vars

Private, Protected, and Public

● Public means any outside class (and itself) can access / use / call / etc.
● Protected means only children classes (and itself) can access / use / call / etc.
● Private means only ITSELF (not even children!!!) can access / use / call / etc.

TO DO:

● `git pull` the lab4 folder within the labs repo (should be familiar by now!)

● Read the write up on bytes

● Work on the lab in your docker environment

● Get checked off

