
CSCI 104 Lab:
Hash Tables

What is a Map?

● Recall that a map is a data structure used mostly for fast lookups or
searching data.

● It stores data in the form of key, value pairs, where every key is
unique. Each key maps to a value, hence the name “map.”

● The look up speed and ordering of map elements depends on the
data structure we use to implement our map.

Hash Tables

● Like an array, but to find the index
we use a hash function.

● A hash function converts the
input into an index location that
the input is then stored into.

● Hashing is a function - O(1)
● With a good hash function that

distributes keys uniformly around
the table so to minimize collisions,
all commands have average
runtimes of O(1).

Hash Functions

● Hash function - a function that converts an object into an index
location within our array.

● Goals of a hash function:
○ Easy and fast to compute
○ Uniformly distributes keys across the hash table
○ Deterministic!

Hash Functions (continued)

● A bad hash function:

This is fast (only one operation) but always returns the same value!

● A good hash function:

A few more operations (but still constant), and gives a variety of
output numbers, and is deterministic!

Collisions

● So what happens if the hash function outputs the same index for
multiple objects?
○ This is called a collision.

● Two approaches to handling collisions:
○ Open addressing
○ Closed addressing (chaining or buckets)

Open Addressing

● The idea with open addressing is that every location in the array
can only have 1 thing in it. This means that we will have to find a
free spot that we can place the object in. Linear probing is a very
simple solution.

● Linear probing is where you just keep incrementing up/looking at
the next index until you find a free location.

● Other examples of open addressing are:
○ Quadratic Probing
○ Double Hashing

Closed Addressing (Chaining)

● Chaining allows for multiple objects to reside within the same array
location. The array is changed to be an array of lists or some other
data structure, allowing us to store multiple items per index. We
often use an array of linked lists, hence the name “chaining.”

● Because chaining allows for buckets, n
objects could all be placed within the
same bucket. The worst case runtime is
O(n). Ideally, this should not occur if the
hash function is good and the size of the
hash table is big enough.

OrderedMap

Function Runtime

get(key) O(log n)

push(key, value)) O(log n)

remove(key) O(log n)

● An ordered map uses a balanced
binary search tree as its underlying
data structure.

● We haven’t yet gone over it in lecture
yet, but for now, it is sufficiently to
know that it is used in the
implementation of std::map (it usually
uses a version of balanced binary
search tree called a Red-Black Tree)

UnorderedMap

Function Runtime

get(key) O(1) on average

push(key, value)) O(1) on average

remove(key) O(1) on average

● An unordered map uses a hash
table as its underlying data
structure. This means that
access operations are O(1) on
average, but because of this,
no order can be inferred

● You must explicitly create an
unordered map using
std::unordered_map.

Lab Assignment

● Implement remove function for an open addressing hash table

