
1

CS103: Introduction to Programming

Spring 2023 – Midterm 2 Exam
03/30/23, 7 PM – 8:40 PM

[Complete all the information in the box below.]

Name:__Solutions_________________

Student ID: __________________ Email: _________________@usc.edu

Lecture section (Circle One):

Ques. Max score Time

1 2 3 min.

2 7 8 min.

3 11 14 min.

4 8 15 min.

5 10 25 min.

6 12 35 min.

Total 50 100 min

Redekopp Redekopp

MW 12:30 p.m. MW 2:00 p.m.

2

1. Dynamic Memory True/False (2 pts)

For each of 1.1 – 1.4, indicate TRUE for each statement below that uses proper syntax (i.e. will

compile) and FALSE otherwise. Assume n and m are properly initialized integers.

1.1. True/False: string* x = new string[m];

1.2. True/False: char* x = new string;

1.3. True/False: double** mat = new double*[m];

1.4. True/False: int** mat = new int[n][m];

2. Multiple Choice (7 pts)

Choose and circle the correct option.

2.1. True/False: In C++, structs cannot have member functions.

2.2. True/False: If x is a pointer to a vector<int> object, then x.push_back(3) will

correctly add 3 to the back of the vector. Would need to be x->push_back(3)

2.3. True/False: This code would have memory errors and/or segfault.

vector<int> x;

for(int i=0; i < 10; i++)

 { x[i] = 0; }

2.4. True/False: A vector can add a value to the front in O(1).

2.5. True/False: A doubly-linked list with a head and tail pointer can serve as a double-

ended queue (deque) data structure and meets its runtime requirements.

2.6. ifstream objects generally support the same operations as what other object(s)

[choose one]:

a) cout

b) string

c) cin

d) vector

2.7. True/False: Given your knowledge of the string type and appropriate memory

management, each time a string variable is assigned a new value, a new and delete

operation may take place (e.g. string x = "hi"; x = "bye bye";)

3

3. Classes (11 pts): Study the following code (split over 2 pages) which attempts to model a

CS Lab, the TAs assigned to lead that lab, and determine who will lead the lab each week.

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

// Intentionally starts at line 6 - assume appropriate #includes/using statement above

class Leader {

public:

 Leader(string n) { name = n; }

 int lead() { return ++timesLed; }

 string name;

private:

 int timesLed;

};

class CSLab {

private:

 deque<Leader> leaders;

 Leader* currLdr;

 void addLeader(string leaderName) {

 Leader theLeader(leaderName);

 leaders.push_back(theLeader);

 }

public:

 CSLab() { currLdr = /*__ Blank 1 __*/; } // Ctor 1

 CSLab(string leaderName) { // Ctor 2

 addLeader(leaderName);

 currLdr = &leaders[0];

 }

 CSLab(deque<Leader> theLeaders) { // Ctor 3

 leaders = theLeaders;

 currLdr = &leaders[0];

 }

 ~CSLab() { /* Empty for now */ } // Dtor

 void runLab(); // Defined on the next page

};

3.1. What is the single keyword/expression that should be in blank 1 in Ctor1? _NULL____

3.2. True / False: Calling addLeader() on line 27 will compile (is visible and accessible).

3.3. If the line CSLab lab1; was written in main(), which CSLab constructor would be called?

a. Ctor 1 b. Ctor 2 c. Ctor 3 d. None of the above

3.4. If the line CSLab lab2("TATina", "TATommy"); was written in main(), which CSLab

constructor would be called?

a. Ctor 1 b. Ctor 2 c. Ctor 3 d. None of the above

3.5. True / False: Given a CSLab object declared as CSLab lab1; in main(), the

expression: lab1.addLeader("TATina"); is valid and will compile.

4

37
38
39
40
41
42
43
44
45
46
47
48

void runLab() {
 if(!currLdr) {
 cout << "No lab today – no leader" << endl;
 return;
 }
 cout << "Ldr: " << currLdr->name << endl;
 cout << "Times led: " << currLdr.lead() << endl;
 Leader t = leaders.front();
 leaders.pop_front();
 leaders.push_back(t);
 currLdr = &leaders[0];
}

3.6. When compiling the code, the compiler indicated that in runLab(), leaders and currLdr

were "undefined in this scope". The root cause of this error is on what line of code (6-

48)? [Note: for the remaining problem assume this error is fixed].

Line Number: ___37__ (Just put a single integer line number in the blank).

3.7. True / False: In runLab() on line 42, the use of currLdr->name will compile (i.e. uses the

right syntax and name is visible and accessible).

3.8. True / False: In runLab() on line 43, the use of currLdr.lead() will compile (i.e. uses the

right syntax and lead() is visible and accessible).

3.9. True / False: runLab() could correctly be declared as a const member function (e.g. void

runLab() const).

3.10. If there are n leaders in the leaders_ deque, the runtime of runLab() is:

 a. O(1) b. O(n) c. O(n2)

3.11. True / False: If the size of the leaders_ deque is 1, the operations on lines 44-46 will

cause a segmentation fault.

3.12. True / False: Given the implementation of the CSLab class shown above, it requires

additional code in the destructor to avoid memory errors (as found by valgrind).

For 3.13-3.15, review the code of the Leader class on the first code listing. When running a

program that used it, valgrind will report which kind of error(s)? [mark all that are correct as True].

3.13. True / False: Out-of-bounds (invalid) read error will be reported.

3.14. True / False: Access to uninitialized memory will be reported.

3.15. True / False: Memory leak will be reported.

5

4. Coding 1 (8 pts) – Write a function that takes an array of integers of length n, and should

return a pointer to a valid integer array that holds ONLY the integers from the original array

that are even (in the same relative order as they appeared in the original array). It should

also output the size of this new array by setting the value pointed to by psize with the size.

Example: Given an input array of: 0,1,2,3,4 return an array with 0,2,4 and set the integer pointed

to by psize to 3 (since that is the size of the returned array).

Note 1: The output array cannot be larger than needed but must fit the exact amount of even integers

Note 2: Return NULL and set the integer pointed to by psize to 0 if no even integers exist or the

input array is of size 0 and ensure your code works for any input array size.

// orig input array (containing event and/or odd integers)

// n size of the input array

// psize pointer to an integer to be set with the output array length

// return: Pointer to output array with only even values, or NULL if no

// even numbers were present.

int* evennums(int orig[], int n, int* psize)

{ // Your code here

 // Note: can't assume any specific starting value for *psize

 // Need to first count how many even numbers exist

 int numeven = 0;

 for(int i=0; i < n; i++){

 if(orig[i] % 2 == 0){

 numeven++;

 }

 }

 // Need to check for 0 even numbers because ...

 if(numeven == 0){

 *psize = 0; // Need to set *psize (not psize)

 return NULL;

 }

 // ... it would be wrong to allocate a 0-size array

 int* retval = new int[numeven]; // requires dyn. alloc.

 int k = 0; // index for output array

 // Now copy only the even integers into the newly created array

 for(int i=0; i < n; i++){

 if(orig[i] % 2 == 0){

 retval[k] = orig[i];

 k++;

 }

 }

 *psize = numeven; // Need to set *psize (not psize)

 return retval;

}

6

5. Coding 2 (10 pts) – You are given a singly-linked list class that contains data members for

both the head and tail pointers. Write a member function: push_back_if_not_present

which adds a new item/value at the end of the list ONLY if it is NOT already present in the

singly-linked list. Return false if the item was already present or true if it was not and you

added it to the back.

struct Item {

 int val;

 Item* next;

};

class ListInt {

public:

 ListInt();

 ~ListInt();

 bool empty() const;

 void push_front(int new_val);

 void pop_front();

 bool push_back_if_not_present(int x);

 void print() const;

private:

 Item* head; Item* tail;

};

You may NOT call other member for your implementation of push_back_if_not_present(), and may

NOT add data members. Your solution should visit Items once (i.e. run in O(n)), leave the list in a

correct state for future operations, and not produce memory errors.

Write your code on the next page.

Example 1: So if the list had: 1 2 3, calling

list.push_back_if_not_present(-2)

would add -2 : 1 2 3 -2 and return true.

Example 2: So if the list had: 1 2 3, calling

list.push_back_if_not_present(2)

would not change the list and return

false.

7

bool ListInt::push_back_if_not_present(int x) {

 // Case 1: empty

 if(head == nullptr){

 Item* newptr = new Item;

 // Will be the "last" (and "first") element so use

 // next pointer equal to null

 newptr->val = x; newptr->next = nullptr;

 head = newptr; // set head to newptr

 tail = head; // or newptr

 }

 // Case 2: 1 or more items

 else {

 // APPROACH 1 (EASIER) – Walk full list, then use tail to add item

 //======================================

 Item* temp = head; // don't lose your head

 // should check if value exists by walking the list

 while(temp != NULL){

 // Case 2a: x IS ALREADY present

 if(temp->val == x){

 return false;

 }

 temp = temp->next;

 }

 // Case 2b: x is not present...add it

 // We can use tail to add it.

 Item* newptr = new Item;

 newptr->val = x; newptr->next = nullptr;

 tail->next = newptr;

 tail = newptr;

 // // APPROACH 2 – Not using tail; walk TO last item checking as you go.

 // //======================================

 // Item* temp = head; // don't lose your head

 // // walk until last/tail item, checking as we go

 // while(temp->next != NULL && temp->val != x){

 // temp = temp->next;

 // }

 // // Case 2a: x is ALREADY present

 // // Note: this will also check the last element's value if we

 // // stopped because we reached the last element. Could

 // if(temp->val == x){

 // return false;

 // }

 // // Case 2b: x is not present...add it

 // else {

8

 // Item* newptr = new Item;

 // newptr->val = x; newptr->next = nullptr;

 // temp->next = newptr; // or tail->next = newptr

 // tail = newptr;

 // }

 }

 return true;

}

9

6. Coding 3 (12 pts) – An instructor of a class that has only homeworks and exams has all of

the students’ assignment scores mixed together in a single text file using the format shown

below (usernames, category title, and score) in the sample input file (grades1.in)

ttrojan hw 100

yyortsos hw 90

ttrojan exam 87

cfolt exam 83

cfolt hw 91

ttrojan hw 85

yyortsos hw 82

last exam -1

The instructor would like a program that takes filename from the command line as well as a

student name (e.g. ./grades grades1.in ttrojan) and then reads the data in the file to

populate a Student object with that students username, HW, and exam scores. The Student

object is shown below and should also provide member functions to compute the average

HW grade and average exam grade (assuming all HWs are equally weighted for the HW

grade and all exams are equally weighted for the Exams grade).

struct GradeItem {

 int cat; // 0 = HW, 1 = Exam

 int score;

 // Convenience constructor

 GradeItem(int c, int s) { cat = c; score = s; }

};

class Student {

public:

 Student(string uname);

 bool initGrades(char* filename);

 double getAvg(int which) const;

private:

 string uname_;

 vector<GradeItem> items_; // HW and Exam scores for this student

};

Let us refer to each score (and it corresponding category) for a student as a grade item. The

file may contain ANY number of grade items...there is no upper limit. But processing of grade

items should end when a grade item that contains last as the username and -1 as the score

is encountered (and that record should then be discarded). Note: We recommend against

use of getline() as reading the input can be done more simply.

You may use C++ string and vector<T> (where T is any type) in this program as you like.

But no other C/C++ libraries may be added beyond those already included below. We

have also defined a GradeItem struct that you must use to store each score for the given

student.

10

We have provided a code skeleton with constructor and other functions, including the

majority of main(). Complete the initGrades() and getAvg() member functions of the

Student class and then fill in the missing lines in main() where indicated.

• Read the comments in the code which act as requirements you must meet.

• You may not alter other aspects of the skeleton that is given.

• Your code should not be blatantly inefficient (e.g. do in O(n3) what could be done in

O(n2)).
#include <iostream>

#include <fstream> // for ifstream

#include <string>

#include <vector>

using namespace std; // no other libraries may be added

struct GradeItem {

 int cat; // 0 = HW, 1 = Exam

 int score;

 GradeItem(int c, int s) { cat = c; score = s; } // Convenience constructor

};

class Student {

public:

 Student(string uname) { uname_ = uname };

 bool initGrades(char* filename);

 double getAvg(int cat) const;

private:

 string uname_;

 vector<GradeItem> items_; // HW and Exam scores for this student

};

int main(int argc, char* argv[]) {

 if(argc < 2) {

 cout << "Please provide a grades file" << endl;

 return 1;

 }

 string username(__argv[2]______); // may only fill in one expression

 Student s1(username);

 // Call `initGrades(...)` on the s1 object passing the appropriate argument

 __s1.initGrades(argv[1])__;

 cout << "HW Avg: " << s1.getAvg(0) << endl;

 cout << "Exam Avg: " << s1.getAvg(1) << endl;

 // Any cleanup code if necessary – leave blank if none is necessary

 ____<should be left blank - none necessary>______________________________

 return 0;

} // write initGrades() and getAvg() on the next page

11

// Complete your code - Return false if any errors occurred opening or

// reading from the file, true otherwise

bool Student::initGrades(char* filename)

{ // Reminder: Only add the grades of the corresponding student

 ifstream ifile(filename);

 if(ifile.fail()){

 cout << "Couldn't open file" << endl;

 return false;

 }

 string name, cat;

 int score;

 ifile >> name >> cat >> score;

 // Use DeMorgan's correctly. Should be what is shown below or

 // (!(name == "last" && score == -1)). Or they can check in the loop

 // and break, if done correctly.

 while(name != "last" || score != -1){

 if(name == uname_){ // Is this record/item for THIS student?

 if(cat == "hw") {

 GradeItem item(0, score); // create HW item

 items_.push_back(item);

 }

 else {

 GradeItem item(1, score); // create Exam item

 items_.push_back(item);

 }

 }

 ifile >> name >> cat >> score; // get next input record/item

 }

 if(ifile.fail()){

 return false;

 }

 ifile.close(); // not strictly necessary but good practice

 return true;

}

// Complete your code - Should return 0 if no scores for the given category exist

double Student::getAvg(int cat) const

{

 double tot = 0;

 int count = 0;

 for(unsigned i=0; i < items_.size(); i++){

 if(cat == items_[i].cat){

 tot += items_[i].score;

 count++;

 }

 }

 if(count == 0) return 0.0; // handle case of 0 HWs or Exams

 else return tot/count;

}

