
1

CS103: Introduction to Programming

Spring 2023 – Midterm 1 Exam
02/23/23, 7 PM – 8:30 PM

[Complete all the information in the box below.]

Name:___

Student ID: __________________ Email: _________________@usc.edu

Lecture section (Circle One):

Ques. Max score Time

1 14 12 min.

2 8 10 min.

3 6 8 min.

4 6 12 min.

5 9 22 min.

6 12 26 min.

Total 55

Only work on this exam can be graded (No work on scratch paper will be considered)!

Redekopp Redekopp

MW 2 p.m. MW 12:30 p.m.

2

1. Short Answer/Multiple Choice (12 pts)

Either fill in the blanks in the space provided OR circle the correct option to make the statement true.

1.1. True/False: When only the name of an array is used in an expression, it evaluates to the

array's starting address.

1.2. What type would be returned by the expression new int*[10];

(a) int (b) int* (c) int & (d) int **

1.3. True/False: A break statement will break out of all nested loops in which it is located.

1.4. When a function need not return a value, its return type should be declared as (one

word): __________

1.5. True/False: Given a program composed of file1.cpp and app.cpp, we can produce an

executable named app with the command: g++ -g -Wall app.cpp -o app

1.6. True/False: An array of pointers is a common approach to representing a 2D array.

1.7. True/False: Assuming the background of an image has been initialized, drawing a

diagonal line using our image processing BMP library requires 2 nested loops.

For 1.8 - 1.11, assume an array is declared in main() using the statement:

 double mat[2][5][3];. Indicate whether each statement is true or false.

1.8. True/False: The array values will be initialized to 0.

1.9. True/False: The middle dimension ([5]) must indicate the number of columns.

1.10. True/False: mat[1][3][1] is stored in memory directly next to mat[0][3][1].

1.11. True/False: The address of the last element of the array can be found using the

C++ expression: (mat + 1*5*3 + 4*3 + 2)

For 1.12 – 1.14, which of the following is/are necessary reason(s) to use dynamic allocation.

1.12. True/False: When you need a pointer to a variable.

1.13. True/False: When the allocated memory needs to live beyond the scope of the

function where it is declared.

1.14. True/False: When the size of an array is constant.

3

2. Expressions (8 pts)

Consider the code below. Suppose it was compiled and then run with the command line:

./prog1 456 wxyz

Trace the execution and determine the value that would be printed on each line. Any update

to a variable is carried through the rest of the program.

Note: You MUST show doubles with ONLY the decimal places that are necessary (e.g. 2.5

but not 2.50) but with at least 1 digit after the decimal (i.e. 2.0 not 2).

#include <iostream>

#include <cstring>

using namespace std;

// The program is run at the command line as: ./prog1 456 wxyz

int main(int argc, char* argv[])

{

 double a = 5.0, b = 3.0;

 int f = 6, g = 12, h = 94;

 char d[] = "fedc";

 double z = g / 8;

 cout << z << endl; // 2.1) ______

 cout << g++ % 5 << endl; // 2.2) ______

 cout << h / 10 % 6 << endl; // 2.3) ______

 cout << 5 + f / a << endl; // 2.4) ______

 cout << strlen(d) << endl; // 2.5) ______

 cout << --d[1] << endl; // 2.6) ______

 // Hint: no addresses will be printed by the following line

 cout << argv[1][1] << endl; // 2.7) ______

 cout << d+2 << endl; // 2.8) ______

 return 0;

}

4

3. Pointer and Pointers to Pointers (6 pts).

Suppose a program is run as:

./prog We can excel in 103

The program updates the signature of main() to be: int main(int argc, char* argv[])

Finally, assume the expression argv will yield address 600 and the actual content of argv[1] is 200.

3.1. What is the value of argc?

3.2. What kind of result would be shown on the screen when cout << *argv << endl; is

executed?

a) a pointer

b) a string of characters

c) a single char

d) none of the above

3.3. What kind of result would be shown on the screen when cout << argv[2] << endl; is

executed?

a) a pointer

b) a string of characters

c) a single char

d) none of the above

3.4. What kind of result would be shown on the screen when cout << argv+1 << endl; is

executed?

a) a pointer

b) a string of characters

c) a single char

d) none of the above

3.5. Show EXACTLY what would be printed on the screen when

cout << *(argv[3]+1) << endl; is executed (do not show “ or ‘ in your answer).

3.6. Show the address (type in the exact number) that would result from the expression

argv[1] + 2.

5

4. Functions, Arguments, and Tracing (6 pts) – Study the program below which prints 6 lines

of output. Show the 6 lines of output exactly as they would be printed to the screen in the

commented blanks after each cout line in main().

Note: As shown below, when printing a bool, the value of false will be printed as 0 and true

will be printed as 1. Just show 0 or 1 (not “false” or “true”). Assume the user inputs 5 for the

first cin and 3 for the second.

#include <iostream> // SCRATCH WORK

using namespace std;

int f1(bool skiplist[], int c)

{

 int lc = -1;

 int p[] = {2, 5, 4, 1, 6, 0, 3};

 while(skiplist [p[c]]){

 lc = c;

 c = p[c];

 skiplist[c] = false;

 }

 return lc;

}

int main()

{

 bool skip1[] = {true, false, true, true, false, false, false};

 bool skip2[] = {true, false, true, true, false, true, false};

 int choice, r;

 cin >> choice; // User enters 5

 r = f1(skip1, choice);

 cout << r << endl; // 4.1 ______

 cout << skip1[0] << endl; // 4.2 ______ (output 0 for false, 1 for true)

 cout << choice << endl; // 4.3 ______

 cin >> choice; // User enters 3

 r = f1(skip2, choice);

 cout << r << endl; // 4.4 ______

 cout << skip2[0] << endl; // 4.5 ______ (output 0 for false, 1 for true)

 cout << choice << endl; // 4.6 ______

 return 0;

}

6

5. Coding 1 – Unique1 (9 pts) – Consider the program below that takes an array of non-

negative integers from the command line (of any length) and should find and output the

number that has a unique last 2 digits. (To be clear, the last two digits of 103 are 03).

More formally, for each number in the array consider ONLY its last 2 digits. We guarantee

that only 1 number in the array will have a unique last 2 digits (i.e. its last 2 digits will NOT

match any other number), while the last 2 digits of ALL OTHER NUMBERS will match 1 or

more values in the array. Find and output that one number whose last 2 digits are unique.

For example, if we ran the program: ./unique 921 145 509 21 34509

You should output 145. This is because the last two digits of 921 match 21, the last two digits

of 509 match 34509, but the last two digits of 145 has no match (i.e. the last two digits 45,

are unique). It is the number with the unique last 2 digits.

To implement this you must complete the function unique() and can determine its return

value and other parameter types.

Requirements

• You can ONLY write/modify 1 line in main() to call your function. You may not

declare other variables, add more than 1 line, or alter any other part of main().

• You may NOT use C++ reference variables which we have not learned nor covered

yet this semester but that some students may know about.

• You may not change the return type of unique().

• Bad (out-of-bounds) memory access will be penalized and code that is extremely

inefficient may be assessed a small penalty.

7

#include <iostream>

#include <cstring>

using namespace std;

void unique(int dat[], int len, _________________________________) {

 // Complete this function and its parameters above

}

int main(int argc, char* argv[]) {

 if(argc < 3) {

 cout << "list at least 2 integers on the cmd line" << endl;

 return 1;

 }

 int* dat = new int[argc-1];

 int len = argc-1;

 for(int i=0; i < len; i++){

 dat[i] = atoi(argv[i+1]);

 }

 int unique1;

 // **You may only update this ONE line below and no others.**

 // You may not declare other variables, add more lines, etc.

 unique(dat, len, ___________________________________);

 cout << "Unique number: " << unique1 << endl;

 delete [] dat;

 return 0;

}

8

6. Coding 2 – str_short_long (12 pts) – Consider the str_short_long.cpp program shown

below to read in two C-strings (character arrays) of at most 20 alphanumeric characters.

Complete the function short_long() to determine which input string is longer (the first or

second) and then produce an output C-string of at most 40 alphanumeric characters that

contains:

• the shorter string first,

• followed by an underscore character ('_'), and

• ends with the contents of the longer string UP TO BUT EXCLUDING the first digit

character ('0'-'9') if it exists (the longer string may or may not have a digit).

Note: You MAY assume one string will ALWAYS be longer than the other.

• Example 1: If the user enters abc12345 and wxyz, the shorter would be placed first (i.e.

wxyz) in the output string, followed by an underscore, and then everything in the longer string

up to the first digit (i.e. abc). The final output string would, thus, be wxyz_abc.

• Example 2: If the user enters hello and a123, the output string should be a123_hello.

• Example 3: If the user enters hi and 123, the output string should be hi_ (i.e. "hi" and an

underscore character).

Procedure

1. Indicate the appropriate sizes of each character array declared in main()

2. Finish the code for the short_long() function. Note: You SHOULD NOT need an ASCII

table (nor the decimal numbers associated with certain characters) to accomplish this task.

Hint: At a very high level, you can break this function into a sequence of 4 basic tasks:

a. Find which is longer and which is shorter

b. Copy the shorter string and then an underscore to the output string

c. Find if and where a digit appears in the longer string

d. Copy all the characters up until that point from the longer string to the output string

Requirements and Assumptions

• You may NOT use of C++ strings, but may use the following <cstring> library functions if it

helps:

int strlen(char* src);

char* strcpy(char* dest, char* src);

char* strcat(char* dest, char* src);

• Bad (out-of-bounds) memory access will be penalized and code that is extremely

inefficient may be assessed a small penalty.

• You may NOT modify main() [other than the character array sizes] NOR modify the

signature of str_short_long()

9

// MODIFY THE ARRAY SIZES IN MAIN() BELOW

#include <iostream>

#include <cstring>

using namespace std;

void short_long(char s1[], char s2[], char ostr[]);

int main()

{

 char str1[______];

 char str2[______];

 char ostr[______];

 // You may NOT modify anything in main() except for the array sizes above

 cout << "Enter two strings: " << endl;

 cin >> str1;

 cin >> str2;

 short_long(str1, str2, ostr);

 cout << ostr << endl;

 return 0;

}

// Write short_long() on the next page

10

void short_long(char s1[], char s2[], char ostr[]) {

 // Your code here

}

