CSCI 103

Introduction to Programming

Spring 2015

Final Exam

For this exam, you are allowed to use a two-sided cheatsheet $(8.5" \times 11")$ written in your own handwriting.

No calculators, computers, or textbooks are allowed.

Some of the programs inside omit their **#include** and **using** statements and the declaration/return from **main**. They are only omitted for brevity. Please assume that they are included.

Print your name, print your email address, and select your lecture section now.

Your Name:

Your USC e-mail:

Your Lecture Section:

29991	2PM MW	David Pritchard
29902	11AM TTh	David Pritchard
29906	2 PM TTh	David Pritchard

Problem	Value	Score
1	12	
2	9	
3	11	
4	8	
5	8	
6	12	
7	10	
Total	70	

1 Syntax and Semantics (12 Points)

Circle **True** or **False** for each option.

- (a) What can the >> operator be used for?
 - checking if one number is a lot bigger than another, e.g. if (x >> limit)

(b) Consider the following three kinds of function prototypes:

```
void func(int x); // normal parameter
void func(int* x); // pointer parameter
void func(int& x); // reference parameter
```

For what reason(s) would we define the function using a pointer parameter or a reference parameter instead of a normal parameter?

	pointer	reference
function can change an int variable's value (True/False	True/Palse
allows us to pass an array to the function (True/False	True False
is valid syntax to call it on int variable (e.g., func(myint))	True/False	True/False
avoids making copy of int when we call the function	True/False	True/False

2 OOP and Dynamic Memory (9 Points)

Circle True or False for each option.

(a) Member functions always have to be public.

 True
 False

 (b) If \$1 and \$2 are structs, \$1 == \$2 checks if all their data members are identical.

 True
 False

 (c) It is possible for a class to have several different constructors.

 True
 False

 (d) It is possible for a class to have several different destructors.

 True
 False

 (e) Consider the following code snippet:

 int a[2];

 int* x = new int[3];

 int* y = new int[5];

 int* y = new int[5];

int* t = y; y = x; x = a; delete t; delete y; delete x;

This code compiles. However, what bug(s) does it have?

	code has this bug
can't delete t, since it was not initialized using new	True False
has memory leak	True False
mixes arrays of different lengths	True False
tries to deallocate a statically-allocated array	True/False
wrong deallocation syntax	True/False

3 Number Systems and Bitwise Operators (11 Points)

(a) Match each decimal number to the equivalent binary number, and match each hexadecimal number to the equivalent binary number. Indicate the matched values by connecting the dots; you should draw 8 lines in total.

- (b) Compute the results of the following bitwise operations. All numbers below are binary, and you should leave your answers in binary.
 - (i) $1101 \land 1011$

110

(ii) 101010 & 111000

101000

(iii) 11100 << 11

11100000

4 Orders of Growth (8 Points)

Circle the order of growth for each description below.

Every answer should be used exactly once.

(a)	The amount of me	emory used l	oy a Pict	ture with heig	ght N and	width N .		
	1 (constant)	$\log N$	N	$N \log N$ (N^2	N^3	2^N	3^N
(b)	The time it takes	to draw a Si	erpinski	triangle of ord	ler N .			
	1 (constant)	$\log N$	N	$N\log N$	N^2	N^3	2^N	3^N
(c)	The time it takes	to find the r	niddle ele	ement of a vec	tor of leng	$\sinh N.$		
\langle	1 (constant)	$\log N$	N	$N\log N$	N^2	N^3	2^N	3^N
(d)	The time it takes	to find the r	niddle ele	ement of a lind	ked list of	length N .		
	1 (constant)	$\log N$	N	$N\log N$	N^2	N^3	2^N	3^N
(e)	The number of dif	fferent N -bit	binary i	ntegers.				
	1 (constant)	$\log N$	N	$N\log N$	N^2	N^3	2^N	3^N
(f)	The time it takes	for the follow	wing code	e to execute:				
	<pre>for (int i=0; i</pre>	<n; f<="" i++)="" td=""><td>or (int</td><td>j=1; j<n; j<="" td=""><td>*=2) cout</td><td>; << i+j</td><td><< end</td><td>1;</td></n;></td></n;>	or (int	j=1; j <n; j<="" td=""><td>*=2) cout</td><td>; << i+j</td><td><< end</td><td>1;</td></n;>	*=2) cout	; << i+j	<< end	1;
	1 (constant)	$\log N$	N	$N \log N$	N^2	N^3	2^N	3^N
(g)	The running time is 3000, and 9 day	of a program of a when N is	n that ta 6000.	kes 1 hour wh	en N is 10	00, 1.125	days wh	en N
	1 (constant)	$\log N$	N	$N\log N$	N^2	N^3	2^N	3^N
(h)	The running time	of binary se	arch on a	an array of N	elements.			
	1 (constant)	$\log N$	N	$N \log N$	N^2	N^3	2^N	3^N

5 Recursion (8 Points)

Consider the following recursive function:

```
int f(int m, int n) {
   cout << "C " << m << " " << n << endl; // C: call
   int result = n;
   if (m > 0)
        result = f(m - 1, m + n)
   cout << "R " << result << endl; // R: return
   return result;
}</pre>
```

(a) In the box below, list all lines of output that are printed if we call f(3, 3). Lines of output:

С	3 3		
С	2 6		
С	18		
С	09		
R	9		
R	9		
R	9		
R	9		
Vhat	is the return value of $f(3)$	3)?	9

(c) If n is any positive integer, what is the return value of f(n, 0), in terms of n? You do not need to simplify your answer; it is okay to write an expression involving dots (···).

1 + 2 + ... + n

6 OOP Debugging (12 Points)

Three files are listed below. On the next page, you will help debug them.

You may carefully detach this page from the exam if you want to look at the pages side-by-side. Please don't rip out the staple!

```
/*** circle.h: ***/
 1 class Circle {
 2 private:
 3
     // x-center, y-center, radius of a circle
 4
 5
     double x, y, r;
 6
 7
     // construct a circle with the given center coordinates and radius
 8
     Circle(double xcenter, double ycenter, double radius);
 9
10
     // check if the point (px, py) is contained inside of this circle
     bool contains(double px, double py);
11
12
13 };
   /*** circle.cpp: ***/
 1 #include "circle.h"
 2 Circle::Circle(double xcenter, double ycenter, double radius) {
      xcenter = x; ycenter = y; radius = r;
 3
 4 }
 5
 6 bool contains(double px, double py) {
      return (px-x)*(px-x) + (py-y)*(py-y) <= r*r; // (FORMULA IS CORRECT)</pre>
 7
 8 }
   /*** test_circle.cpp: ***/
 1 #include "circle.h"
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5 int main() {
      Circle mycircle(1, 2, 100); // center (1, 2), radius 100
 6
 7
      cout << boolalpha << mycircle.contains(5, 10) << endl;</pre>
 8 }
```

OOP Debugging, Continued

Answer the following questions about the code on the previous page. Explanations should be clear and brief (at most ten words if possible). Writing the fixed code is not required.

Hint: line 7 of circle.cpp, which says FORMULA IS CORRECT, has no bugs (it is not a trick).

(a) When we compile circle.cpp, we get the error "use of undeclared identifier 'x'" reported inside of the contains function in circle.cpp.

What file needs to be edited to fix this bug? Circle one.

circle.h

circle.cpp

What line number in that file would you change? <u>6</u> What needs to be changed to fix it?

add Circle:: prefix before contains

(b) After fixing that issue, circle.cpp compiles. Then we try to compile test_circle.cpp but get the error "calling a private constructor of class 'Circle'"

What file needs to be edited to fix this bug? Circle one.

circle.h circle.cpp test_circle.cpp

What line number in that file would you change? <u>6</u>

What needs to be changed to fix it?

add public:

(c) After fixing that issue, test_circle.cpp compiles. However, when we run it, it prints false, which is wrong since mycircle should be large enough to contain (5, 10).

What file needs to be edited to fix this bug? Circle one.

circle.h	circle.cpp	<pre>test_circle.cpp</pre>				
What line number in that file would you change? <u>3</u>						
What needs to be changed to fix it?						
switch order of co	nstructor parameter	s and data members				
(change to x = xcenter; etc)						

7 Linked Structures (10 Points)

Consider the following linked list code:

```
List at 0x700
                                                                           Node at 0x300
struct Node {
                                                             start: 0x500
                                                                              val: 6
   int val;
                                                                              next: NULL
   Node* next;
                                                                                0x500
   Node(int v, Node* n) {val = v; next = n;}
                                                                           Node at 0x800<sup>OR</sup>
                                                          Node at 0x500
};
                                                             val: 4
                                                                              val: 9
class List {
                                                             next: 0x800
                                                                              next: 0x300
 private: Node* start;
                                                                               0x800
 public:
   void add() {
                                                                                   etc.
       for (int i=1; i<=2; i++) start = new Node(i, start);</pre>
   }
   bool mystery() {
       Node* a = start;
                            Node* b = start;
       while (b != NULL && b->next != NULL) {
          b = b \rightarrow next;
          b = b - next;
          a = a \rightarrow next;
          if (a==b) return true;
       }
       return false;
   }
// ... rest of List class definition not shown
```

- (a) Complete the following sentences about the add() function.
 The add() function adds two nodes to the start/ end (circle one) of the list.
 The new node with value 2 is before / after (circle one) the new node with value 1.
- (b) We call mystery() on the linked list pictured at top right. Complete the trace of its execution below. Write down each change in the value of a or b, and the return value. Initially, a is 0x500 and b is 0x500. Then, a /b circle one) changes to <u>0x800</u>. Then, a /b circle one) changes to <u>0x300</u>. Then, a /b circle one) changes to <u>0x800</u>. The return value is True(False) (circle one).
- (c) Change one pointer in the diagram at top right so that if we ran mystery() on the modified structure, it would return the opposite value from part (b). Cross out the value of the pointer you want to change; write the modified value clearly underneath it.Any change that creates a loop works.For your reference, 2 of the 6 possible solutions are shown at top right.

You can carefully tear this page out and use it for scratch work. If you do anything on it you want graded, clearly indicate this on the appropriate page and put this sheet back in the exam, writing your name on it and clearly labeling your work.