
CSCI 103 Introduction to Programming Fall 2014

Final Exam

For this exam, you are allowed to use a two-sided cheatsheet (8.5”x11”) written in your own
handwriting.

No calculators, computers, or textbooks are allowed.

All necessary #include directives, using namespace std; and the declaration/return of
main are left out of many of the programs inside, but you should assume they are included.

Print your name, print your email address, and select your lecture section now.

Your Name:

Your USC e-mail:

Your Lecture Section:

29919 12:00PM MW Mark Redekopp
30395 9:30AM TTh David Pritchard
29920 11:00AM TTh Massoud Ghyam
29922 12:30PM TTh David Pritchard
29921 5:00PM TTh David Pritchard

Problem Value Score

1 12

2 16

3 8

4 10

5 8

6 8

7 10

8 6

9 7

10 12

11 13

Total 110

1 True/False (12 points)

Circle each correct answer.

(a) If we run the lines

string A = "Hello";

string B = A;

B[0] = 'Y';

then at the end, the value of A is "Yello".

true false

(b) If we run the lines

istringstream iss("text");

string s;

iss >> s;

bool b = iss.fail();

then at the end, the value of b is:

true false

(c) Adding an item to the front of a vector can be done in constant time.

true false

(d) Deleting the item at the end (back) of a vector can be done in constant time.

true false

(e) If we have an array of N ints that has been sorted, we can determine in O(logN) time
whether it contains the number 103103103.

true false

(f) Statically allocated variables (local to functions) live in the stack, and dynamically
allocated variables live in the queue.

true false

2 Data Types, Input/Output (16 points)

(a) For each of the two data types below, and each of the four properties listed, circle the
correct answer (True or False).

a dynamically
allocated int array

a vector<int> object

Memory is automatically deallocated true false true false

Length can be changed true false true false

For any k, can access kth integer
inside of it in constant time

true false true false

(b) For each of the two stream operations below, and each of the four properties listed,
circle the correct answer (True or False).

the getline function the >> operator

Skips all whitespace true false true false

Can write data directly to an int true false true false

Can cause stream to fail if there is no
more data to read

true false true false

Can be used with an ofstream true false true false

(c) Consider this code:

ostringstream oss;

for (int i = 5; i < 8; i++)

oss << i;

istringstream iss(oss.str());

int x;

iss >> x;

What is the value of x after this code runs?

3 Terminology (8 points)

Find the best match of each term with the descriptions by writing a letter from 0 to 8 in
each of the blanks. Each number should be used exactly once. One is filled in for you as an
example.

accessor

constructor

data member

destructor

member function

mutator

private

public

recursive 1

0. a function inside of a class definition

1. a function that calls itself

2. a special kind of member function to change a private data member

3. a special kind of member function to read a private data member

4. a variable inside of a class definition

5. called when a variable of that class ceases existence (i.e. deallocated)

6. called when a variable of that class comes into existence (i.e. allocated)

7. the parts of a class definition that any code can access

8. the parts of a class definition that only code from that class can access

4 Performance (10 points)

(a) Consider the following code that is trying to determine if the elements of a vector are
distinct.

1. // assume v is a vector<int> of length n

2. bool all_distinct = true;

3. for (int i = 0; i < n; i++)

4. for (int j = 0; j <= i; j++)

5. if (v[i] == v[j])

6. all_distinct = false; // found two equal items

What order of growth best represents the running time of this code? Circle the best
answer.

O(log n) O(n) O(n log n) O(n2) O(n3) O(2n)

(b) The code fragment shown actually has a bug: it gives the wrong answer sometimes.
Give an example of a length-3 integer vector upon which this code gives the wrong
result:

{ , , }

(c) By adding, deleting or changing at most one character, fix the bug. Indicate what line
number in the source code must change.

Edit line number: . Make this change:

(d) Elaine works on this problem for a while and comes up with another program to do
the same thing, but using a faster approach. She measures the running time of her
new program on different inputs and obtains the following table:

n running time
2 million 25 seconds
5 million 1 minute
10 million 2 minutes

Assume that the running time is approximately
of the form a×N b where b is an integer. What is b?

(e) Estimate the running time of her program when n is 80 million. You can leave your
answer in either minutes or seconds.

Estimated running time:

5 Recursion (8 points)

Suppose we define the following function:

int f(int x, int y) {

if (y == 0) return x;

else return f(y, x%y);

}

f(12, 4)

f(4, 0)

4

4

(a) Draw the recursive call tree for f(36, 15) in the space below.
A sample recursive call tree for a different set of inputs is shown
on the right. Including return values on the diagram is optional.

(b) What is the return value of f(36, 15)?

(c) What is the return value of f(200, 60)?

6 Recursion (8 points)

Consider the following function.

string recur(string s) {

int len = s.length();

if (len <= 1)

return s;

else {

string left = recur(s.substr(0, len/2)); // recur on left half

string right = recur(s.substr(len/2, len/2)); // recur on right half

cout << right + left << endl; // concatenate right, THEN left

return right + left; // return concatenated results

}

}

(a) Draw the recursive call tree that occurs when we call recur("snow"). Including local
variables or return values on the diagram is optional.

(b) What three lines of output does recur("snow") print?

7 Data Types (10 points)

Consider the following code:

1: deque<int> d;

2: int x;

3: while (cin >> x) { // loop through the numbers on cin

4: if (x > 0)

5: d.push_front(x);

6: else {

7: cout << d.front() << " ";

8: d.pop_front();

9: }

10: }

(a) What output does this program print, if the standard input is 5 10 -1 15 20 -1

(b) What elements, from front to back, remain in the deque at the end of the program?

(c) What output does this program print, if the standard input is 5 10 -1 15 20 -1

and on line 5 we replace push_front with push_back?

(d) What elements, from front to back, remain in the deque at the end of the modified
program?

8 Dynamic Memory (6 points)

Consider the following incomplete C++ program:

const int N = 100;

struct Thing {

Thing* x;

};

Thing* allocate_things() {

Thing* t = new Thing[N];

for (int i=0; i<N; i++) {

t[i].x = new Thing;

t[i].x->x = NULL;

}

return t;

}

void deallocate_things(Thing* addr);

int main() {

Thing* addr = allocate_things();

deallocate_things(addr);

}

Complete the function deallocate_things(Thing* addr) so that the program has no mem-
ory leak.

void deallocate_things(Thing* addr) {

// your code here

}

9 Object Oriented Programming (7 points)

Suppose we are creating a Fraction class to represent a rational number like 4/5 or 11/3 or
−6/1. It should support the following operations:

// operation 1. a constructor with given numerator and denominator

Fraction f(4, 5);

Fraction f2(2, 3);

// operation 2. a function to tell if a fraction is positive

bool b = f.is_positive(); // returns true

// operation 3. a function to compute the sum of two fractions

Fraction f3 = f.plus(f2);

Write a class declaration (the kind you would find in a header file) for this class. You do not
have to actually implement the functions (there’s no need to write the .cpp file). However,
you should include any necessary data members (don’t add unnecessary ones). Represent
the data exactly using int variables rather than longs or doubles.

#ifndef FRACTION_H

#define FRACTION_H

class Fraction {

};

#endif

10 Object Oriented Programming (12 points)

In this exercise you will write a .cpp file to implement a Point class that represents a point
in 2-dimensional Euclidean space, supporting the operations listed below.

• Write out your solution on the next page.

• You may carefully rip this page (not the next page) out of the exam to use for reference
while you complete your solution. Be very careful not to rip out any other pages.

Here are the operations:

// operation 1. a constructor with given x and y coordinates

Point p(1.5, 2.0);

// operation 2. get a string representation

cout << p.as_string() << endl; // "(1.5, 2)" in this case

// operation 3. check if two points have the same location

Point q(2.0, 1.5);

bool b = p.equal_to(q); // returns false

// operation 4. transform the point by swapping its coordinates

p.reflect();

cout << p.as_string() << endl; // now gives "(2, 1.5)"

bool b2 = p.equal_to(q); // now true

You should assume point.h is defined as follows:

// this is point.h

#ifndef POINT_H

#define POINT_H

#include <string>

using namespace std;

class Point {

public:

Point(double xpos, double ypos); // operation 1

string as_string(); // operation 2

bool equal_to(Point other); // operation 3

void reflect(); // operation 4

private:

double x;

double y;

};

#endif

Write your solution to problem number 10 here.

// this is point.cpp

#include <string>

#include <sstream>

#include "point.h"

// operation 1

// operation 2. use default numeric formatting; setw/manipulators not needed

// operation 3

// operation 4

11 Linked Lists, Recursion (13 points)

Suppose we have a singly-linked list with a head pointer, using the following struct and class.

struct Node {

Node* next;

int val;

};

class List {

private:

Node* head;

void helper(int target, Node* curr);

public:

void deleteTarget(int target);

};

Fill in the definition of deleteTarget and its helper function below, so that deleteTarget
deletes a target value from a linked list. For example if the list contains 1, 5, 6, 7 and we
delete 6, then the list should contain 1, 5, 7. Your code should deallocate the removed node.

• You must use recursion and you must not use any loop.

• Clarification: If the value doesn’t appear, the linked list should be unaffected. If the value
appears more than once, only the first occurrence should be deleted.

• If you need more space use the next page or the back of the previous. Mention this below!

void List::deleteTarget(int target) { // delete target from list, if it exists

if () { // blank 1

return;

}

else if (head->val == target) {

// blank 2

}

else helper(target, head);

}

void List::helper(int target, Node* curr) {

if () { // blank 3

return;

}

else if () { // blank 4

// blank 5

}

else helper(); // blank 6

}

You can carefully tear this page out and use it for scratch work. If you do anything on it
you want graded, clearly indicate this on the appropriate page and put this sheet back in the

exam at the end, writing your name on it and clearly labeling your work.

	True/False (12 points)
	Data Types, Input/Output (16 points)
	Terminology (8 points)
	Performance (10 points)
	Recursion (8 points)
	Recursion (8 points)
	Data Types (10 points)
	Dynamic Memory (6 points)
	Object Oriented Programming (7 points)
	Object Oriented Programming (12 points)
	Linked Lists, Recursion (13 points)

