CS 103: Introduction to Programming

Fall 2017 - Written Final Exam
12/11/16, 4:30PM -6:30PM
Name: \qquad
USC Email Address: \qquad
Lecture (Circle One):
Redekopp 2:00 TTh | Goodney: 2 MW | 9:30 TTh | 11:00 TTh
Complete the Information Above for 1 point of credit.

Page	Your score	Max score
1		1
2		7
3		4
4		7
5		5
6		6
7		5
8		50
9		7
Total		

Note 1: You need NOT worry about \#include or 'using namespace' statements. Note 2: The last page is blank and for scratch work. You MUST turn it in with your exam.

1. (3 pts) Consider the following recursive function:
```
int d(int n, int m){
    cout << n << " " << m << endl;
    if( n < m ){
            return 0;
        }
        else {
            return d(n-m, m) + 1;
        }
}
```

a. What is the return value for the call: $d(10,3)$?
b. What is printed to cout for the call: $d(7,2)$?
2. (3 pts). Consider the following recursive function.

```
bool fn(char *s, int len) {
    cout << "len =" << len << endl;
    if (len <=1 ) return true;
    else return( (s[0] == s[len-1]) && fn(s+1, len-2) );
}// fn()
```

a. What is the return value for the call: $f n(" a b c$ ", 3$)$? \qquad
b. What is printed to cout for the call: fn("noon" 4) ?
3. (1 pt) The following code fragment doesn't compile. Explain why in a short sentence: \qquad

```
    struct D { int x; double y;};
```

 int main()
 \{
 D* my_d = new \(D\);
 my_d.x = 10;
 my_d.y = 3.14;
 \}
 4. (2 pts) For each operation below indicate if it will take constant time (i.e. $\mathrm{O}(1)$) or linear time $(\mathrm{O}(\mathrm{n}))$ where n is the number of items in the array/list/vector.
a) Inserting to the back of a vector
b) Remove from the front of a deque
c) Inserting to the back of a deque
d) Remove from the front of a linked list
5. (3 pts) The following shows a doubly linked list with three nodes. Assuming this configuration with 3 nodes, suppose we want to delete the node pointed to by 'curr' (i.e. node w/ value 9) and leave the linked list in a correct state afterwards. Circle which code operations are correct. More than 1 may be correct, circle all that apply.

Option A Works: Yes / No	Option B Works: Yes / No	Option C Works: Yes / No
curr->prev->next = curr->next;	Node* temp = curr->next;	Node* temp = curr->prev;
curr->next->prev = curr->prev;		
temp->prev->prev->next = temp;		
delete curr;	temp->prev = curr->prev; currev = curr->next; delete curr;	delete curr; demp;

6. (1 pt) Using the original linked list shown in the previous problem and the 'curr' pointer as shown, write a single cout statement that would print the value 12 to the screen. (Do NOT just write 'cout << 12;' You should access the linked list node and get 12 to be printed).
7. (2 pts) Given an array with n elements, what is the best run-time complexity that can be achieved for an algorithm (with no prior knowledge) to check if a value does NOT appear in the array:
a. If the array is NOT sorted? \qquad _)
b. If the array IS sorted?

O(\qquad
8. (1 pt.) What is the big-O runtime of the following code: $\mathrm{O}($ \qquad)

```
int i=1;
//assume some large N
while(i < N)
{
    i *= 2;
}
```

9. (2 pts) Billy Bruin finishes his CS degree and gets a job as a C++ programmer. As part of a project he writes the following code fragment:
```
vector<Object> v;
for(i=0;i<N;i++)
{
        Object o = objectFactory.getNextObject();
        v.insert(v.begin(), o);
}
```

Billy was proud of this code, however during testing when N is large his code is very slow. You proposed the following rewrite:

```
vector<Object> v;
for(i=0;i<N;i++)
{
    Object o = objectFactory.getNextObject();
    v.push_back(o);
}
reverse(v); // Reverses the vector contents
```

Explain in one short sentence using your knowledge of vectors why your solution is much faster:
10. (1 pt.) Given a text file ("dat.txt") whose contents are 45 , (i.e. spaces after 4 and 5 but no newline at the end...just the EOF (End-of-File). What will the following code print?

```
ifstream ifile("dat.txt");
int temp, cnt = 0;
while( ! ifile.fail()){
    ifile >> temp;
    cnt++;
}
cout << cnt << endl;
```


Output:

11. (4 pts.) Consider the following graph. We are going to do a breath-first search on the graph starting at node 3. Assume the neighbors of a particular node are stored sorted by node ID. Nodes are only discovered once (assume there is some sort of visited flag or list). You can pretend this is a "friends" graph like PA5/6. On the line below, fill-in the order in which the nodes are discovered and put into the queue (we started it for you):
queue: 3 , \qquad

12. (3 pts) The following program shows a function, f , and its invocation (call), using pointer notation for passing the parameter. Re-write the program on the right side to instead use C++ reference-based syntax instead.

Pointer-based Implementation	Equivalent C++ Reference (i.e. \&) argumentpassing implementation
```#include <iostream> using namespace std; void f(int *x){ *x += 5; } int main() { int k=15; f(&k); cout << k << endl; // outputs 20 return 0; }```	

13. (5 pts) Assume you are given a file whose name is "file.txt" and whose contents are shown below. Show what the program below will print when executed.

File contents of "file.txt":

```
5 3
654321
7
```

```
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
using namespace std;
int main()
{
 ifstream f("file.txt");
 int t, x, y;
 string z;
 f >> x >> y;
 cout << "L1: " << y << endl;
 getline(f, z);
 getline(f, z);
 cout << "L2: " << z << endl;
 stringstream ss(z);
 while(y > 0){
 ss >> t;
 x += t;
 y--;
 cout << x << endl;
 }
}
Output:
```

14. (7 pts) Examine the code below. For the lines A1-A4 indicate what will be printed. For lines B1-B3 indicate whether they will compile or not.
```
#include <iostream>
```

using namespace std;
class ABC \{
public:
ABC() \{ a = 7; b = 3.0; \}
ABC(int mya, double myb) \{ a = mya; b = myb; \}
int a;
double get_b() \{ return b; \}
private:
double b;
\};
class XYZ \{
public:
XYZ(ABC mya) \{ $y=$ mya; $x=5$; \}
int get_val() \{ x++; return doWork(); \}
private:
int doWork() \{ return $x+y . a ;\} ;$
int x ;
ABC $y$;
\};
int main()
\{
ABC a1;
ABC a2(8, 12.5);
XYZ x1(a1);
cout << x1.get_val() << endl; // Line A1
--a1.a; cout << a1.a << endl; // Line A2
cout << x1.get_val() << endl; // Line A3
cout << a2.get_b() << endl; // Line A4
x1.y = a2; // Line B1
cout << a1.b << endl; // Line B2
cout << x1.doWork() << endl; // Line B3
return 0;
\}

Enter your answers here:
Line A1: Output: $\qquad$
Line A2: Output: $\qquad$
Line A3: Output: $\qquad$
Line A4: Output: $\qquad$
Line B1: Compiles (Yes / No)
Line B2: Compiles (Yes / No)
Line B3: Compiles (Yes / No)
15. (6 pts) Consider the following program that should read in 1024 words (strings) from a file into an array, and returns the array to main which then outputs 512 strings. The 512 strings should be the result of concatenating the first and last, second with second to last, third with the third to last, etc. Fill in the indicated blanks below (return type, array allocation, words declaration, cout code, and cleanup).

```
#include <iostream>
#include <fstream>
using namespace std;
// This function reads }1024\mathrm{ words from the given file
// fill in the return type below
 readDict(char* f) {
 ifstream inFile(f);
 // allocate an array 's' of 1024 strings
 string
 ____________________________________l
 for(int i=0; i<1024; i++) {
 inFile >> s[i];
 }
 return s;
}// readDict()
int main() {
 // Indicate the type of words below
 ___________ords = readDict("dict.txt");
 for(int k = 0; k < 512; k++){
 cout << words[k] ___________________<< endl;
 }
 // now we're done working with the words
 // Show any cleanup code you need here (if any)
 return 0;
}
```

16. ( 5 pts) Consider the following program utilizing recursion and show what will be printed to the screen.
```
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
using namespace std;
void myst(vector<string>& sol, int n, string pre)
{
 if(n > 0){
 for(unsigned k=0; k < pre.size()+1; k++){
 char c = 'a' + k;
 myst(sol, n-1, pre + c);
 }
 }
 else {
 sol.push_back(pre);
 }
 }
 int main()
 {
 vector<string> items;
 myst(items, 3, "");
 for(unsigned j = 0; j < items.size(); j++){
 cout << items[j] << endl;
 }
 return 0;
 }
```

    Output:
    This page is for scratch work. You MUST turn it in with your exam...

