
CSCI 103: Introduction to Programming

Lab 9
Images - shapes

Lab Overview
• Goals

• Learn to utilize 2D arrays and understand their indexing

• Practice with image processing by completing a program that allows

the user to draw rectangles and ellipses to a BMP image file

•

2

Background: 2D arrays

Declare by providing size along both dimensions and access with
2 indices
• Declaration: unsigned char my_matrix[256][256]
• Access: my_matrix[128][128]

3

Background: 2D arrays cont

4

The dimension order does not matter,
but we normally treat the first index as
row and the second index as column

• The [0][0] location is in the upper
left-hand corner

• We use such layout in this lab

The 2D array using [row][column] indexing. The first index
is the row (top 0, bottom 255), and the second is the
column (left 0, right 255).

Background: Passing 2D arrays

5

Formal parameter
• Must give dimensions of all but first

dimension (and you may give that
dimension if you want)

Actual Parameter
• Just the array name (i.e. still only

passes the starting address)

void writeImage(unsigned char outputImage[][256])
{

...
}

int main()
{

unsigned char image[256][256];
...
writeImage(image);
return 0;

}

Background: Images

In this lab, we use a 256-by-256 2D
array to represent an image

• unsigned char [256][256]
• Each entry in the array represents 1

pixel
• The value of the pixel is a value of 0

– 255 where 0 is black and 255 is
white

6

Note: the indexing is
different from the
Cartesian plane!

Background: Drawing rectangles

Takes 4 input values:

• Starting point (top row, left col)
• Height (#rows it should span)
• Width (#cols it should span)

Draw the sides of the rectangle with
colour black (0)

If any portion of the rectangle goes out of our 256,256
bounds, do not wrap around/crash, just don’t draw it!

7

Background: Drawing ellipses

Takes 4 input values:

• Center point (cy, cx)
• Height (total max rows it spans)
• Width (total max cols it spans)

Eg (25 30 50 40) - an ellipse centered at
25,30, with total height 50 (25 each side)
and total width 40 (20 each side)

8

Background: Drawing ellipses cont

Use Polar coordinates for Ellipse!

𝑥=r
x
cosθ

𝑦=r
y
sinθ

Where r
x
 is W/2 and r

y
 = is H/2.

And vary θ from 0 to 2*Pi in small increments, dθ, (for this lab use
dθ = 0.01) and apply the conversion to rectangular coordinates

If any pixel of the ellipse border would be out of the image's
bounds, just don’t draw it (to avoid wrapping or crashing)!

9

Background: Drawing ellipses cont

Use Polar coordinates for Ellipse!

𝑥=center_col + r
x
cosθ

𝑦=center_row + r
y
sinθ

Where r
x
 is W/2 and r

y
 = is H/2.

And vary θ from 0 to 2*Pi in small increments, dθ, (for this lab use
dθ = 0.01) and apply the conversion to rectangular coordinates

If any pixel of the ellipse border would be out of the image's
bounds, just don’t draw it (to avoid wrapping or crashing)!

10

File Structure & Compilation

Included and ready are the files:

• bmplib.cpp: has writeGSBMP() method implemented to create
the output ‘.bmp’ file for the image arr
• int writeGSBMP(const char filename[], unsigned char outputImage[][SIZE])

• check demo.cpp for usage example

• demo.cpp: an example code that creates cross.bmp
• Makefile: run ‘make’ to create the executables (./shapes, will also

create ./demo)

11

Demo Program

• Creates the image as shown
• First creating the central horizontal and

vertical lines, then the diagonal and finally
the circle by changing the respective
indices in the image array to 0

• Calls writeGSBMP to create
cross.bmp output file

• Run ./demo to see the output

12

Your Tasks

Shapes.cpp:

• Complete the required implementation of the
draw_rectangle() and draw_ellipse()
functions as described

• In main(): add logic to take user input and then
appropriately call the respective draw_function

13

Checkoff

• This is an ungraded lab. Just enjoy and have fun coding! No
checkoff is necessary

14

