
CSCI 103: Introduction to Programming

Lab 9
Images - shapes



Lab Overview
• Goals

• Learn to utilize 2D arrays and understand their indexing

• Practice with image processing by completing a program that allows 

the user to draw rectangles and ellipses to a BMP image file

•
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Background: 2D arrays

Declare by providing size along both dimensions and access with 
2 indices
• Declaration: unsigned char my_matrix[256][256]
• Access: my_matrix[128][128]
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Background: 2D arrays cont
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The dimension order does not matter, 
but we normally treat the first index as 
row and the second index as column

• The [0][0] location is in the upper 
left-hand corner

• We use such layout in this lab

The 2D array using [row][column] indexing. The first index 
is the row (top 0, bottom 255), and the second is the 
column (left 0, right 255).



Background: Passing 2D arrays
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Formal parameter
• Must give dimensions of all but first 

dimension (and you may give that 
dimension if you want)

Actual Parameter
• Just the array name (i.e. still only 

passes the starting address)

void writeImage(unsigned char outputImage[][256])
{

...
}

int main()
{

unsigned char image[256][256];
...
writeImage(image);
return 0;

}



Background: Images

In this lab, we use a 256-by-256 2D 
array to represent an image

• unsigned char [256][256]
• Each entry in the array represents 1 

pixel
• The value of the pixel is a value of 0 

– 255 where 0 is black and 255 is 
white
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Note: the indexing is 
different from the 
Cartesian plane!



Background: Drawing rectangles

Takes 4 input values:

• Starting point (top row, left col)
• Height (#rows it should span)
• Width (#cols it should span)

Draw the sides of the rectangle with 
colour black (0)

If any portion of the rectangle goes out of our 256,256 
bounds, do not wrap around/crash, just don’t draw it!
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Background: Drawing ellipses

Takes 4 input values:

• Center point (cy, cx)
• Height (total max rows it spans)
• Width (total max cols it spans)

Eg (25 30 50 40) - an ellipse centered at
25,30, with total height 50 (25 each side) 
and total width 40 (20 each side)
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Background: Drawing ellipses cont

Use Polar coordinates for Ellipse!

𝑥=r
x
cosθ

𝑦=r
y
sinθ

Where r
x
 is W/2 and r

y
 = is H/2.

And vary θ from 0 to 2*Pi in small increments, dθ, (for this lab use 
dθ = 0.01) and apply the conversion to rectangular coordinates

If any pixel of the ellipse border would be out of the image's 
bounds, just don’t draw it (to avoid wrapping or crashing)!
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Background: Drawing ellipses cont

Use Polar coordinates for Ellipse!

𝑥=center_col + r
x
cosθ

𝑦=center_row + r
y
sinθ

Where r
x
 is W/2 and r

y
 = is H/2.

And vary θ from 0 to 2*Pi in small increments, dθ, (for this lab use 
dθ = 0.01) and apply the conversion to rectangular coordinates

If any pixel of the ellipse border would be out of the image's 
bounds, just don’t draw it (to avoid wrapping or crashing)!
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File Structure & Compilation

Included and ready are the files:

• bmplib.cpp: has writeGSBMP() method implemented to create 
the output ‘.bmp’ file for the image arr
• int writeGSBMP(const char filename[], unsigned char outputImage[][SIZE])

• check demo.cpp for usage example

• demo.cpp: an example code that creates cross.bmp
• Makefile: run ‘make’ to create the executables (./shapes, will also 

create ./demo)
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Demo Program

• Creates the image as shown
• First creating the central horizontal and 

vertical lines, then the diagonal and finally 
the circle by changing the respective 
indices in the image array to 0

• Calls writeGSBMP to create 
cross.bmp output file

• Run ./demo to see the output
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Your Tasks

Shapes.cpp: 

• Complete the required implementation of the 
draw_rectangle() and draw_ellipse() 
functions as described

• In main(): add logic to take user input and then 
appropriately call the respective draw_function
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Checkoff

• This is an ungraded lab. Just enjoy and have fun coding!  No 
checkoff is necessary

14


