
CSCI 103: Introduction to Programming

Lab 4
GDB and valgrind

February 2, 2024

Common Causes of Program Terminations

• Segfaults (reading or writing outside memory allocated)
• Aborts
• Infinite recursion (stack overflow)
• Unhandled exceptions / error cases

3

Run

Recall: The Codio Debugger

The Codio debugger has features to set breakpoints, step through
code, and print variable values…

Step out

Step over (next)

Step into

What is GDB?
• gdb = GNU Project Debugger
• Text-based debugger that you can run from the command line

and is on most every Mac/Linux operating system
– So if you aren't on Codio ...OR… if the Codio debugger isn't

working, you should just use gdb.
– In fact, the Codio debugger runs it behind the scenes

• After compilation (with the -g flag), start GDB at the terminal
prompt by typing: gdb executable
– executable is the program name (e.g. gdb ./shapes)

• You will learn much more about GDB in CS104

Starting GDB

Start at the terminal prompt: gdb executable

GDB Prompt
Once started it will show some
information and take you to a prompt:
(gdb)

• Remember to compile with the -g
flag

• If it successfully opens your program
you'll see "Reading symbols from
<executable>...done."

• If you see "Reading symbols from
shapes…(no debugging symbols
found)", you forgot to compile with
-g. Stop and recompile

Good!

Bad!

Basic GDB Commands Reference
● run or r : Executes the program from start to end
● backtrace or bt: Lists all the function calls (that leads to the crash) in the stack frame
● print or p: Used to display a variable/expression value
● cont: Continue execution until the next breakpoint or termination of the program
● break or b : Sets a breakpoint on a particular line
● next or n: Executes the current line of code fully (even if it contains a function call),

stopping at the next line
● step or s: Executes the current line of code, stopping at the beginning of a function

called by the current line
● finish or f: Completes execution of the current function and stops upon return to the

caller
● up [n] : Move n frames up the stack; n defaults to 1
● down [n] : Move n frames down the stack; n defaults to 1
● clear: Clear all breakpoints
● quit or q: Quit gdb

r

n

s

f

GDB Commands (1)

Text based commands for the buttons you use in Codio

• (gdb) break or b <filename:line_number>
– (e.g. b shapes.cpp:37 - Sets a breakpoint at line 37

of shapes.cpp)

• (gdb) run or r
– Runs the program until it hits a breakpoint

• (gdb) print or p <variable>
– Prints the value of a variable at the current point in the

code
–

Most Common GDB Use 1 - Segfaults

• When your program segfaults, your FIRST STEP SHOULD ALWAYS be to
run it in the debugger.

• Step 1: Load gdb (gdb ./shapes)
• Step 2: At the prompt, run the program using run and let the program

crash
• Step 3: When it crashes it will show you the source file and line number.

– That line is where the error manifested, but the cause may be that line or some
earlier line

– However, it may have crashed deep in some library function. Use bt or

backtrace to show the function call stack and look for the first function (and
line number) that you actually wrote and investigate there

• Step 4: Use print to print variables relevant to the line where it crashed

Most Common GDB Use 1 - Segfaults (cont)

•

Draw a rectangle out of bounds causing a fault

Later in the semester you will write a
program to process images which are 2D
arrays of pixel colors. Just like a 1D
array, a negative index is invalid and
would likely cause a segfault.

GDB Commands (2)

Text based commands for the buttons you use in Codio

• (gdb) step
– If current line is function, it steps into the function pausing

at the first line

• (gdb) next
– Executes the next line, even if it is a function

• (gdb) finish
– Finishes the current function and pauses back in the caller

• (gdb) cont
– Continue to execute the program at full speed

Corresponding
Codio Buttons

What is Valgrind?

• Helps track down memory allocation and usage errors
– Misuse, forgot to deallocate, using garbage values, accessing arrays out

of bounds
• $ valgrind --tool=memcheck --leak-check=yes <executable> <command line args>

• $ valgrind --tool=memcheck --leak-check=yes ./scramble wordbank.txt 57

• You should use valgrind in every lab, hw, and project from now on
(and in CS104!)

Valgrind Outputs

No error Error

Common Valgrind Errors

Invalid read/write: Array or pointer access/assignment to
out-of-bounds location.

Conditional jump depends on uninitialized variables: Use of
uninitialized variable

Lost (leaked) memory: Did not free/delete a memory allocation

Double free: Freed/deleted an allocation two or more times

Mismatched delete: new [] / delete ..OR.. new / delete []

Questions to Ask Yourself While Debugging

• What line is the problem on?
– If your program crashes, first run GDB to find the line number.
– If gdb, doesn't help find the problem then run valgrind as well (as it

may show some additional info that is helpful)

• Might the program behavior be caused by memory
issues…always try valgrind

• When does this bug occur?
– Are there specific circumstances? Edge case? Only breaks if it goes

into a specific if statement? Step through the code to see where it
executes

Programming Tasks

To practice dynamic allocation and deeper understanding of C-strings
(character arrays with null terminators), we provide 2 practice
exercises:

1. Kcopy - given a C-string and integer k, return a new C-string which
has the original string copied k times (eg. "abc",3 =>
"abcabcabc").

2. removeSpaces - Given a C-string, return a copy of that string with
all space characters removed: ("cs 103 ! " => "cs103!")

Your Task
Start the Lab 4 assignment on Codio.

• Work through the guided demo to find and fix errors.
Finish 3 review questions A,B,C and show answers to the
TA/CPs, you will get 50 points.

• Finish two secondary tasks: kcopy and removeSpaces. You
can do them yourself or in a team of 2. If you pass the
automated tests, you will get 25 points for each task.

• To get credit, you need to get 50 points or above.

