
CSCI 103: Introduction to Programming
Lab 3

January 26, 2024

Lab Overview
• Goals

• Practice compiling multi-file applications at the terminal (command line)
• Learn about debuggers and use the Codio debugger to find errors in a

sample code

• Process
• Guided demo of using the debugger (Part 1 in Lab 3 Codio Assignment)
• Practice compiling a multi-file application and using your own "header

files" (Part 2 in Lab 3 Codio Assignment)
• Practice debugging a program with errors (Part 3) - Must get checked off

by a Lab staff to get credit (after giving your best effort)
• Debugging challenge: Decrypt the secret messages (Part 4)

2

Compiling programs

$ g++ -g -Wall test.cpp file2.cpp -o test

● -g -Wall : are option flags

○ -g : provide debugging feature to your program

○ -Wall : show all warnings

● test.cpp file2.cpp : source files you want to compile

○ You must list ALL source files (however many there are)

● -o test : compiles and links files into an executable named test (-o is also a flag)

○ You can name the executable whatever you want!

3

Prototypes Reminder

• You have learned that we need function prototypes
before you call a function that is defined elsewhere.

4

Header Files (1)
• Rather than re-typing (or copy/pasting) prototypes into any source files

that want to use those functions, we can put the prototypes in a separate
"header" file (aka .h file) and then #include that header file

5

note these
are two
different files!
.h vs .cpp

Including Header Files (2)

• We then #include the header file containing
the prototypes into any application wishing to
use them

• Remember we still have to supply all the .cpp
source files on the g++ command to compile
the application (you don’t compile header
files!)

6

Running programs
$./test

● Remember: test was the name of the executable, but you can name

the executable anything when you compile

● This loads and executes the program

● Some assignments in Codio will have the automated compile and run

button enabled (looks like a Rocketship)

○ Use the drop-down arrow to the right of the “Compile & Run”

option to change the button to just Compile or just Run.

● Most others will not have this enabled: you should know how to

compile and run directly via the terminal

○ You will not have this button when you go to classes like CS104!

7

Techniques for debugging programs without using
debugger tool

● Print Statements

○ Put print statements (cout) in the loops and conditional statements. This will

help you to understand the flow of the program and localise your error.

● Commenting code

○ If you are unable to find where exactly the code is breaking, maybe try

commenting out chunks of code to see if you can get a smaller, simpler

program to work, and then add back in the other code little by little to find

where the error occurred.

These are more time consuming and require more effort in localising the error. Thus, we

use debuggers.

8

Debuggers

9

Debuggers

● Allows you to:

○ Set a breakpoint (the code will run and then stop when it reaches the certain

line of code)

○ Step through your code line by line so that you can see where the flow of the

program goes

○ Print variable values when you have stopped at a certain line of code.

1
0

Debuggers

● In codio, Use the “Debug Current File” on the far right of

the top menu bar to launch the debugger targeting the file

your cursor is in.

● When you run the program , It highlights the exact line

where the code breaks.

● Thus, whenever the code does not run as you expect or

want, one of your first steps should be : Run Debugger

1
1

Breakpoints

● Allows you to specify lines of code where you want the flow to stop and analyse the

values of the variables/function calls/etc.

● In codio, you can set it up by clicking on the margin of the code and see a red dot

appear at the line of the code.

1
2

Call Stack

● Allows you to see the functions being called and

what the system stack looks like.

● For example here, the “main()” function calls

“reverseAndFind()”

● We can view the value of local variables in each

function by clicking that function in the stack area.

1
3

1
4

Runs the program (until
breakpoint). Note: it will
pause temporarily when
at a cin statement and
wait for you to type the
input.

Step Over : Run the
current line and pause
at the next line of code.

Step into : If current line
is function, it steps into
the function pausing at
the first line of the
function body.
If current line is not a
function, it executes the
line (like step over)

Finishes the current
function’s code (or hit
the breakpoint), and
then pause at the next
line of the previous
function on the stack

Your Turn
● Carefully read through the Codio guides to complete the tasks they indicate

○ 1 compilation task

○ 2 debugging tasks

○ Type in the requested information at the end of each exercise.

○ When done with Part 2 and 3 exercises (or with 20 minutes remaining), raise

your hand and go through your answers with a CP/TA to get checked off.

■ Make sure you have 100% on your lab!

○ Then try Part 4 on your own (Debugging challenge)

● Review the lecture slides regarding compilation and debugging.

● Let CPs & TAs know if you have any questions

Happy Coding!

15

