CS102: Fall 2024 — Midterm 2

11/06/24, 100 minutes

Student ID:

| understand | may ONLY access Brightspace, Gradescope Codio, and EdStem (no
ChatGPT, Github, or other websites.):

Name:

Time Submitted:

Email:

(if leaving the testing location early)

@usc.edu

(initials)

Lecture section (Circle One): MW 1 PM MW 2PM
Question 1 2 Total
Suggested Time 35 min. 65 min. 100 min.

Instructions:
Use the question prompts on the following pages to fill in your answers on
Gradescope..Fa24 MT2. (Link to Gradescope and Codio on Brightspace.. Content..
Exams). You MUST copy/paste (or download/upload) your code from Codio to
Gradescope for each problem. The Gradescope answer form will mark your submission as
LATE after 8:40. Be sure to submit by then.
Common Reference Functions:

e You MAY NOT use any functions in the <algorithm> library, but use the reference below.

<iomanip> functions/manipulators:

setprecision(n) — Sets the number of
decimal to use when printing a double
fixed — Applies the precision from
setprecision() to only the decimal
portion of the number

EX: cout << fixed << setprecision(3)
<< 1.12345 << endl; // prints 1.123

<math> functions:

double pow(

double base, double exp); —
Returns base®® as a double value
double abs (double x); returns the
absolute value of the input, x
double sqgrt(double x); — Returns the
square root of the input, x

<string> functions (for the string type):

.size() — Returns the number of
characters in the string (does not count a
null character).

.substr(int first) — Returns the
substring starting at index first through
the end of the string.

.substr(int first, int num) —
Returns the substring of first+num-1
characters starting at index first.

Examples:
string s1 = "abcd";
sl.size(); // returns 4

sl.substr(1l); // returns "bcd"
sl.substr(1,2); // returns "bc"

mailto:_________________@usc.edu

Question 1 - Increasing Sequence

Open incseq.cpp and implement the program before copying the code to Gradescope.

In this program, the user will enter a sequence of positive numbers and your code should check
if the sequence is in increasing order (each one strictly larger than the last). If the entire
sequence of positive numbers is increasing (ascending), output the SUM of all the POSITIVE
integers. Otherwise, just output the word: no. The user may type in ANY AMOUNT of positive
input values (no limit on how many numbers may be input) but your program should stop when
the user enters a negative number (but ignore that negative number). You may also end the
program as soon as a positive input would cause the output to be no.

Example 1: Given the input: 2 56 160 -3 output 152 since the sequence of
positive numbers are all increasing.

Example 2: Given the input: 2 4 6 8 1601 1003 -1 output 2024 since the sequence
of positive numbers are all increasing.

Example 3: Given the input: 50 20 76 80 -1 output no since 20 is not larger
than 50. You may output no and end the program immediately after the input 20 is received or
wait for a negative input.

Requirements and Assumptions

* NO ARRAYS ARE NEEDED NOR MAY THEY BE USED.

« To receive credit, you MUST pass the automated, Codio tests. No partial credit will be
given even if the issue was a minor output format error.

* You may assume correctly formatted input values (i.e. no text, only numbers) and that the
sequence is ended by a negative number.

* You may ONLY use the iostream library. NO other libraries may be included or used.
Solutions containing EXTREMELY excessive/unnecessary code may not receive credit.

» A skeleton is provided on the next page for annotation or use in case your laptop dies. In
that scenario, write your code by hand on the next page and when the exam is finished,
hand it to the head TA and clearly state that your laptop died and you need us to grade
the paper code.

// The question prompt itself is written on the paper exam. Refer to it.
// No other #include statements may be added

#include <iostream>
using namespace std;

int main() {

return 0;

Question 2 - Matching Evens

Open match-evens. cpp in Codio and implement the program before copying the code to
Gradescope.

In this program, the user will first enter a positive integer, n, between 1 and 1080 followed by a
sequence of n integers (which could be positive or negative). You should ignore all the odd
numbers but verify if ALL even numbers in the sequence have one or more matching (equal)
numbers, and output yes if so, and no, otherwise.

Example 1: Given the input:

6
2 -123 8160
output no since the even numbers 8 and 10 do NOT have at least one other equal match.

Example 2: Given the input:

7
-2048 17 8 32768 32768 -2048 8
output yes since all the even numbers (-2048, 8, 32768) have at least one equal match.

Example 3: Given the input:

8
4 -1 43 44 -514
output yes since all the even numbers (i.e. 4) have an equal match.

Example 4: Given the input:

1
3
output yes since technically all (ZERO) even numbers have an equal match.

Requirements and Assumptions

* We have declared an array for you and provided the code to handle the input.

« No OTHER arrays may be declared or used beyond the one declared in the skeleton.

* You may assume correctly formatted input values (i.e. no text, only numbers).

* You may ONLY use items from the iostream library. NO other libraries may be
included.

- Solutions containing EXTREMELY excessive/unnecessary code may not receive credit.

+ A skeleton is provided on the next page for annotation or use in case your laptop dies. In
that scenario, write your code by hand on the next page and when the exam is finished,
hand it to the head TA and clearly state that your laptop died and you need us to grade
the paper code.

#include <iostream>
using namespace std;

int main() {
int data[1e0], n;
// Read in the size of the portion of the array to be used
cin >> n;
// Then read in n integers
for(int i = 90; i < n; i++) {
cin >> datal[i];

return 0;

	
	Question 1 - Increasing Sequence
	Requirements and Assumptions

	
	Question 2 - Matching Evens
	Requirements and Assumptions

