
1 
 

CSCI 102: Fundamentals of Computation 

Fall 2020 - Final Exam 

11/21/20, 11 AM – 1 PM   
(1 hour 40 to answer, 20 to scan/upload submit) 

 

Name:_____Solution________________ 

Student ID:  ________________________________________ 

Email:  ___________________@usc.edu 

Lecture section:  

 

 

 

 

Ques Your score Max score Recommended 
Time 

1  8 10 min. 

2  7 10 min. 

3  8 25 min. 

4  10 20 min. 

5  8 15 min. 

6  9 20 min. 

Total  50 100 min 
+20 min 
upload 

Questions 3-6 contain a link/URL to a skeleton file in which you can write/edit the 

provided skeleton code. 

 

We prefer you upload the finished .cpp files but you may handwrite/annotate the pages 

below and submit a scanned PDF.  

Redekopp 
M/W 1 p.m. / 2 p.m. 

 



2 
 

1.  (8 pts.) Multiple Choice 

Enter answers directly on Gradescope. 

1.1. True / False:  When variables are declared (e.g. int x;), they are automatically 

initialized to 0. 

1.2. Single variables (non-arrays) are passed by (value / reference). 

1.3. True / False: If an else if statement is used, it must be followed by an else 

statement. 

1.4. True / False: A string of characters stored in a character array (e.g. char str[10];) 

must be terminated with the '\n' character. 

1.5. True / False: Two C++ string types (e.g. string s1, s2) can be compared using 

normal comparison operators (e.g. <, ==, >, etc.) 

1.6. True / False: A break statement is used to immediately quit or jump out of the inner-

most loop. 

1.7. True / False: Given a function with signature: void area(int wid, int len); the 

following cout statement will compile:  cout << area(8,5) << endl; 

1.8. Assuming x is an integer, what value(s) of x will cause the following condition to 

evaluate to true.  if( !(x > 7 || x <= 4) && x != 6 )  

a) x can be 4, 5, or 7 

b) x can be 4 5, 6, or 7 

c) x can be 5 or 7 

d) x can be any value outside of the range 4 through 8 

 

 

 

 

 

 

 

  



3 
 

2. Tracing (7 pts.): For 2.1 – 2.6, show what the program will output when run.. You must 

trace the behavior manually.  For 2.7, provide an input string that the user can type as 

input that will cause yes to be printed by the following line.  Answers may vary (any 

correct answer will be accepted). 

You may NOT compile nor run this program on your own system or some website 

Enter all 7 answers in the single textbox on Gradescope. Number each line: 2.1, 2.2, 

etc. followed by the answer to that question.   

/* You may NOT use a compiler for this problem. */ 

#include <iostream> 

#include <algorithm> 

#include <string> 

using namespace std; 

 

string comp(string s); 

int main() 

{ 

    int x[] = { 4, 3, 1, 4, 9, 0};                 

    cout << x[1] << endl;                       // 2.1 Sol: 3 

    cout << x[ x[1] ] << endl;                  // 2.2 Sol: 4 

    cout << x[ min( max(2, x[3]), 3) ] << endl; // 2.3 Sol: 4 

 

    string y = "ONLINE", z = "Pass"; 

    cout << y.size() << endl;                   // 2.4 Sol: 6 

    cout << y.substr(y.size()-4) << endl;       // 2.5 Sol: "LINE" 

    cout << z.substr(0,1) + y.substr(3) << endl;// 2.6 Sol: "PINE" 

 

    // Provide an input that could be typed by the user 

    // that will cause 'yes' to be printed 

    cin >> y;                                   // 2.7  

Answers may var: Use the ASCII table if needed.  Might be "b", "b1", "bA" or start 

with"az" plus 1 or more additional characters (eg. "b", "aza", "azz", 

"azaaaaaaaa", …) 

    cout << comp(y) << endl;             

    return 0; 

} 

string comp(string s) 

{    if(s > "az" && s < "ba" )  { 

        return "yes"; 

    } 

    return "no"; 

} 



4 
 

3. Coding (8 pts.) Consider a Cartesian (2D) plane where a traveler starts at the origin (x,y=0,0).  A 

traveler will input a series of choices from the options {n, s, e, w} representing the direction (north, 

south, east, west, respectively) and the distance (which can contain decimals) they will travel in 

that direction.  Stop when the user types: q or Q rather than one of the directions: n, s, e, w. At 

that time you should output the straight-line distance from origin (x,y=0,0) to the travelers 

current location.  Complete the program to correctly implement this program. (You may assume 

only valid letters: n, s, e, w, q, or Q are entered).  See the example graphics below.   

Recall that distance can be found using Pythagorean's theorem for a right triangle with sides a and 

b, and hypotenuse, c:   𝒄𝟐  =  𝒂𝟐  +  𝒃𝟐 

The skeleton file can be downloaded with the link:  nwse.cpp.  You may use a compiler. 

#include <iostream> 

#include <cmath> 

using namespace std; 

int main() 

{   char dir;  

    double dist; 

    // You may declare more variables 

   double amt, x = 0, y = 0; 

 

    cin >> dir; 

    while(dir != 'q' && dir != 'Q') 

    { 

        cin >> amt; 

        if(dir == 'n'){ 

            y += amt; 

        } 

        else if(dir == 'w'){ 

            x -= amt; 

        } 

        else if(dir == 's'){ 

            y -= amt; 

        } 

        else if(dir == 'e'){ 

            x += amt; 

        } 

 

        cin >> dir; 

    } 

    dist = sqrt(x*x + y*y); 

    // Output straight line distance 

    cout << dist << endl; 

    return 0; } 

Input:
n 1
e 1
s 2
q

Output:
1.41421 

N

W

S

E

Input:
w 1.5
s 1
w 0.5
s 1.2
q

Output:
2.97321 

N

W

S

E

http://ee.usc.edu/~redekopp/cs102/fa20/nwse.cpp


5 
 

4. Using Functions (10 pts.).   

4.1. Consider the 2 functions provided below: sr, sp.  Examine the code in test_sr and 

show the contents of the vals array and data array after test_sr() calls each function.  

Write your answer in the text box below. Show the values of the vals array on the first 

line and then the data array on the second line (separate each value by a space) 

void sr(int dat[], int s, int e, int v, int d) 

{ 

    for(int i=s; i != e; i++){ 

        dat[i] = v; 

        v += d; 

    } 

} 

void sp(int d[], int n) 

{ 

    for(int i=0; i < n-1; i+=2) { 

        int t = d[i]; 

        d[i] = d[i+1]; 

        d[i+1] = t; 

    } 

} 

void test_sr() 

{ 

    int vals[8] = { 10, 11, 12, 13, 14, 15, 16, 17}; 

    sr(vals, 2, 6, 9, -1); 

    // show all 8 values in the vals array 

    int data[8] = { 10, 11, 12, 13, 14, 15, 16, 17}; 

    sp(data,4); 

    // show all 8 values in the data array 

} 

Fill in your answer in the Gradescope textbox (or below if submitting a PDF). NO compiler may be used. 

vals[]: 10 11  9  8  7  6 16 17    

data[]: 11 10 13 12 14 15 16 17   

4.2. On the next page, complete the main() by ONLY making (possibly multiple) calls to sr, sp 

(from this page) and the pr function on the next page.  main() should produce the output 

shown below.   

Desired output: 

 0  1  2  3  4 |  5  6  7  8  9 | 19 18 17 16 15 | 14 13 12 11 10 |  

 0  1  2  3  4  5  6  7  8  9 # 18 19 16 17 14 15 12 13 10 11 # 

You may only add function calls to main(). You may NOT add loops, if, else if or else 

statements. You may NOT declare other variables, add other couts, or even add 

other assignment statements.  Add function calls only! 

The skeleton file can be downloaded with the link:  funcid.cpp.  You may NOT use a compiler. 

http://ee.usc.edu/~redekopp/cs102/fa20/funcid.cpp


6 
 

Desired output (repeated again for your benefit): 

 0  1  2  3  4 |  5  6  7  8  9 | 19 18 17 16 15 | 14 13 12 11 10 |  

 0  1  2  3  4  5  6  7  8  9 # 18 19 16 17 14 15 12 13 10 11 # 

 

#include <iostream> 

#include <iomanip> 

using namespace std; 

 

/* assume sr() and sp() are provided as shown on the previous page */ 

 

void pr(int d[], int n, int w, char c) 

{   // reminder: setw(2) ensures all numbers printed take 2 spaces for pretty output 

    for(int i=0; i < n; i++){ 

        if(i % w == w-1){ 

            cout << setw(2) << d[i]  << " " << c << " "; 

        } 

        else { 

            cout << setw(2) << d[i]  << ' '; 

        } 

    } 

    cout << endl; 

} 

 

int main() 

{ 

    int vals[20]; 

     /* your code here - only calls to the above functions */ 

    sr(vals, 0, 10, 0, 1);  // set first half 

    sr(vals, 10, 20, 19, -1);  // set second half 

  

    pr(vals, 20, 5, '|');  // print values 

 

    // next 2 lines can be in either order 

    sp(vals, 10);  // swap first 10 

    sp(vals, 20);  // swap all 20 (so first 10 get swapped back, but 2nd 10 swap) 

 

    pr(vals, 20, 10, '#');  // print values 

    return 0; 

}  



7 
 

5. (8 pts.) Debugging.  Billy Bruin had to write a program that would scan through the 

interior elements (i.e. ignoring the first and last element) of an integer array, take the 

average of each element with its neighbors on the left and right, and then count if the 

previous and current average were both at or above a threshold.  The user will start by 

entering the size of an integer array, n (max 100) elements, and then a threshold, thresh, 

(as a double).  They will then enter the n integers for the array at which point the program 

should perform the desired computation illustrated in the diagram below. 

 

Find and correct the errors in the code below (next page or in the linked skeleton file).  You may 

only CHANGE a line, NOT ADD lines of code (there is no need). You may NOT alter the 

approach, but must correct the approach given.  Simply cross out the line or part of the line and 

write the correct code next to it (if hand annotating) or update the line with the correct code (if 

editing the .cpp skeleton file online). 

 

There are 8 lines of code that need to be changed. 

You may compile and run this code to help in debugging if you like. Be careful not to spend 

too much time chasing bugs! 

 

 

 
 

 

 

 

The skeleton file on the next page can be downloaded with the link:  debug.cpp. 

 

Feel free to use any debugging methods you like to find the errors (you can run and 

compile this code) 

  

4 32 4 1 8

2 30 1 4 5

3Output

5

6

AVG AVG AVG AVG AVG

3.33 3.67 2.67 4.0 4.67 3.2Thresh

8n6

7

AVG

6.33

Cnt=1 Cnt=2 Cnt=3

Note: Only increment 
the count when an 
average AND the 

previous average are 
both at or above the 

threshold

http://ee.usc.edu/~redekopp/cs102/fa20/debug.cpp


8 
 

#include <iostream> 

using namespace std; 

 

void avg3(int x, int y, int z);  // **Error: return type should be double 

 

int main() 

{ 

    int in[100]; 

    bool flag = false; 

    double thresh; 

    int n; 

    int cnt;            // **Error: should be init to 0 

    cin >> n >> thresh; // read in size of array and threshold 

    // now read in values into the array 

    for(int i=0; i < n; i++){ 

        cin >> in[n];   // **Error:  should be in[i] 

    } 

 

    // now loop through inputs to take average of neighbors  

    // and find consecutive averages at or above threshold 

    for(int i=0; i < n; i++)  // **Error: for(i=1; i < n-1; i++) 

    { 

        double result = 0; 

        avg3(in[i-1], in[i], in[i+1]);  // ** Error: result = avg3(in[i-1], in[i], in[i+1]); 

         

        // if result is lower than the threshold, reset the flag 

        if(result < thresh){ 

            flag = false; 

        } 

        if(result >= thresh && flag == false){ 

            // since flag is false, the previous value must be under the threshold 

            flag = true; 

        } 

        if(result >= thresh && flag == true){   // ** Error: should be 'else if' 

            // since flag is true, previous value must have been above/equal to threshold 

            cnt++; 

        } 

    } 

    cout << "Final count: " << cnt << endl; 

    return 0; 

} 

void avg3(int x, int y, int z)              // **Error: return type should be double 

{ 

    double result = (x + y + z) / 3;        // **Error: should divide by 3.0 (or cast to double)  

    return;                                 // **Error: return result; 

}  



9 
 

6. Coding (9 pts). Complete the following program for a simple online shopping application 

where users can add and remove products from their cart and then compute the total cost 

of the cart by filling in the missing parts of the code. 

 

The program will start by asking the user how many products (i.e. numProd) they wish to enter 

and then read in numProd prices (doubles) into the array: prod_prices.  Then the user will use 

commands: a to add an item or r  to remove an item from the cart followed by the product ID 

(i.e. the index of the product's price in the prod_prices array) until they enter q to quit.  For 

example, if the user enters a 2 then the program should add product 2 (which costs 0.75) to the 

cart array.  When the user types in the command q, you should quit the program and output the 

total cost of the items currently in the cart.  You may assume product ID's entered by the user exist 

(i.e. are between 0 to numProd-1).  If the user tries to remove a product item, remove only the 1st 

occurrence of that item (not all occurrences). Also, if the item to remove doesn't exist, the program 

should output an error message. Below is a sample execution of the program.   

 

The program below has some missing elements. Complete the blanks (add code) to make the 

program function as desired.  You may only fill in the blanks shown and cannot add or alter other 

code.  A sample execution is shown below.   

 

The skeleton file on the next page can be downloaded with the link:  cart.cpp.  You may use a 

compiler. 

- -- -

2 30 1

cart

1.50

0

prod_prices 2.00

1

0.75

2

3.50

3

1.00

4

-

4

-

5

...

...

...

5

5numProd

0numItemsInCart

- -2 -

2 30 1

cart -

4

-

5

...

...

1numItemsInCart

INPUT

a 2

- -2 4

2 30 1

cart -

4

-

5

...

...

2numItemsInCart

a 4

2 -2 4

2 30 1

cart -

4

-

5

...

...

3numItemsInCart

a 2

2 12 4

2 30 1

cart -

4

-

5

...

...

4numItemsInCart

a 1

1 -4 2

2 30 1

cart -

4

-

5

...

...

3numItemsInCart

r 2

1 14 2

2 30 1

cart -

4

-

5

...

...

4numItemsInCart

a 1

q

Total cost of cart: 5.75 Prod. 4 (1.00) + Prod 2 (0.75) + Prod 1 (2.00) + Prod 1 (2.00) = 5.75  

http://ee.usc.edu/~redekopp/cs102/fa20/cart.cpp


10 
 

#include <iostream> 

using namespace std; 

int main() 

{ 

    double prod_prices[100]; // product prices 

    int cart[100];           // products in cart 

    int numItemsInCart = 0;  // number of items in cart 

    int numProd;             // number of products 

    cin >> numProd; 

 

    for(int i=0; i < numProd; i++){  // Read in the product prices array 

        cin >> prod_prices[i]; 

    } 

 

    char cmd = '-';  int prod; 

    cin >> cmd; 

    while( ___cmd != 'q'____ ) {   

        cin >> prod; 

        if(cmd == _ 'a'______ ) {   

            cart[numItemsInCart] = prod; 

            numItemsInCart += ___1__________;   

        } 

        _else if__ (cmd == __'r'______) {   

            bool itemRemoved = ___false__;   

            for(int i = 0; i < numItemsInCart; i++) { 

                if(cart[i] == ___pro.d______ ){   

                    for(int k=i; k < numItemsInCart-1; k++) { 

                        // Shift items up one slot to remove item i 

                        _cart[k] = cart[k+1]__;   

                    } 

                    numItemsInCart += _-1____;   

                    itemRemoved = __true____;   

                    break;  // break from i loop 

                } 

            } 

            if(itemRemoved == false) { cout << "Item was not in cart" << endl; } 

        } 

        cin >> cmd;  

    } 

    double cartCost = 0.0; 

    for(int i=0; i < numItemsInCart; i++){ 

        int p = __cart[i]__;   

        cartCost += ___prod_prices_[ p ];   

    } 

    cout << "Total cost of cart: " << cartCost << endl; 

    return 0; 

} 


