



#### Unit 3

Number Systems Boolean Algebra Part 1

#### **ANALOG VS. DIGITAL**



#### Analog vs. Digital

- The analog world is based on continuous events. Observations can take on (real) any value.
- The digital world is based on discrete events.
   Observations can only take on a finite number of discrete values



## Analog vs. Digital

- Q. Which is better?
- A. Depends on what you are trying to do.
- Some tasks are better handled with analog data, others with digital data.
  - Analog means continuous/real valued signals with an infinite number of possible values
  - Digital signals are discrete [i.e. 1 of n values]



#### Analog vs. Digital

• How much money is in my checking account?

- Analog: Oh, some, but not too much.

- Digital: \$243.67



### Analog vs. Digital

- How much do you love me?
  - Analog: I love you with all my heart!!!!
  - Digital: 3.2 x 10<sup>3</sup> MegaHearts



#### The Real (Analog) World

- The real world is inherently analog.
- To interface with it, our digital systems need to:
  - Convert analog signals to digital values (numbers) at the input.
  - Convert digital values to analog signals at the output.
- Analog signals can come in many forms
  - Voltage, current, light, color, magnetic fields, pressure, temperature, acceleration, orientation



#### **Digital is About Numbers**

- In a digital world, numbers are used to represent all the possible discrete events
  - Numerical values
  - Computer instructions (ADD, SUB, BLE, ...)
  - Characters ('a', 'b', 'c', ...)
  - Conditions (on, off, ready, paper jam, ...)
- Numbers allow for easy manipulation
  - Add, multiply, compare, store, ...
- Results are repeatable
  - Each time we add the same two number we get the same result



## USC Viter bi 3.10 School of Engineering

#### **Interpreting Binary Strings**

• Given a string of 1's and 0's, you need to know the *representation system* being used, before you can understand the value of those 1's and 0's.

•

# Unsigned Binary system 65<sub>10</sub> BCD System 'A'<sub>ASCII</sub>

#### **DIGITAL REPRESENTATION**



#### **Binary Representation Systems**

- Integer Systems
  - Unsigned
    - Unsigned (Normal) binary
  - Signed
    - Signed Magnitude
    - 2's complement
    - Excess-N\*
    - 1's complement\*
- Floating Point
  - For very large and small (fractional) numbers

- Codes
  - Text
    - ASCII / Unicode
  - Decimal Codes
    - BCD (Binary Coded Decimal) / (8421 Code)



## **Number Systems**

| 1. |                |  |
|----|----------------|--|
| 2. | coefficients [ |  |

· Number systems consist of

- Human System: Decimal (Base 10): 0,1,2,3,4,5,6,7,8,9
- Computer System: Binary (Base 2): 0,1
- Human systems for working with computer systems (shorthand for human to read/write binary)

| _ |      |      |      |
|---|------|------|------|
|   | <br> | <br> | <br> |
| _ |      |      |      |
| _ | <br> | <br> | <br> |

<sup>\* =</sup> Not fully covered in this class



## Anatomy of a Decimal Number

- A number consists of a string of explicit coefficients (digits).
- Each coefficient has an implicit place value which is a \_\_\_\_\_ of the base.
- The value of a decimal number (a string of decimal coefficients) is the sum of each coefficient times it place value



$$(3.52)_{10} = 3*$$
\_\_\_\_ +  $5*$ \_\_\_ +  $2*$ \_\_ = \_\_\_



### **Anatomy of a Binary Number**

 Same as decimal but now the coefficients are 1 and 0 and the place values are the powers of 2





#### General Conversion From Base r to Decimal

- A number in base r has place values/weights that are the powers of the base
- Denote the coefficients as: a<sub>i</sub>

$$\begin{array}{ll} (a_3a_2a_1a_0.a_{-1}a_{-2})_r &= a_3*r^3 + a_2*r^2 + a_1*r^1 + a_0*r^0 + a_{-1}*r^1 + a_{-2}*r^2 \\ \text{Left-most digit} = & \text{Right-most digit} = \\ \text{Most Significant Digit (MSD)} & \text{Least Significant Digit (LSD)} \end{array}$$

$$N_r \Rightarrow$$
  $\Rightarrow D_{10}$ 



#### **Examples**

$$(746)_8 =$$

$$(1A5)_{16} =$$

$$(AD2)_{16} =$$



## **Binary Examples**

$$(1001.1)_2 =$$

$$(10110001)_2 =$$

#### USC Viterbi School of Engineering

#### Powers of 2

$$2^{0} = 1$$
 $2^{1} = 2$ 
 $2^{2} = 4$ 
 $2^{3} = 8$ 
 $2^{4} = 16$ 
 $2^{5} = 32$ 
 $2^{6} = 64$ 
 $2^{7} = 128$ 
 $2^{8} = 256$ 
 $2^{9} = 512$ 
 $2^{10} = 1024$ 



## **Unique Combinations**

- Given *n* digits of base *r*, how many unique numbers can be formed?
  - What is the range? [ ]

| 2-digit, decimal numbers (r=10, n=2) |     |     | 0-9 | 0-9 |
|--------------------------------------|-----|-----|-----|-----|
| 3-digit, decimal numbers (r=10, n=3) |     |     |     |     |
| 4-bit, binary numbers (r=2, n=4)     | 0-1 | 0-1 | 0-1 | 0-1 |
| 6-bit, binary numbers (r=2, n=6)     |     |     |     |     |

Main Point: Given n digits of base r, \_\_\_ unique numbers can be made with the range [\_\_\_\_]



2<sup>24</sup> =

2<sup>28</sup> =

2<sup>32</sup> =

- Often need to find decimal approximation of a large powers of 2 like 2<sup>16</sup>, 2<sup>32</sup>, etc.
- Use following approximations:

- For other powers of 2, decompose into product of 2<sup>10</sup> or 2<sup>20</sup> or 2<sup>30</sup> and a power of 2 that is less than 2<sup>10</sup>
  - 16-bit half word: 64K numbers
  - 32-bit word: 4G numbers
  - 64-bit dword: 16 million trillion numbers





## **Decimal to Unsigned Binary**

- To convert a decimal number, *x*, to binary:
  - Only coefficients of 1 or 0. So simply find place values that add up to the desired values, starting with larger place values and proceeding to smaller values and place a 1 in those place values and 0 in all others



### **Decimal to Unsigned Binary**



#### **Decimal to Another Base**

- To convert a decimal number, x, to base r:
  - Use the place values of base r (powers of r). Starting with largest place values, fill in coefficients that sum up to desired decimal value without going over.



Hexadecimal and Octal

**SHORTHAND FOR BINARY** 



### Binary, Octal, and Hexadecimal

- Octal (base  $8 = 2^3$ )
- 1 Octal digit ( \_ )<sub>8</sub> can represent: \_\_\_\_\_
- 3 bits of binary (\_ \_ \_)<sub>2</sub>
   can represent:
   000-111 =
- Conclusion...Octal digit = bits

- Hex (base 16=24)
- 1 Hex digit (\_\_)<sub>16</sub> can represent: 0-F (\_\_)
- 4 bits of binary
   (\_\_\_\_)<sub>2</sub> can represent:
   0000-1111=
- Conclusion...Hex digit = \_\_\_ bits



### Binary to Octal or Hex

- Make groups of 3 bits starting from radix point and working outward
- Add 0's where necessary
- Convert each group of 3 to an octal digit

101001110.11

- Make groups of 4 bits starting from radix point and working outward
- Add 0's where necessary
- Convert each group of 4 to an octal digit

101001110.11



#### Octal or Hex to Binary

- Expand each octal digit to a group of 3 bits
  - 317.2<sub>8</sub>

• Expand each hex digit to a group of 4 bits

D93.8<sub>16</sub>



- Since values in modern computers are many bits, we use hexadecimal as a shorthand notation (4 bits = 1 hex digit)
  - 11010010 = D2 hex or 0xD2 if you write it in C/C++
  - 0111011011001011 = 76CB hex or 0x76CB if you write it in C/C++



ASCII & Unicode

#### **BINARY CODES**



#### **Binary Codes**

- Using binary we can represent any kind of information by coming up with a code
- Using *n* bits we can represent 2<sup>n</sup> distinct items

| Colors of the rainbow: | Letters:                |
|------------------------|-------------------------|
| • $Red = 000$          | • 'A' = 00000           |
| •Orange = 001          | • 'B' = $00001$         |
| •Yellow = 010          | • 'C' = 00010           |
| •Green = 100           | •                       |
| •Blue = 101            |                         |
| •Purple = 111          |                         |
|                        | • $^{\circ}$ Z' = 11001 |





## **Binary Representation Systems**

- Integer Systems
  - Unsigned
    - · Unsigned (Normal) binary
  - Signed
    - · Signed Magnitude
    - · 2's complement
    - 1's complement\*
    - Excess-N\*
- Floating Point
  - For very large and small (fractional) numbers
- \* = Not covered in this class

BCD Representation:

Unsigned Binary Rep.:

#### Codes

- Text
  - · ASCII / Unicode
- Decimal Codes
  - BCD (Binary Coded Decimal) / (8421 Code)



(i.e. using power of 2 place values)

#### **BCD**

- Rather than convert a decimal number to binary which may lose some precision (i.e.  $0.1_{10}$  = infinite binary fraction), BCD represents each decimal digit as a separate group of bits (exact decimal precision)
  - Each digits is represented as a number (using place values 8,4,2,1 for each dec. digit)
  - Often used in financial and other applications where decimal precision is needed



Important: Some processors have specific instructions to operate on #'s represented in BCD

110110111<sub>2</sub>



#### **ASCII Code**

- Used for representing text characters
- Originally 7-bits but usually stored as 8-bits = 1byte in a computer
- Example:
  - "Hello\n";
  - Each character is converted to ASCII equivalent
    - 'H' = 0x48, 'e' = 0x65, ...
    - \n = newline character is represented by either one or two ASCII character



| LSD/MSD | 0    | 1   | 2     | 3  | 4 | 5 | 6 | 7   |
|---------|------|-----|-------|----|---|---|---|-----|
| 0       | NULL | DLW | SPACE | 0  | @ | Р | ` | р   |
| 1       | SOH  | DC1 | !     | 1  | Α | Q | a | q   |
| 2       | STX  | DC2 | u     | 2  | В | R | b | r   |
| 3       | ETX  | DC3 | #     | 3  | С | S | С | S   |
| 4       | EOT  | DC4 | \$    | 4  | D | Т | d | t   |
| 5       | ENQ  | NAK | %     | 5  | E | U | e | u   |
| 6       | ACK  | SYN | &     | 6  | F | V | f | V   |
| 7       | BEL  | ETB | •     | 7  | G | W | g | w   |
| 8       | BS   | CAN | (     | 8  | Н | Х | h | х   |
| 9       | TAB  | EM  | )     | 9  | - | Υ | i | У   |
| Α       | LF   | SUB | *     | :  | J | Z | j | Z   |
| В       | VT   | ESC | +     | ;  | К | [ | k | {   |
| С       | FF   | FS  | ,     | <  | L | \ | 1 |     |
| D       | CR   | GS  | -     | II | М | ] | m | }   |
| Е       | SO   | RS  |       | >  | N | ۸ | n | ~   |
| F       | SI   | US  | /     | ?  | 0 | _ | 0 | DEL |



#### UniCode

- ASCII can represent only the English alphabet, decimal digits, and punctuation
  - 7-bit code =>  $2^7$  = \_\_\_\_ characters
  - It would be nice to have one code that represented more alphabets/characters for common languages used around the world
- Unicode
  - 16-bit Code => \_\_\_\_ characters
  - Represents many languages alphabets and characters
  - Used by Java as standard character code



Unicode hex value (i.e. FB52 => 1111101101010010)



#### **BOOLEAN ALGEBRA INTRO**



### Boolean Algebra

- A set of theorems to help us manipulate logical expressions/equations
- Axioms = Basis / assumptions used
- Theorems = manipulations that we can use



#### **Axioms**

- · Axioms are the basis for Boolean Algebra
- Notice that these axioms are simply restating our definition of digital/binary logic
  - A1/A1' = \_\_\_\_\_
  - A2/A2' = \_\_\_\_\_
  - A3,A4,A5 = \_\_\_\_\_
  - A3',A4',A5' =

| (A1) | $X = 0$ if $X \neq 1$                | (A1') | $X = 1 \text{ if } X \neq 0$         |
|------|--------------------------------------|-------|--------------------------------------|
| (A2) | If $X = 0$ , then $\overline{X} = 1$ | (A2') | If $X = 1$ , then $\overline{X} = 0$ |
| (A3) | 0 • 0 = 0                            | (A3') | 1 + 1 = 1                            |
| (A4) | 1 • 1 = 1                            | (A4') | 0 + 0 = 0                            |
| (A5) | 1 • 0 = 0 • 1 = 0                    | (A5') | 0 + 1 = 1 + 0 = 1                    |



### **Duality**

- Every truth statement can yields another truth statement
  - I exercise if I have time and energy (original statement)
  - I don't exercise if I don't have time <u>or</u> don't have energy (dual statement)
- To express the dual, swap...





#### **Duality**

The "dual" of an expression is not equal to the original

 Taking the "dual" of both sides of an equation yields a new equation

$$X + 1 = 1$$
  $X \cdot 0 = 0$ 
Original equation
Dual



#### Single Variable Theorems

- Provide some simplifications for expressions containing:
  - a single variable
  - a single variable and a constant bit
- Each theorem has a dual (another true statement)
- Each theorem can be proved by writing a truth table for both sides (i.e. proving the theorem holds for all possible values of X)

| T5 | X + X' = 1 | T5' | X • X' = 0 |
|----|------------|-----|------------|
| T4 | (X')' = X  |     |            |
| Т3 | X + X = X  | T3' | X • X = X  |
| T2 | X + 1 = 1  | T2' | X • 0 = 0  |
| T1 | X + 0 = X  | T1' | X • 1 = X  |



### Single Variable Theorem (T2)



Whenever a variable is OR'ed with 1, the output will be 1...

"1 OR anything equals

Whenever a variable is AND'ed with 0, the output will be 0...

"0 AND anything equals

## USC Viterbi School of Engineering

## Single Variable Theorem (T1)



Whenever a variable is OR'ed with 0, the output will be the same as the variable...

"0 OR Anything equals that

Whenever a variable is AND'ed with 1, the output will be the same as the variable...

"1 AND Anything equals that



# Single Variable Theorem (T3)



Whenever a variable is OR'ed with itself, the result is just the value of the

Whenever a variable is AND'ed with itself, the result is just the value of the

This theorem can be used to reduce two identical terms into one *OR* to replicate one term into two.



## Single Variable Theorem (T4)

$$(X')' = X (T4)$$
  $(\overline{\overline{X}}) = X (T4)$ 



Anything inverted twice yields its original value



## Single Variable Theorem (T5)

$$X+\overline{X}=1$$
 (T5)

$$X \cdot \overline{X} = 0 \text{ (T5')}$$



 $\begin{array}{c|cccc} X & Y & Z \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$ 

Whenever a variable is OR'ed with its complement, one value has to be 1 and thus the result is 1

Whenever a variable is AND'ed with its complement, one value has to be 0 and thus the result is 0

This theorem can be used to simplify variables into a constant or to expand a constant into a variable.



#### **Application: Channel Selector**

- Given 4 input, digital music/sound channels and 4 output channels
- Given individual "select" inputs that select 1 input channel to be routed to 1 output channel





- 4-input music channels (ICHx)
  - Select one input channel (use ISELx inputs)
  - Route to one output channel (use OSELx inputs)





## **Application: Steering Logic**

- 1st Level of AND gates act as barriers only passing 1 channel
- OR gates combines 3 streams of 0's with the 1 channel that got passed (i.e. ICH1)
- 2<sup>nd</sup> Level of AND gates passes the channel to only the selected output





#### **Your Turn**

- Build a circuit that takes 3 inputs: S, INO, IN1 and outputs a single bit Y.
- It's functions should be:

$$-$$
 If S = 0, Y = INO (INO passes to Y)

$$-$$
 If S = 1, Y = IN1 (IN1 passes to Y)

IN0
Y
S