Unit 1

Circuit Basics
KVL, KCL, Ohm's Law
LED Outputs
Buttons/Switch Inputs

VOLTAGE AND CURRENT

Current and Voltage
- Charge is measured in units of Coulombs
- Current – Amount of charge flowing through a ___________ in a certain ____________
 - Measured in _________ = Coulombs per second
 - Current is usually denoted by the variable, I
- Voltage – Electric __________ energy
 - Analogous to mechanical potential energy (i.e. __________)
 - Must measure ___________ points
 - Measured in Volts (V)
 - Common reference point: Ground (GND) = 0V
 - Often really connected to the ground
Meet The Components

- Most electronic circuits are modeled with the following components
 - Resistor
 - Measures how well a material conducts electrons
 - Capacitor & Inductor
 - Measures material's ability to store charge and energy
 - Transistor
 - Basic amplification or switching technology

Kirchhoff's Laws

- Common sense rules that govern current and voltage
 - Kirchhoff's Current Law (KCL)
 - Kirchhoff's Voltage Law (KVL)
- Kirchhoff's Current Law (KCL)
 - The current flowing _____ a location (a.k.a. node) must equal the current flowing _____ of the location
 - ...or put another way...
 - The sum of current at any location must _____

Kirchhoff's Current Law

- Reminder: KCL says _____________
- Start by defining a ______ for each current
 - It does not matter what direction we choose
 - When we solve for one of the currents we may get a __________ current
 - "Negative" sign simply means the direction is __________ of our original indication
- In the examples to the right the top two examples the directions chosen are fine but physically in violation of KCL...
- ...but KCL helps us arrive at a consistent result since solving for one of the current values indicates...
 - The ______ of i1 and i2 are the same
 - They always flow in the ______ direction of each other (if one flows in the other flows out or vice versa)

Kirchhoff's Voltage Law (KVL)

- The sum of voltages around a _____ (i.e. walking around and returning to the _________) must equal 0
- Define "polarity" of voltage and then be consistent as you go around the loop...obviously when you solve you may find a voltage to be negative which means you need to flip/reverse the polarity
A Brief Summary

- KCL and KVL are _________ and _________ no matter what kind of devices are used
 - The yellow boxes could be ANY electronic device: resistors, batteries, switches, transistors, etc...KVL and KCL will still apply
 - In a few minutes, we'll learn a law that only applies to resistors (or any device that can be modeled as a resistor)
- Some KVL or KCL equations may be _________
 - Writing the equation for loop (v1,v2,v3) and (v3,v4,v5) may be sufficient and writing (v1,v2,v4,v5) may not be necessary
 - But as a novice, feel free to _________

KVL says:
\[v_1 + v_2 + v_3 = 0 \]
\[v_2 + v_3 + v_4 = 0 \]
\[-v_3 + v_4 + v_5 = 0 \]

Nodes

- (Def.) An **electric node** is the junction of _________ devices connected by wires
- _________ voltage at any point of the node
- How many nodes exist in the diagram to the right?

Practice KCL and KVL

- Use KCL to solve for i3, i4, and i6

 Hint: Find a node or loop where there is only one unknown and that should cause a domino effect

- Use KVL to solve for v3, v8, v5

Resistance and Ohms Law

- Measure of how hard it is for current to flow through the substance
- Resistance = _________
 - How much _________ do you have to put to get a certain _________ to flow
- Measured in Ohms (Ω)
- Ohm’s Law
 - \[I = ____ \text{ or } V = ____ \]
 - \[R __ \Rightarrow I __ \]

Ohm’s Law ONLY applies to resistors (or devices that can be modeled as a resistor such as switches and transistors)
Series & Parallel Resistance

- Series resistors = one after the next with no other divergent path
- Parallel resistors = Spanning the same two points
- Series and parallel resistors can be combined to an equivalent resistor with value given as shown...

Solving Voltage & Current

- Given the circuit to the right, let...
 - $V_{dd} = +5V$, $R_1 = 400$ ohms, $R_2 = 600$ ohms
- Solve for the current through the circuit and voltages across each resistors (i.e. V_1 and V_2)
 - Since everything is in ______, KCL teaches us that the current through each component must be the ______, let's call it i
 - $i = \ldots$
 - This alone lets us compute V_1 and V_2 since Ohm's law says
 - $V_1 = \ldots$ and $V_2 = \ldots$
 - Though unneeded, KVL teaches us that
 - V_{dd}-V_1-V_2=0 or that $V_{dd} = V_1 + V_2$

Voltage Supply Drawings

- The voltage source (V_{dd}) in the left diagram (i.e. the circle connected to the “Rest of Circuit”) is shown in an alternate representation in the right diagram (i.e. the triangle labeled "Vdd")
- In the left diagram we can easily see a KVL loop available
- There is still a KVL loop available in the right diagram

Shortcut: Voltage Dividers

- A shortcut application of KVL, KCL, and Ohm's law when two resistors are in series (must be in series)
- Recall the original problem and solution
 - $V_s = +5V$, $R_1 = 400$ ohms, $R_2 = 600$ ohms
 - $i = V_s / (R_1 + R_2) = 5/1000 = 5$ mA
 - $V_1 = i*R_1$, $V_2 = i*R_2 = 3V$
- When two resistors are in series we can deduce an expression for the voltage across one of them
 - (1) $i = \ldots$; (2) $V_1 = i*R_1$; (3) $V_2 = i*R_2$
 - Substituting our expression for i into (2) and (3)
 - $V_1 = V_{tot} \frac{R_1}{R_1 + R_2}$ and $V_2 = V_{tot} \frac{R_2}{R_1 + R_2}$
- The voltage across one of the resistors is proportional to the value of that resistor and the total series resistance
 - If you need 10 gallons of gas to drive 500 miles, how much gas you have you used up after driving 200 miles?
 - $\text{Gas} = \ldots$, $\text{Mileage} = \ldots$
Solving Voltage & Current

- Reconsidering the circuit to the right with...
 - $V_s = +5\text{V}$, $R_1 = 400 \text{ ohms}$, $R_2 = 600 \text{ ohms}$
- Solve for the current through the circuit and voltages across each resistors (i.e. V_1 and V_2)
 - We can use the voltage divider concept to immediately arrive at the value of V_2
 - $V_2 = \ldots$

A Problem...

- Given the following parameters...
 - $V_s = 5\text{V}$, $R_1 = 4$, $R_2 = 12$, $R_3 = 2$ and $R_4 = 10 \text{ ohms}$.
- Can we use the voltage divider concept to immediately solve the voltage across R_2 or do we need to first do some manipulation? What about R_4?
- First, find the total equivalent resistance (R_{eq}) seen by V_s and then solve for the voltage across each resistor

LEDs as Outputs and Switches/Buttons as Inputs
Generating Inputs & Measuring Outputs

- Where do inputs to a digital circuit originate?
 - Usually as ________ from another digital circuit (i.e. USB connecting to your laptop's main processing system)
 - For our class right now: A ________ controlled by a human (can be on or off)
- How will we know what voltage is coming out of a digital circuit?
 - Could use a voltmeter or oscilloscope (don't be afraid to use the equipment in our lab!)
 - ________ are commonly used to show the status of a digital output to a human

(Light-Emitting) Diodes

- The simplest output we can control is an LED (Light-emitting diode) which is like a tiny light bulb
- An LED glows ('on') when current ________ through it (i.e. when there is a voltage ________ across it)
- LEDs are polarized meaning they only work in one orientation (______ leg must be at higher voltage)

• Problem: LEDs may allow too much current to flow which may blow out the LED
• Solution: Use a series resistor to limit current
 - Amount of current will determine ________ of LED
 - R↑ then i __ and thus LED brightness ___
 - i = V1/R1 = (V5-VLED) / R1
 - Usually R1 is a few hundred ohms (______ ohms)

Need for Series Resistor with LEDs

- When letting a digital output control an LED, the value (i.e. '0' = low or '1' = high voltage) that causes the LED to light up depends on how the circuit is wired
 - Note: Gates can often _____ (take in) more current than they can ________ (push out), so option 2 may be preferred...but let's not worry about this now...let's use option 1

LED Connection Approaches

- Main Point: To be 'on', there must be a voltage difference across the LED making current flow.
Switch and PushButton Inputs

• Switches and pushbuttons can be in one of two configurations: ______ or ________
 – Switches can be opened or closed and then ________ in that position until changed
 – Pushbuttons are open by ________ and require you to push them to close the circuit
 (they then open when you release)
• Can be used as an input to digital device

Switches and Pushbuttons

• Important Note 1: We can model a button or switch as a resistor of either 0 ohms or inf. (very large) ohms
 – When open a SW/PB looks like an _________ resistance (no current can flow)
 – When closed a SW/PB looks like a _______ (R=0) and no voltage drops across it
• Question: What voltage does an open or closed switch (pushbutton) generate?
 • Answer: ________________.

Connecting a Switch

• Switches only __________ the voltage going into a device, they do not produce a voltage (0V or 5V) by themselves
• Option 1: Attach one side to GND and the other side to the device
 – When the switch=open, nothing is connected to the device (a.k.a. “__________”)
 – A floating input may sometimes appears as zero, and other times as a one.
 – We need the inputs to logic gates to be in either the 0 or 1 state...not floating
• Option 2:
 – When switch closed => ______ resistance connection from power to ground = ________ current flow...BAD!!! (This is known as a "short circuit").

Preferred Wiring of Switches

• Solution: Put GND on the far side and a "pull-up" resistor at the input side
 – "Pull-up resistor" used to hold the input high unless something is forcing it to a zero
 – SW open => Arduino input looks like inf. Resistance in series with Rp. Thus ________ through Rp and thus no voltage drop across Rp...Vin = ______
 – SW closed => Direct wire from GND to input...input = ________...Also current flowing from Vdd to GND is limited by Rp preventing a short circuit.
 – Usually Rp is large (10k ohms) to limit current

To calculate Vin:

Vin = Vdd – Vsp
Vin = Vdd – ______ since in _______ with ______ resistance of Arduino input
Thus, Vin = ______
Power & Ground Connections

• Easy mistake when you’re just learning to wire up circuits:
 – Wire the inputs & outputs but forget to connect power and ground

• All circuits and chips require a connection to a power source and ground
 – Digital circuits (aka "gates")
 – Switches
 – Buttons

Actual connection… …will be drawn like this

Summary

• KCL and KVL apply to **ALL** electronic devices
• Ohm’s law applies **ONLY** to resistors and governs the relationship between the current through and the voltage across a resistor
• A resistor network can be collapsed to a **single equivalent resistance** by applying series and parallel transformations
• If two or more resistors are in series, the voltage across any of those resistors can be quickly found by applying the **voltage divider equation**
• LEDs are used as digital outputs and must be wired in the correct direction
• Switches can be modeled as a **small (0) resistance when closed** or a **large (inf.) resistance when open**