Unit 15

Common Hardware Components
WIDE MUXES
Building Wide Muxes

• So far muxes only have single bit inputs...
 – I_0 is only 1-bit
 – I_1 is only 1-bit

• What if we still want to select between 2 inputs but now each input is a 4-bit number

• Use a 4-bit wide 2-to-1 mux

When we select I_0 or I_1 we want all 4-bits of that input to be passed
Building Wide Muxes

- Use one mux per "lane" (bit)
 - To build a 4-bit wide 2-to-1 mux, use 4 separate 2-to-1 muxes

- Operation:
 - When $S=0$, all muxes pass their I_0 inputs which means all the A bits get through
 - When $S=1$, all muxes pass their I_1 inputs which means all the B bits get through

- In general, to build an **m-bit wide (i.e. m-lane) n-to-1 mux**, use **m individual n-to-1 muxes**
Wide Multiplexer Example 1

- This 2-to-1, 32-bit wide mux is really:
 - 32 individual 2-to-1 muxes, each handling 1 "lane" of the 32-bit highway merger

Thus, input 1 = B[31:0] is selected and passed to the output

Select bits = 1_2 = 1_{10}.
Wide Multiplexer Example 2

• This 4-to-1, 8-bit wide mux is really:
 – 8 individual 4-to-1 muxes, each handling 1 "lane" of the 8-bit highway merger

Thus, input 0 = A[7:0] is selected and passed to the output

Select bits = 00₂ = 0₁₀.
Exercise

• How many 1-bit wide muxes and of what size would you need to build a 4-to-1, 16-bit wide mux (i.e. there are 4 numbers: \(W[15:0]\), \(X[15:0]\), \(Y[15:0]\) and \(Z[15:0]\) and you must select one)

• How many 1-bit wide muxes and of what size would you need to build a 8-to-1, 2-bit wide mux?
Using muxes to control when register save data

REGISTER WITH ENABLES
Register Resets/Clears

- When the power turns on the bit stored in a flip-flop will initialize to a random value
- Better to initialize it to a known value (usually 0's)
- Can use an asynchronous or synchronous "reset" to force the flip-flops to 0's

<table>
<thead>
<tr>
<th>CLK</th>
<th>RST</th>
<th>D<sub>i</sub></th>
<th>Q<sub>i</sub>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>X</td>
<td>X</td>
<td>Q<sub>i</sub></td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

4-bit Register
Register Problem

• The value on the D input is sampled at the clock edge and passed to the Q output and holds until the next clock edge

• Problem: Register will save data on EVERY edge
 – Often we want the ability to save on one edge and then keep that value for many more cycles

4-bit Register – On clock edge, D is passed to Q
Solution

- Registers (D-FF’s) will sample the D bit every clock edge and pass it to Q.
- Sometimes we may want to hold the value of Q and ignore D even at a clock edge.
- We can add an enable input and some logic in front of the D-FF to accomplish this.

<table>
<thead>
<tr>
<th>CLK</th>
<th>RST</th>
<th>EN</th>
<th>D<sub>i</sub></th>
<th>Q<sub>i*</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q<sub>i</sub></td>
</tr>
<tr>
<td>↑↑</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>Q<sub>i</sub></td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

FF with Data Enable
(Always clocks, but selectively chooses old value, Q, or new value D)
Registers w/ Enables

- When EN=0, Q value is passed back to the input and thus Q will maintain its value at the next clock edge.
- When EN=1, D value is passed to the input and thus Q can change at the edge based on D.

When EN=0, Q is recycled back to the input.

When EN=1, D input is passed to FF input.
4-bit Register w/ Data (Load) Enable

- Registers (D-FF’s) will sample the D bit every clock edge and pass it to Q
- Sometimes we may want to hold the value of Q and ignore D even at a clock edge
- We can add an enable input and some logic in front of the D-FF to accomplish this

<table>
<thead>
<tr>
<th>CLK</th>
<th>RST</th>
<th>EN</th>
<th>Di</th>
<th>Qi*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Qi</td>
</tr>
<tr>
<td>↑↑</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>Qi</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

4-bit register with 4-bit wide 2-to-1 mux in front of the D inputs
Registers w/ Enables

- The D value is sampled at the clock edge only if the enable is active.
- Otherwise the current Q value is maintained.

\[
\begin{array}{cccccc}
\text{CLK} & \text{RST} & \text{EN} & D[3:0] & Q[3:0] \\
& & & 0010 & 0000 \\
& & & 0011 & 0101 \\
& & & 0100 & 0111 \\
& & & 0101 & 1000 \\
& & & 0110 & 0011 \\
& & & 0111 & 0100 \\
& & & 1000 & 0101 \\
& & & 1001 & 0102 \\
& & & 1010 & 0110 \\
& & & 1011 & 0111 \\
& & & 1100 & 1000 \\
& & & 1101 & 1010 \\
\end{array}
\]
COUNTERS
Counters

• Count (Add 1 to Q) at each clock edge
 – Up Counter: $Q^* = Q + 1$
 – Can also build a down counter as well ($Q^* = Q - 1$)

• Standard counter components include other features
 – Resets: Reset count to 0
 – Enables: Will not count at edge if $EN=0$
 – Parallel Load Inputs: Can initialize count to a value P (i.e. $Q^* = P$ rather than $Q+1$)
Sample 4-bit Counter

- 4-bit Up Counter
 - RST: synchronous reset input
 - PE and P_i inputs: loads Q with P when PE is active
 - CE: Count Enable
 - Must be active for the counter to count up
 - TC (Terminal Count) output
 - Active when $Q=1111$ AND counter is enabled
 - $TC = EN \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0$
 - Indicates that on the next edge it will roll over to 0000
 - Used to create 8-, 12-, 16-bit, etc. counters from these 4-bit building blocks

<table>
<thead>
<tr>
<th>CLK</th>
<th>RST</th>
<th>PE</th>
<th>CE</th>
<th>Q*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>↑↑</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>P[3:0]</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Q+1</td>
</tr>
<tr>
<td>↑↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Q</td>
</tr>
</tbody>
</table>
• Sketch the design of the 4-bit counter presented on the previous slides
Counters

SR=active at clock edge, thus Q=0

Q*=Q+1

Enable = off, thus Q holds

Q*=Q+1

Q*=Q+1

PE = active, thus Q=P

Q*=Q+1

Q*=Q+1

Mealy TC output: EN•Q3•Q2•Q1•Q0
Counter Exercise
DESIGN OF A SIMPLE INSTRUCTIONS SET AND PROCESSOR
Arithmetic and Logic Units

- Arithmetic and Logic Units (ALUs) can perform 1 of many potential arithmetic or logic operations.
- Let's define and design an ALU that will perform various operations...

We just made up these code assignments and the various operations. Remember, we definitely need to support ADD, SUB, AND, and CLR (R=0).

<table>
<thead>
<tr>
<th>F[2:0]</th>
<th>Op./Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>R = X + Y</td>
</tr>
<tr>
<td>001</td>
<td>R = X - Y</td>
</tr>
<tr>
<td>010</td>
<td>R = X</td>
</tr>
<tr>
<td>011</td>
<td>R = Y - X</td>
</tr>
<tr>
<td>100</td>
<td>R = X & Y</td>
</tr>
<tr>
<td>101</td>
<td>Unused</td>
</tr>
<tr>
<td>110</td>
<td>R = 0</td>
</tr>
<tr>
<td>111</td>
<td>Unused</td>
</tr>
</tbody>
</table>
Blank ALU To Complete

2-to-1, 4-bit wide mux

2-to-1, 4-bit wide mux

2-to-1, 4-bit wide mux

2-to-1, 4-bit wide mux

S0 =
S1 =
S2 =
S3 =

4-bit Binary Adder

Ci=

000 R = X + Y 100 R = X & Y
001 R = X - Y 101 Unused
010 R = X 110 R = 0
011 R = Y - X 111 Unused

X0
X1
X2
X3

Y0
Y1
Y2
Y3

S0
S1
S2
S3

A0
A1
A2
A3

B0
B1
B2
B3

C0
C4

R0
R1
R2
R3

F0
F1
F2

EE109 ALU
Control Logic

<table>
<thead>
<tr>
<th>R</th>
<th>FS[2:0]</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>Ci</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X+Y</td>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X-Y</td>
<td>001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>010</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y-X</td>
<td>011</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X & Y</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>unused</td>
<td>101</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>d</td>
<td>1</td>
<td>0</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>unused</td>
<td>111</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

- S0 = F1•F0
- S1 = F1•F0'
- S2 = F1'•F0
- Ci = F0
- S3 = F2
Completed ALU

--- | --- | --- | ---
000 | R = X + Y | 100 | R = X & Y
001 | R = X - Y | 101 | Unused
010 | R = X | 110 | R = 0
011 | R = Y - X | 111 | Unused

2-to-1, 4-bit wide mux
S0 = F1\(^{\prime}\)F0
S1 = F1\(^{\prime}\)F0
S2 = F1\(^{\prime}\)F0
S3 = F2

2-to-1, 4-bit wide mux

EE109 ALU
Aside: Impacts of Coding (1)

- What if we changed the codes used for each operation?

<table>
<thead>
<tr>
<th>F[2:0]</th>
<th>Op./Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>R = X + Y</td>
</tr>
<tr>
<td>001</td>
<td>R = X - Y</td>
</tr>
<tr>
<td>010</td>
<td>R = X</td>
</tr>
<tr>
<td>011</td>
<td>R = Y - X</td>
</tr>
<tr>
<td>100</td>
<td>R = X & Y</td>
</tr>
<tr>
<td>101</td>
<td>Unused</td>
</tr>
<tr>
<td>110</td>
<td>R = 0</td>
</tr>
<tr>
<td>111</td>
<td>Unused</td>
</tr>
</tbody>
</table>

We just made up these code assignments and the various operations. Remember, we definitely need to support ADD, SUB, AND, and CLR (R=0).
Aside: Impacts of Coding (2)

<table>
<thead>
<tr>
<th>R</th>
<th>FS[2:0]</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>Ci</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X + Y</td>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y - X</td>
<td>001</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X - Y</td>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>d</td>
<td>1</td>
<td>0</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>100</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X&Y</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>Unused</td>
<td>110</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Unused</td>
<td>111</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

- S0 = F2'F0
- S1 = F2F0' + F1F0
- S2 = F2F0' + F2'F1'F0
- Ci = F1+F0
- S3 = F1F0 + F2F0

Notice how much more logic this coding yields.
MULTIPLIERS
Unsigned Multiplication Review

- Same rules as decimal multiplication
- Multiply each bit of Q by M shifting as you go
- An m-bit * n-bit mult. produces an m+n bit result (i.e. n-bit * n-bit produces 2*n bit result)
- Notice each partial product is a shifted copy of M or 0 (zero)

1010 \hspace{1cm} M \hspace{1cm} \text{(Multiplicand)}
\times \hspace{1cm} 1011 \hspace{1cm} Q \hspace{1cm} \text{(Multiplier)}
Unsigned Multiplication Review

• Same rules as decimal multiplication
• Multiply each bit of Q by M shifting as you go
• An m-bit * n-bit mult. produces an m+n bit result (i.e. n-bit * n-bit produces 2*n bit result)
• Notice each partial product is a shifted copy of M or 0 (zero)

\[
\begin{array}{c}
1010 & \text{M (Multiplicand)} \\
* 1011 & \text{Q (Multiplier)} \\
\hline
1010 & \\
1010 & \text{PP (Partial Products)} \\
0000 & \\
+ 1010 & \\
\hline
01101110 & \text{P (Product)}
\end{array}
\]
Combinational Multiplier

- Partial Product (PP_i) Generation
 - Multiply $Q[i] \times M$
 - if $Q[i]=0 \Rightarrow PP_i = 0$
 - if $Q[i]=1 \Rightarrow PP_i = M$

\[
\begin{array}{c}
1010 \\
\times 1011 \\
\hline
1010 \\
1010_\text{PP (Partial Products)} \\
0000_\text{PP (Partial Products)} \\
+ 1010_\text{P (Product)} \\
\hline
01101110_\text{P (Product)}
\end{array}
\]
Combinational Multiplier

- Partial Product (PP_i) Generation
 - Multiply Q[i] * M
 - if Q[i]=0 => PP_i = 0
 - if Q[i]=1 => PP_i = M
 - AND gates can be used to generate each partial product
Combinational Multiplier

• Partial Products must be added together
• Combinational multipliers require long propagation delay through the adders
 – propagation delay is proportional to the number of partial products (i.e. number of bits of input) and the width of each adder
Multiplication Overview

• Combinational: Array multiplier uses an array of adders
 – Can be as simple as N-1 ripple-carry adders for an NxN multiplication

\[
\begin{array}{cccc}
m_3 & m_2 & m_1 & m_0 \\
q_3 & q_2 & q_1 & q_0 \\
m_3q_0 & m_2q_0 & m_1q_0 & m_0q_0 \\
m_3q_1 & m_2q_1 & m_1q_1 & m_0q_1 \\
m_3q_2 & m_2q_2 & m_1q_2 & m_0q_2 \\
m_3q_3 & m_2q_3 & m_1q_3 & m_0q_3 \\
\end{array}
\]

AND Gate Array produces partial product terms
Array Multiplier

- Maximum n-bit * n-bit delay is proportional to 2*n

Can this be a HA?