Disclaimer 1

- This is just an introduction to the topic of interrupts. You are not meant to master these right now but just start to use them
- We will cover more about them as we investigate other modules that can make use of them

Exceptions

- In computer systems we may NOT know when
 - External hardware events will occur.
 - Can you think of an example?
 - Errors will occur
- Exception processing refers to
 - Handling events whose timing we cannot predict
- 3 questions to answer:
 - Q: Who detects these events and how? A: The hardware
 - Q: How do we respond? A: Calling a pre-defined SW function using the vector table
 - Q: What is the set of possible events? A: Specific to each proc.

An Analogy

- Scenario:
 - You're studying (i.e. listening to music and watching Netflix) but all of a sudden you get a text message. What do you do?
 - You stop what you're doing and message back
 - When you're done you go back to studying (i.e. playing a video game or going to get coffee)
- This is what computers do when an __________________________ occurs
What are Exceptions?

- **Definition**: Any event that causes a _______________ _______________.
 - "Exceptions" is a broad term to catch many kinds of events that interrupt normal software execution.
- **Examples**
 - **Hardware Interrupts / __________ Events [Focus for today]**
 - PC: Handling a keyboard press, mouse moving, USB data transfer, etc.
 - Arduino: Value change on a pin, ADC conversion done, Timers, etc.
 - **Error Conditions [Focus for some other time]**
 - Invalid address, illegal memory access, arithmetic error (e.g. divide by 0)
 - **System Calls / Traps [Focus for some other time]**
 - User applications calling OS code

Interrupt Exceptions

- Two methods for processor and I/O devices to notify each other of events
 - _______________ (responsibility on proc.)
 - Processor has responsibility of checking each I/O device
 - Many I/O events happen infrequently (1-10 ms) with respect to the processors ability to execute instructions (1-100 ns) causing the loop to execute many times
 - _______________ (responsibility on I/O device)
 - I/O device notifies processor only when it needs attention

Recall: Instruction Cycle

- Processor hardware performs the same 3-step process over and over again as it executes a software program
 - **Fetch** an instruction from memory
 - **Decode** the instruction
 - Is it an ADD, SUB, etc.?
 - **Execute** the instruction
 - Perform the specified operation
- This process is known as the **Instruction Cycle**

HW Detects Exceptions

- There's actually a 4th step
- After finishing each instruction the processor hardware checks for _______________ automatically (i.e. this is built into the hardware)
 - **Fetch** an instruction from memory
 - **Decode** the instruction
 - Is it an ADD, SUB, etc.?
 - **Execute** the instruction
 - Perform the specified operation
 - **Check for exceptions**
 - If so, pause the current program and go execute other software to deal with the exception
SW Handles Exceptions

- When exceptions occur, what should happen?
 - We could be anywhere in our software program...who knows where
- Common approach...
 - 1. ______ in current code
 - 2. Automatically have the processor call some function/subroutine to handle the issue (a.k.a. ______ or ______)
 - 3. Resume normal processing back in original code

```
#include<avr/io.h> void codeToHandleInterrupt();
int main()
{
  // this is just generic code
  // for a normal application
  PORTC |= (1 << PC2);
  int cnt = 0;
  while(1){
    if( PINC & (1 << PC2) ) {
      cnt++;
      PORTD = segments[cnt];
      return 0;
    }
  } } ISR()
  // do something in response
  // to the event
```

If an interrupt happens here...

Important Point:
HW detects exceptions.
Software handles exceptions.

When Exceptions Occur...

- How does the processor know which function to call "automatically" when an interrupt occurs
 - We must tell the processor in ______ which function to associate (i.e. call) with the various exceptions it will check for
 - Just like a waiver forms asks for an emergency contact to call if something bad happens, we indicate what function to call when an interrupt occurs

```
#include<avr/io.h>
unsigned char value = 0;
void adcFinished();
int main()
{
  // this is just generic code
  PORTC |= (1 << PC2);
  ADCMUX = 0x61;
  ADCSRA |= 0x40;
  while(1)
  {
    /* do useful work here */
    ADCSRA |= 0x40;
    ISR(ADC_vect)
    // ADC is now done
    value = ADCH;
    PORTD = value;
    // start next conversion
    ADCSRA |= 0x40;
  } return 0;
} } ISR()
  // do something in response
```

Function Calls vs. Interrupts

Normal function calls
- ______: Called whenever the program reaches that point in the code
 - Programmer can pass arguments and receive return values

Interrupts
- ______: Called whenever an event occurs (can be anywhere in our program when the ISR needs to be called)
 - Requires us to know in advance which ISR to call for each possible exception/interrupt
 - Use ISR(interrupt_type) naming scheme in the Arduino to make this association
 - No ______ or ______ values
 - How would we know what to pass if we don't know when it will occur
 - Generally interrupts update some global variables

AVR INTERRUPT SOURCES
Interrupt Sources

- An AVR processor like the ATmega328P has numerous sources of possible interrupts
- Some interrupts are from the on-board modules
 - Pin change interrupts
 - Timers/Counters
 - Serial communications
 - A-to-D converter
- A few can be generated from external devices
 - External pin interrupts so you can connect a whole new HW device to your Arduino and have it generate an interrupt

Pin Change Interrupts

- Pin Change Interrupt can detect if _______ that is part of a particular PORT (i.e. B, C, D) has changed its value
 - Interrupt if a pin changes state (0→1 or 1→0)
 - 3 individual pin change interrupts
 - Pin Change Interrupt 0 = any bits on PORTB change
 - Pin Change Interrupt 1 = any bits on PORTC change
 - Pin Change Interrupt 2 = any bits on PORTD change
 - Interrupt only says ____ pin of the port has changed but not ______ one
 - The function that gets called can figure out what happened by reading the PINx register and AND'ing it appropriately just like we did in previous labs
 - Useful if you have to monitor a number of external sources for changes

Counter/Timer Interrupts

- Most processors have some hardware counters that count at some _______________ that you can load with a value, N.
- Start at 0 counting at the known rate and when they reach __ they can generate an ______________
 - If N = 500 and the timer counts at 1KHz, an interrupt will occur after 0.5s
- Can be set to immediately ____________ at 0 again to generate an interrupt at a regular __________
- ATmega328P has three such timers that can be used
- Useful for performing operations at specific time intervals.

Other Interrupt Sources

- Communications modules
 - The AVR has several serial communications modules built in (think of these like forerunners of modern USB interfaces)
 - Interrupts can be configured to occur when data is received, sent, etc.
- ADC module
 - The ADC can generate an interrupt once it’s done converting the voltage (i.e. you start it and then it will "interrupt" you to tell you it’s done)
- External Interrupts
 - Can be used to connect 3rd party devices to the system and have them generate interrupts on 0->1 or 1->0 transitions
 - PORTD bit 2 and 3
External Interrupt Pins

- An 'external' interrupt can be generated anytime a certain external trigger condition occurs on two specific pins:
 - INT0 = PIN4 = PORTD2 or
 - INT1 = PIN5 = PORTD3
- Can select condition to cause interrupt
 - Transition from _____
 - Transition from _____
 - Either kind of transition
 - 0 level

Who You Gonna Call?

- The HW maintains a table/array (a.k.a. interrupt vector table) in memory
 - Each location in the table is _______ with a specific interrupt
 - Each entry specifies which function to call when that interrupt occurs
- When a certain interrupt occurs, the HW automatically looks up the ISR/function to call in the table and then calls it
- More on this in your OS class (CS 350) or Architecture course (EE 457)

Interrupt Service Routines

- An ISR is written like any other function (almost)
 - Must be declared as an ISR for a specific interrupt by using a special name [e.g. ISR(ADC_vect)]. This tells the compiler to fill in the interrupt vector table to call this code when an ADC interrupt occurs.
 - No arguments can be passed
 - No values can be returned
- ISRs have access to other functions and global variables like any other function

To Use Arduino Interrupts

- Define the _______ in your software program
- During initialization you must _________ the interrupt source
- Either...
 - Wait for the interrupt to occur (e.g. wait for a pin to change)
 - or invoke behavior that will eventually lead to an interrupt (start an ADC conversion so that eventually it will generate an interrupt when done)
Enabling Interrupts

- Each interrupt source is DISABLED by default and must be ENABLED.
- For an interrupt to be handled, "enablers" need to agree.
 - **Enabler 1**: A separate "________" interrupt enable bit per source (i.e., ADC, timer, pin change, etc.).
 - **Enabler 2**: A single "________" interrupt enable bit (1-bit for entire processor called the I-bit).
- Analogy: Local judge per state but 1 supreme court for entire nation.
 - Both local judge and supreme court must agree (be set to '1') for the interrupt to occur. If _______ are '0' then the interrupt will ______ occur.

Enabling Interrupts

- All interrupt sources must be enabled before they can be used.
- Each source of an interrupt has its own ______________ bit.
 - Located in one of the registers that controls it for the module.
 - Usually __ = Don't use interrupts, ___ = Enable use of interrupts.
 - Example: ADCSRA |= (1 << ADIE);
- Processor has a _____________ enable bit in the status register.
 - I-bit = 0 ⇒ all interrupts are ignored
 - I-bit = 1 ⇒ interrupts are allowed
 - Set or clear in C with the "sei()" and "cli()" function calls.
- **Summary**: For a module to generate an interrupt:
 - The global I-bit must be a one.
 - The local interrupt enable bit must be a one.
 - Something must happen to cause the interrupt.

Interrupt Example

- Example: Arduino ADC conversions.
- Doing conversions without interrupts:
 - Start conversion.
 - Loop checking status bit until done (called "polling").
 - Read results.
 - Works but program is tied up during the conversion process.
 - Gets worse if many tasks have to be done simultaneously.
- Better to use interrupts:
 - Start conversion, and tell ADC to generate an interrupt when done.
 - Program now free to do other things.
 - When conversion complete, ISR is executed to read the results.
 - Program can start several tasks, and handle each when they finish.

Interrupt Example

- Polling method:
 - Start the conversion.
 - Loop checking to see when the conversion is complete.
 - Read result and take action.

```c
#include<avr/io.h>

int main() {
    // Initialization code here
    ADMUX = ??
    ADCSRA = ??
    while (1) {
        // Start a conversion
        ADCSRA |= (1 << ADCS);
        // Wait for conversion complete
        while (ADCSRA & (1 << ADCS));
        // Read result
        n = ADCH;
        // Do something with n
    }
}
```
Interrupt Example

- Interrupt method:
 - `#include <avr/interrupt.h>`
 - Enable interrupts
 - Start the ADC the first time
 - Loop using the results
 - As the ADC finishes it will call the ISR associated with the ADC which will read the data and start the next conversion
- Be sure to follow the special syntax for how to declare the function associated with the ADC
 - `ISR(ADC_vect)`

- Note: If you enable an interrupt but have no ISR() written the Arduino will reboot immediately when the interrupt occurs

```c
#include<avr/io.h>
#include <avr/interrupt.h>

// global variable int adc_data = 0;

int main()
{
  // Init. code here (ADMUX, etc.)
  // Enable ADC interrupts
  ADCSRA |= (1 << ADIE);
  // Enable global interrupts
  sei();
  // Start first ADC conversion
  ADCSRA |= (1 << ADSC);

  while (1) {
    // Update display using adc_data
    // which will be automatically
    // updated each time interrupt occurs;
  }

  // Read the conversion results
  ISR(ADC_vect)
  
  adc_data = ADCH; // Read result
  // Start next conversion
  ADCSRA |= (1 << ADSC);
}
```

Disclaimer 2

- All processors handle interrupts differently.
 - The AVR is typical in some ways, not in others.
 - If working with a different processor, don’t assume it works the same as the AVR.
 - READ THE MANUAL!

Interrupt Flag Bits (Skip)

- Modules usually contain an interrupt flag (IF) bit in the same register as the interrupt enable (IE) bits
 - Flag is set when the module wants to generate an interrupt.
 - Flag is cleared when the ISR is called
 - Allows the program to see if interrupts would have occurred if they were enabled (i.e. If we aren't using interrupts for the ADC we can still look at the ADIF bit to see if it would have tried to generate an interrupt)

```
ADEN ADSC AD
ATE
ADIE AD PS2
AD PS1
AD PS0
ADIF
ADCSRA  Register
```

Need for Volatile Variables
Communicating with ISRs & Other Code

- Global variables can be shared between main code and ISR’s
- ISR’s can modify the contents of a global variable and other code and check for changes in that global variable
- Common idiom: a "______" variable to indicate a desired event has happened
 - ISR ________ on every change to see if the desired event occurred and only then _____ a flag to __
 - Main or other code checks the flag variable then ______ it to __

```c
int flag; // shared variable
main() {
    flag = 0;
    // Loop waiting for interrupt to occur
    while (flag == 0);
    // Do something
    ISR(SOME_INTERRUPT_vect) {
        flag = 1;
    }
}
```

Using a Flag Variable

- A common idiom is to use a "flag" variable to indicate a desired event has happened
- Approach
 - Initialize a global variable to 0
 - ISR checks on every change to see if the desired event occurred and only then sets a flag to 1
 - Main or other code checks the flag variable then resets it to 0 awaiting the next time the event occurs

```c
int pb2flag; // shared variable
main() {
    pb2flag = 0; // Initialize to 0
    while(1) {
        // Loop waiting for flag to be set
        if (pb2flag == 1) {
            stringout("button push!");
            pb2flag = 0; // reset flag to 0 so we can detect the next push
        }
        // Check for other things or do work
        ISR(PCINT0_vect) {
            // Some bit changed, see if it is PB2
            if( (PINB & PB2) == 0) {
                pb2flag = 1;
            }
        }
    }
}
```

ISR Timing

- Why not just do the work in the ISR?
- Because an ________ can not __________ another ____________! That’s a mouthful
 - When you are in an ISR no other interrupts can occur possibly delaying important events, or even ________ information (e.g. a "high-speed" communications link with limited space)
- Solution: Never do ________ ________ work in an ISR

```c
main() {
    while(1) {
        // Check for other things or do work
    }
    ISR(PCINT0_vect) {
        // Some bit changed, see if it is PB2
        if( (PINB & PB2) == 0) {
            stringout("button push!");
        }
    }
}
```

Another Issue: Compiler Optimizations

- Example: When optimizing this code, compiler sees that "flag" is never modified in main (and doesn’t see any "calls" to the ISR)
- Thus the compiler will optimize the code to avoid reading "flag" from memory each time (since that is slow)
- Problem: Due to the compiler optimization our code won’t work even if the ISR sets the flag to 1
- Solution: Tell the compiler that "flag" can change due to some ISR by declaring it as volatile

```c
int flag; // shared variable
main() {
    flag = 0; // Loop waiting for flag non-zero
    while (flag == 0);
    // Do something
    ISR(SOME_INTERRUPT_vect) {
        flag = 1;
    }
}
```

Result of compiler optimization

Original Code

```
int flag; // shared variable
main() {
    flag = 0; // Loop waiting for flag non-zero
    while (flag == 0);
    // Do something
    ISR(SOME_INTERRUPT_vect) {
        flag = 1;
    }
}
```

Result of compiler optimization

```
int flag; // shared variable
main() {
    flag = 0; // Loop waiting for flag non-zero
    while (flag == 0);
    // Do something
    ISR(SOME_INTERRUPT_vect) {
        flag = 1;
    }
}
```

Main Point:
Get ________ of an ISR quickly.
Don't call functions that will take a long time to complete (e.g. LCD output)
Another Issue: Compiler Optimizations

- **Solution**: Tell the compiler that "flag" can change due to some ISR by declaring it as **volatile**
 - Declaring a global variable as volatile tells the compiler not to optimize the code but always get the _________ value of the variable
- **Important Rule**: Use "volatile" for any global variable that is **updated** in an ISR and **used elsewhere in the code**
- **Corollary**: No need to use "volatile" for variables not used with ISRs (e.g. "buf" in the example at the right).

Performing critical sections without be interrupted

NEED FOR ATOMIC OPERATIONS

Need for Atomic Operations

- Sometimes performing an operation requires several steps (ex. Copying bits into a register)
- If an interrupt occurs in the middle of the sequence it may see a strange value/state of the variable and do something we didn't expect
- Atomic operations are compound statements that should execute all together (not be interrupted)

Atomic Operations

- "Atomic" ⇒ Can't be ______________ while executing
- The problem gets worse at the assembly level since many C operations (one line of code) require multiple assembly language instructions, and interrupts can occur between them.
 - Even "x++" is actually 3 steps: ______ old value of x, ____ 1, ______ x to new value
- Need a way to ensure all operations occur _________ and are not interrupted (e.g. ensure an interrupt doesn't occur in the middle)
Updated Code for Atomicity

- Solution to ensure "atomic" operation
 - Disable interrupts using cli()
 - Perform the operation
 - Re-enable interrupts using sei()
- The code between cli() and sei() that cannot be interrupted is called a "critical section" (since it must be done together)

```c
#define MASK 0b00001111

main() {
    PORTD = 0x0f; // PORTD starts at 1's char x = 0x05;
    cli();
    PORTD &= ~MASK;
    PORTD |= (x & MASK);
    sei();
    // now we can't be interrupted
}

ISR(SOME_INTERRUPT_vect) {
    // if lower 4 bits all = 0
    if ((PORTD&MASK) == 0) {
        // do something
    }
}
```

Built-In Atomic Block

- In a larger program there are some issues that might arise
 - OK to disable interrupts, but shouldn’t turn them back on if they were already disabled by some other code
- Solution: Use atomic.h and the ATOMIC_BLOCK()
- Turns interrupts off, then restores to previous state.

```c
#include <util/atomic.h>

main() {
    ATOMIC_BLOCK() { /* like cli() */
        // interrupts now off
        // Do critical section
    } /* like sei() */
    // interrupt setting restored
}

ISR(SOME_INTERRUPT_vect) {
}
```