EE 109 Homework 8 FPGAs, ASICs, Memories,
 \& Interfacing

Name:
Due: See website

Score: \qquad

1. ($\mathbf{2 4} \mathbf{~ p t s .) ~ F o r ~ e a c h ~ o f ~ t h e ~ f o l l o w i n g ~ f u n c t i o n s ~ l i s t ~ t h e ~ s i z e ~ o f ~ R O M ~ r e q u i r e d ~ t o ~ i m p l e m e n t ~ i t ~}$ (e.g. 256×4 or 8×1). Then, draw the block diagram of the ROM showing the device labels: $\mathrm{A}[\mathrm{n}-1]$ to $\mathrm{A}[0]$ and your data outputs as $\mathrm{D}[\mathrm{m}-1]$ to $\mathrm{D}[0]$ [device labels are inside the block used to indicate which input/output is which] label the address inputs]. Next add appropriate system labels (actual function input and output signals). You need not show the contents of the ROM, just the size.
a. A circuit that converts a 3-bit 2's comp. number $\mathrm{X}[2: 0]$ to the equivalent 4-bit signed magnitude number, Y[3:0].
b. $\mathrm{H}=\Sigma_{\mathrm{ABCD}}(2,5,6,7,8,10,13,15)$
c. A circuit that takes a 6-bit 2 's comp. number, $A[5: 0]$, and squares it $\left(B=A^{2}\right)$ where B is output in unsigned representation (i.e. squaring always yields a positive result.)
2. ($\mathbf{2 4} \mathbf{~ p t s .)}$) Answer the questions below.

	$\boldsymbol{V}_{\text {OH }}$	$\boldsymbol{V}_{\text {OL }}$	$\boldsymbol{V}_{\text {IH }}$	$\boldsymbol{V}_{\text {IL }}$
Family 1	4.0 V	1.0 V	3.2 V	1.3 V
Family 2	4.1 V	0.3 V	3.7 V	0.5 V

a. Given two families of logic with the given voltage levels, list the noise margins: NM_{H} and NM_{L} for Family 1.
b. True/False: A Family 2 device outputting to a Family 1 input may fail when outputting HIGH (digital 1)?
c. True/False: A Family 1 device outputting to a Family 2 input may fail when outputting LOW (digital 0)?

	$\left\|I_{O H}\right\|$	$\left\|I_{O L}\right\|$	$\left\|I_{I H}\right\|$	$\left\|I_{L L}\right\|$
Family 1	$600 \mu \mathrm{~A}$	5 mA	$60 \mu \mathrm{~A}$	1 mA

d. What is the maximum fan-out of gates from Family 1 (to other Family 1 gates)?
3. (28 pts) Implement the following designs using FPGA-style CLB(s) [Configurable Logic Blocks].
a. Consider the design of a circuit to detect if the absolute value of a 3-bit 2's complement system number, X , is greater than 1 . Rather than building it directly with gates, show how to program a CLB to produce the output by filling in the yellow/highlighted boxes. Hint: Any combinational design can be described with a truth table.

Desired logic circuit:

b. Consider the design of the "2-consecutive 1 's" sequence detector specified in the State Machines Unit slides and reprinted below:

Current State			Next State						$\frac{\text { Output }}{} \frac{\mathrm{F}}{}$
			$\mathrm{X}=0$			$\mathrm{X}=1$			
State	Q_{1}	Q_{0}	State	Q1*	Q0*	State	Q1*	Q0*	
S0	0	0	S0	0	0	S1	1	1	0
--	0	1	--	d	d	--	d	d	d
S1	1	1	S0	0	0	S2	1	0	0
S2	1	0	S0	0	0	S2	1	0	1

Given the CLB below, implement the state machine (by filling in the yellow/highlighted boxes) EXCEPT for the output F. That is, implement the next state logic and state memory. Assume the flip-flop outputs (Q1Q0) are fed back to the inputs of the CLB.

4. ($\mathbf{2 4}$ pts.) Do some internet searches for the following terms. Match the best term from the choices on the left with each of the descriptions on the right (one term may have many matches).

Terms	Descriptions
a.) FPGA	1. Primary product of the companies named Xilinx and Altera
(now part of Intel)	

If requested, submit your presentation on Blackboard under Assignments..Homework.

