EE 109 Homework 1

Name: ___
Due: See website
Score: ________

Neatly show your work to get full credit and clearly show your final answer.

1.) [5 pts.] Use KCL to solve for I_0.

2.) [8 pts.] Use KVL to solve for V_1 and V_2.

3.) [9 pts.] Solve for the currents i_1, i_2, i_3.

1 Many of these exercises were derived or inspired from Fundamentals of Electric Circuits, 3rd ed. By Alexander, Sadiku. McGraw-Hill Publishers.
4.) [9 pts.] Solve for the voltages V_1, V_2, V_3

\[
\begin{align*}
&+4V_+ \\
&-10V \\
&+V_1 \\
&+3V \\
&-V_2 \\
&+V_3 \\
&-5V \\
\end{align*}
\]

5.) [9 pts.] Solve for the voltages V_1, V_2, V_3 across the respective resistors.

\[
\begin{align*}
&+12V \\
&R_1 \\
&-V_2+ \\
&R_2 \\
&+V_1 \\
&R_3 \\
&-V_3+ \\
&R_4 \\
&+V_4+ \\
&-V_5+ \\
&+9V \\
\end{align*}
\]

6.) [10 pts.] Reduce the resistor network shown below to a single equivalent resistance. Assume the values of the resistors are given as $R_1=3\Omega$, $R_2=4\Omega$, $R_3=2\Omega$, $R_4=2\Omega$, $R_5=1\Omega$.

\[
\begin{align*}
&a \\
&R_1 \\
&-V_1+ \\
&R_2 \\
&-V_2+ \\
&R_3 \\
&-V_3- \\
&R_4 \\
&-V_4+ \\
&+V_5+ \\
\end{align*}
\]

7.) [10 pts.] Reduce the resistor network shown below to a single equivalent resistance assuming the following resistor values: $R_1=5\Omega$, $R_2=4\Omega$, $R_3=3\Omega$, $R_4=1\Omega$, $R_5=1\Omega$, $R_6=2\Omega$, $R_7=7\Omega$.

Hint: Start by combining R_4 and R_5 then combine those with R_6 and keep going…
8.) **[8 pts.]** Find an expression for the current i_1 if $R_1 = 4\Omega$, $R_2 = 3\Omega$, $R_3 = 6\Omega$, $R_4 = 2\Omega$.

Hint: Combine R_2, R_3, R_4 into an equivalent resistance which will be in series with R_1. From here you can use a KVL loop or Ohm's law to solve for i_1.

9.) **[16 pts.]** Use the generalized concept of a voltage divider (review your notes/lecture slides) to find expressions for the voltage V_1 and also V_4 in the circuit below. Your expression should be in terms of V_s and R_1-R_4.

10.) **[6 pts.]** Look at the circuit from problem 9. If R_4 is very large (approaches infinity) what would V_4 be (approximately)? Your expression should be in terms of V_s and (possibly) some of R_1-R_4.

Hint: Use your equation from the previous problem and let R_4 go to infinity…

11.) **[5 pts.]** Look at the circuit from problem 9. If R_3 is very large (approaches infinity) again solve (approximately) for the voltage V_4? Your expression should be in terms of V_s and (possibly) some of R_1-R_4.

Hint: Use your equation from problem 9 and let R_3 go to infinity.

12.) **[5 pts.]** Look at the circuit from problem 9. If R_3 is effectively 0Ω (i.e. replaced by a wire), solve (approximately) for the voltage V_4? Your expression should be in terms of V_s and (possibly) some of R_1-R_4.

Diagram:

- Circuit diagram with labels R_1, R_2, R_3, R_4, i_1, i_2, i_3, i_4, V_1, V_2, V_3, V_4, and $GND = 0V$.