EE 109 Homework 1

Name: ___
Due: See website
Score: ________

Submit your answers on Blackboard.

1.) [5 pts.] Use KCL to solve for I_0.

2.) [8 pts.] Use KVL to solve for V_1 and V_2.

3.) [9 pts.] Solve for the currents i_1, i_2, i_3.

1 Many of these exercises were derived or inspired from Fundamentals of Electric Circuits, 3rd ed. By Alexander, Sadiku. McGraw-Hill Publishers.
4.) [9 pts.] Solve for the voltages V1, V2, V3

5.) [9 pts.] Solve for the voltages V1, V2, V3 across the respective resistors.

6.) [10 pts.] Reduce the resistor network shown below to a single equivalent resistance. Assume the values of the resistors are given as R1=3Ω, R2=4Ω, R3=2Ω, R4=2Ω, R5=1Ω.

7.) [10 pts.] Reduce the resistor network shown below to a single equivalent resistance assuming the following resistor values: R1=5Ω, R2=4Ω, R3=3Ω, R4=1Ω, R5=1Ω, R6=2Ω, R7=7Ω. Hint: Start by combining R4 and R5 then combine those with R6 and keep going…
8.) [8 pts.] Find an expression for the current i_1 if $R_1=4\Omega$, $R_2=3\Omega$, $R_3=6\Omega$, $R_4=2\Omega$.
Hint: Combine R_2, R_3, R_4 into an equivalent resistance which will be in series with R_1. From here you can use a KVL loop or Ohm's law to solve for i_1.

Hint: Use your equation from the previous problem and let R_4 go to infinity.

9.) [16 pts.] Use the generalized concept of a voltage divider (review your notes/lecture slides) to find expressions for the voltage V_1 and also V_4 in the circuit below. Your expression should be in terms of Vs and R_1-R_4.

10.) [6 pts.] Look at the circuit from problem 9. If R_4 is very large (approaches infinity) what would V_4 be (approximately)? Your expression should be in terms of Vs and (possibly) some of R_1-R_4.
Hint: Use your equation from the previous problem and let R_4 go to infinity.

11.) [5 pts.] Look at the circuit from problem 9. If R_3 is very large (approaches infinity) again solve (approximately) for the voltage V_4? Your expression should be in terms of Vs and (possibly) some of R_1-R_4.
Hint: Use your equation from problem 9 and let R_3 go to infinity.

12.) [5 pts.] Look at the circuit from problem 9. If R_3 is effectively 0Ω (i.e. replaced by a wire), solve (approximately) for the voltage V_4? Your expression should be in terms of Vs and (possibly) some of R_1-R_4.