
EE109: Introduction to Embedded Systems

Spring 2024 - Midterm Exam

03/26/24, 7PM – 8:40PM
[Complete all the information in the box below.]

Name:______________________________

Student ID: __

Email: ___________________@usc.edu

Lecture section (Circle One):

Ques. Your score Max score Recommended Time

1 6 5 min.

2 4 5 min.

3 7 8 min.

4 10 15 min.

5 12 10 min.

6 10 12 min.

7 8 10 min.

8 5 5 min.

9 18 30 min.

Total 80

All work MUST be on the FRONT (not back) of EXAM PAGES.

No Scratch work will be graded or viewed.

Do NOT write in the upper-right corner of the page with the QR code.

Redekopp Redekopp Weber Puvvada Redekopp Weber Annavaram

9:30 a.m. 11 a.m. 12:30 p.m. 2 p.m. 11 a.m. 12:30 p.m. 2 p.m.

 Do not write near this QR code.

2

1. (6 pts) Number Systems

1.1. Convert 203 decimal to an 8-bit unsigned binary number: ______________________

1.2. Convert 1001 1101 0100 binary to hexadecimal: 0x______________________

1.3. Using the 2’s complement system how many bits would be required for a number that

could store any value in the range -9 to +6? ________ bits

2. (4 pts) Logic

For each circuit below, indicate True if it is equivalent to an XOR gate (i.e. 𝑍 = 𝑋⨁𝑌).

X
Y

X
Y

Z

0

1

Y

S

X

Z

Y 0

1

Y

S

X

Z

Equivalent to 𝑍 = 𝑋⨁𝑌: ❑ T / ❑ F

Equivalent to 𝑍 = 𝑋⨁𝑌: ❑ T / ❑ F

3. (7 pts) Resistive Circuits

3.1. When both SW1 and SW2 are OPEN (disconnected)

i is ________ Amps.

3.2. When both SW1 and SW2 are OPEN (disconnected)

what is V3: ______________________

3.3. When both SW1 and SW2 are CLOSED, R3 and R4 are in parallel. ❑ T / ❑ F

3.4. When both SW1 and SW2 are CLOSED, R3 is in series with R1 and R2. ❑ T / ❑ F

3.5. Consider the polarity of V3 shown in the diagram. When both SW1 and SW2 are

CLOSED (connected), V3 will be _______. ❑ positive ❑ negative

10V

SW1

SW2

R1=6Ω

R2=4Ω

R3=4Ω

R4=6Ω

+ V1 -

- V3 +

i

 Do not write near this QR code.

3

4. (10 pts.) Boolean Algebra: Use theorems to simplify the given equation for G to its minimal SOP

form first, then in one step ALSO show the minimal POS expression (both POS and SOP). To get

started follow the instructions in the 2nd column. For example, to start you need to use DeMorgan's

theorem (potentially more than once) on the 2nd term of the equation. Then proceed to find the

simplest SOP, then POS form. Show what theorems you are applying at each step (though you

can apply 2 or 3 theorems per step). Write neatly. We strongly recommend you (PLEASE!!) plan

your work on the scratch paper first to determine your approach but your final solution must be on

this page. Use only the rows needed.

Step
Theorem(s) or

Manipulation(s) Used

𝐺 = 𝐴(𝐵 + 𝐶𝐷 + 𝐴𝐵)(𝐵 + 𝐶𝐷) + (𝐷 + (𝐸 ∙ [𝐵 + 𝐸]))

𝐺 = 𝐴(𝐵 + 𝐶𝐷 + 𝐴𝐵)(𝐵 + 𝐶𝐷) + ____________________________________
 Term 1 Term2

DeMorgan's Theorem

𝐺 =
T9 applied somewhere

in the first term

𝐺 =

You must apply T8’ (not

T10’) in the first term to

make a smaller equation

𝐺 =___ Minimal SOP .. and ..

𝐺 =___ Minimal POS

Single-Variable Theorems

(T1) X + 0 = X (T1’) X • 1 = X (Identities)

(T2) X + 1 = 1 (T2’) X • 0 = 0 (Null elements)

(T3) X + X = X (T3’) X • X = X (Idempotency)

(T4) (X’)’ = X (Involution)

(T5) X + X’ = 1 (T5’) X • X’ = 0 (Complement)

Two- and Three-Variable Theorems

(T6) X +Y = Y + X (T6’) X • Y = Y • X (Commutativity)

(T7) (X+Y)+Z = X+(Y+Z) (T7’) (X•Y) •Z = X• (Y•Z) (Associativity)

(T8) X•(Y+Z) = X•Y + X•Z (T8’) X+(Y•Z) = (X+Y) • (X+Z) (Distributivity)

(T9) X + X•Y = X (T9’) X • (X + Y) = X (Covering)

(T10) X•Y + X•Y’ = X (T10’) (X+Y) • (X+Y’) = X (Combining)

(T11) X•Y+X’•Z+Y•Z = X•Y+X’Z (T11’) (X+Y)•(X’+Z)•(Y+Z) = (X+Y)•(X’+Z) (Consensus)

DeMorgan’s Theorem

 (X • Y)’ = X’ + Y’ (X +Y)’ = X’ • Y’ (DeMorgan’s)

 Do not write near this QR code.

4

5. (12 pts.) Logic Simplification

Tricia attempted to find a minimal SOP equation for a function, H. Her equation below

correctly expresses, H, but may NOT be minimal.

𝐻(𝑤, 𝑥, 𝑦, 𝑧) = 𝑤 𝑥 𝑧 + 𝑥 𝑦 𝑧 + 𝑦 𝑧 + 𝑤𝑥𝑦𝑧

You MUST use the equation above to construct and use the Karnaugh map below for the

function, H. Then group and translate to find or verify the minimal, SOP equation yielded by

your Karnaugh Map and show your answer in the blank below to see if it agrees with the

equation Tricia found. The truth table is optional. You may fill it out if it helps you organize and

setup the K-Map.

W X Y Z H

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

5.1. What is the minimal SOP equation you found for H.

H = ___

5.2. Now create a different function, G, by adding a

new term to the original function, H, where ⊕

means XOR:

𝑮 = 𝑯 + (𝑤𝑥 ⊕ 𝑦𝑧)

(i.e.a new function G is created from Tricia’s

original equation, H, with a new term added

(ORed) to it). Construct the K-Map for this new

function, G. You need not group or translate.

Simply, label the axes and fill in the 1s and 0s.

W X

Y Z

W X

Y Z

 Do not write near this QR code.

5

6. Decoders (10 pts). Design a 2-to-4 decoder with an enable by using 1-to-2 decoders with

enables. Your goal is to decode the 2 bit number: B1,B0 (where B1 is the MSB) and an

enable E to the 4 outputs: Y0, Y1, Y2, Y3.

6.1. Complete the connections by labelling the blank inputs to the 1-to-2 decoder blocks with the

appropriate inputs (e.g. E, B1, B0). Note the ordering of the outputs in the diagram below.

1-to-2

Decoder

A0

EN

Y0

Y1

B1

1-to-2

Decoder

A0

EN

Y0

Y1

1-to-2

Decoder

A0

EN

Y0

Y1

Y0

Y2

Y1

Y3

B0

E

Near Complete

 2-to-4 Decoder

E B1 B0 Y0 Y1 Y2 Y3
0 x x 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

Truth Table of Desired

2-to-4 decoder

6.2. Repeat the same design at the gate-level. The start of the internal gate design for each 1-to-2

decoder is shown below but each one is missing an inverter. Draw in 3 inverters and complete

the necessary connections (by labelling or drawing connections to the unconnected inputs) to

form the desired 2-to-4 decoder. If multiple methods exist, choose any valid solution.

Y0

Y2

Y1

Y3

B1

B0

E

Gate

3

Gate

4

Gate

5

Gate

6

Gate

1

Gate

2

6.3. Tina Trojan changed Gate 1-6 as shown below. Again, by adding 3 inverters and making

appropriate connections in the design below, produce a circuit that matches the desired 2-to-4

decoder. If multiple methods exist, choose any valid solution.

Y0

Y2

Y1

Y3

B1

B0

E

Gate

3

Gate

4

Gate

5

Gate

6

Gate

1

Gate

2

6.4. In the diagram for 6.3, gates 3-6 are what kind of gates. ❑ NAND / ❑ NOR / ❑ neither

 Do not write near this QR code.

6

7. Muxes (8 pts)

Jean wanted to build a 6-to-1 mux design that follows the behavior described in the table

below. She had several 2-to-1 muxes and one 3-to-1 mux. Fill in the shaded boxes (write

darkly with your final answer so we can see your answer) with the data inputs A, B, C, D,

E, or F and the select bits: S2, S1, S0 to produce a design that matches the functionality

described in the table. Note: the 3-to-1 mux will pass the input labelled “2 or 3” when the

select number is either 2 or 3.

8. Lab Skills (5 pts)

8.1. The Digital Multimeter is best used to measure ______ voltage signals:

 ❑ rapidly changing (Period < 0.1 seconds) ❑ roughly constant (Period > 10 sec)

8.2. Digital signals generated by the Arduino are either 0V (for Logic 0) or ___ (for Logic 1):

❑ 5 mV ❑ 100 mV ❑ 1 V ❑ 2 V ❑ 5 V ❑ 50 V

8.3. The horizontal scale of an oscilloscope has units of:

❑ voltage ❑ time ❑ current ❑ resistance

8.4. Single-acquisition/single-triggering on an oscilloscope is best used for capturing:

❑ periodic signals ❑ aperiodic signals ❑ signals not measured relative to ground

8.5. Prescalars for ADC and Timers are used to make the clock SLOWER. ❑ True ❑ False

S2 S1 S0 Y

0 0 0 A

0 0 1 B

1 0 0 C

1 0 1 D

1 1 0 E

1 1 1 F

0

1

2 or 3

S0S1

Y

3 x 1
Mux

__

D

__

0

1

Y

S

S0

Y

0

1

Y

S

S2

0

1

Y

S

S1

2 x 1
Mux

2 x 1
Mux

S1 S2

A

 Do not write near this QR code.

7

9. (18 pts.) READ THE ENTIRE PAGE before solving. We want to build a system with 2

states OFF and BLINK that makes an LED blink at faster rates every time we press a

button. In the OFF state a Red LED (Group C, bit 3) should be ON and the Green (blinking)

LED (Group C, bit 2) should be off. Pressing the FASTER button (Group C, bit 4) should

cause a transition to the BLINK state where the Red LED should be off and the green LED

should start by blinking at 1 HZ (500ms off, 500ms on). Each subsequent press of the

FASTER button should reduce the off and on blinking time by 50 ms returning to the

OFF state when the on/off time would be 0ms. Pressing the STOP button (Group C, bit 2)

when in the BLINK state should cause the system to return to the OFF state and turn off the

green LED.

ArduinoA

Group

C4

Group

C3 R

Group

C2 R

FASTER

Group

C5 OFF
Red LED ON

Green LED OFF

Reset /

Initial State FASTER pressed

AND STOP NOT

pressed BLINK

Red LED OFF

Green LED Blinking:

• Start at 500 ms off / 500 ms on when

entering this state

• Reduce on/off times by 50 ms each

time FASTER is pressed (e.g. 450 off/

450 on, then 400 off/400 on, etc.

• Return to OFF state if on/off time would

be reduced to 0 OR anytime STOP

button is pressed

otherwise

otherwise

STOP pressed OR

blink time reduced to 0

due to presses of

FASTER

STOP
RED

GREEN

We will use one of the Arduino hardware timers (similar to that used in your labs) to

generate an interrupt EVERY 50 ms. Assume, a working function initialize_timer1() is

provided to you to perform all necessary setup (i.e. you need not worry about configuring the

timer’s registers to generate the interrupt). Complete the Arduino C-code program on the

following page that implements the behavior described above.

Note that this design may require debouncing, so in the code on the next page we had a

`debounce(char bit)` function that should debounce and wait through the press of

whichever input bit of Group C is specified by the argument, bit. You must decide when it

is appropriate to call this function and what argument to pass it. DO NOT use this function

when it is NOT necessary for the operation of the system (or we will deduct points).

Important Requirements and Assumptions

• You must use the code shown and cannot alter its structure. Only fill in the blanks shown.

• Assume ALL necessary #includes are provided (but not shown in the code on the next page).

• You may use PC2, PC3, PC4, and PC5 constants, if desired.

• You may NOT add other DELAY (e.g. _delay_ms()) statements than the ones provided.

Complete your code on the page below!

 Do not write near this QR code.

8

5
6
7
8
9
10
11

12
13
14
15
16

17

18
19
20
21
22

23
24
25

26
27
28
29

30

31
32

33
34
35
36

37

38

39

40

41
42
43
44
45

46

47
48

49

50
51

enum {OFF, BLINK}; // Assume appropriate #includes were provided on lines 1-4
volatile unsigned char count;
unsigned char state, max;

void init_timer(){ /* assume correct implementation for 50 ms interrupt interval */ }

void debounce(uint8_t bit){

 _delay_ms(5); while(__) {} _delay_ms(5);
}
void transitionToOff() { // common code when transitioning to the OFF state
 state = OFF;
 PORTC |= (1 << PC3); // Turn Red ON

 PORTC &= ________________; // Turn Green OFF

 max = _______; // update max appropriately
}
int main() {
 state = OFF; count = 0; max = _________; // init max to correspond to 1 Hz blink rate
 // Appropriate initialization for group C inputs

 __;
 DDRC |= (1 << PC2) | (1 << PC3); PORTC |= (1 << PC3); // Turn on red LED
 init_timer(); // sets up timer to interrupt every 50ms

 _______________; // enable global interrupts
 while(1) {
 char sample = ___________; // Sample buttons
 if(state == OFF) {

 if ((sample & (0x____)) == 0x_____) { // check if only FASTER button is pressed

 ___________________; // call debounce ONLY if necessary, leave blank otherwise
 state = BLINK;

 ______________________________; // fill in the appropriate action
 } } // we put both braces on the same line to save space
 else { // in the BLINK state
 if ((sample & (1 << PC4)) == 0) { // check if start of FASTER button press

 ___________________; // call debounce ONLY if necessary, leave blank otherwise

 ___________; // necessary action to change blink rate

 if(max == _________) { transitionToOff(); }

 } else if ((sample & (1 << PC5)) == 0) { // if STOP is pressed

 ___________________; // call debounce ONLY if necessary, leave blank otherwise
 transitionToOff();
 } } } // we put the braces on the same line to save space
 return 0;
} // end main

ISR(TIMER1_COMPA_vect) {

 ______________________; // Implement the necessary action
 if(state == BLINK && count >= max) {

 ________________ = 0; // Fill in the necessary variable

 PORTC ____________________; // Flip the Green LED
} } // we put the braces on the same line to save space

