EE109: Introduction to Embedded Systems Spring 2023 - Midterm Exam 3/7/23, 7PM - 8:40PM

[Complete all the information in the box below.]

Name: \qquad
Student ID: \qquad
Email: \qquad @usc.edu

Lecture section (Circle One):

Redekopp	Redekopp	Weber	Puvvada
9:30 a.m.	11 a.m.	12:30 p.m.	2 p.m.

Ques.	Your score	Max score	Recommended Time
-		-	0 min.
1		6.5	6 min.
2		2	2 min.
3		4.5	5 min.
4		7	10 min.
5		8	10 min.
6		12	15 min.
7		8	15 min.
8		75	12 min.
9			25 min.
Total			

All work MUST be on these EXAM PAGES. No Scratch work will be graded or viewed.

1. (6.5 pts) Number Systems

1.1. Convert 153 decimal to an 8-bit unsigned binary number: \qquad
1.2. Convert $\mathbf{1 0 0 0 1 1 1 0 1 1 1 0 1 . 1 1 0}$ binary to hexadecimal:
1.3. Using a 6-bit code to represent colors would allow for how many unique colors to be represented:
\qquad

2. (2 pts.) Mux Behavior

The circuit to the right can be equivalently replaced with a single 2-input logic gate (e.g. NAND, OR, XOR...) with inputs: $\{\mathrm{X}, \mathrm{Y}\}$ and output F . Identify that gate:

Equivalent gate type: \qquad

3. (4.5 pts.) Decoder Behavior

Consider the three circuits below. Indicate which ones form a valid 1-to-2 decoder with enable. Hint: Use your knowledge of a decoder but apply DeMorgan's theorem to manipulate the circuits and verify if they do indeed implement a valid 1-to-2 decoder. (Circle the correct option for each circuit).

Valid / Invalid	Valid / Invalid	Valid / Invalid

4. (7 pts.) Analog Circuits

Consider the resistive circuit to the right and answer the following questions.
4.1. When SW1 and SW2 open, what is V1? \qquad
4.2. When SW1 is open and SW2 closed, what is the equivalent resistance of all the resistors? \qquad ohms
4.3. When SW1 AND SW2 are closed, what is the equivalent resistance of ALL the resistors and what is the current, i1,?
___ ohms
i1 = \qquad A
5. (8 pts.) Logic Simplification

Billy Bruin arrived at what he believes is a minimal, POS equation for a function, F, that he desired to implement. The equation he found was:

$$
F(w, x, y, z)=(w+x+\bar{y}+z)(\bar{x}+z)(\bar{w}+z)
$$

To prove or disprove that Billy Bruin's equation truly is a minimal, POS implementation, construct a Karnaugh map in the area below using the equation above to fill in the values. Then group and translate to show the minimal, POS equation yielded by your Karnaugh Map and show your answer in the blank below to see if it agrees with the equation Billy found.
5.1. Construct, group and translate a Karnaugh map for the given equation in the space below.

5.2. Minimal POS equation for F that you found:

$$
F=
$$

\qquad

6. (12 pts.) Logic Function Design

Consider a circuit which takes as input a 1-bit value \mathbf{A}, and a 3-bit unsigned input $\mathbf{B}[2: 0]$ (i.e. $B 2, B 1, B 0)$. The output of the circuit should be an unsigned value, \mathbf{Z} given by the description below. Then use the K-maps to find the specified minimal expressions.

Note: If you consider the above description, a negative result is NOT possible.

Ex. 1: if $\mathrm{A}=1$ and $\mathrm{B}=010$ (2 decimal) then because A is 1 and $B<3, \mathrm{Z}=2^{*} 2+1=5 \mathrm{dec}$.
Ex. 2: if $A=1$ and $B=110$ (6 decimal) then because A is 1 and $B \nless 3, Z=6-3=3$ dec.
6.1. What is the minimum number of output bits needed for Z ? \qquad
6.2. Complete the truth table for this circuit showing the Z output bits .
6.3. Use the Karnaugh maps to find the minimal SOP expression for $\mathbf{Z 0}$ and minimal POS expression for Z1. You do not have to implement any other bits of Z.

A	B2	B1	B0	Z1
0	0	0	0	Z0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Fill in the minimal SOP expression for $Z 0$.

Z0 minimal,SOP = \qquad
Fill in the minimal POS expression for $Z 1$.

Z1 minimal,POS = \qquad
7. (10 pts.) Boolean Algebra: Use theorems to simplify the given equation for G to its minimal SOP representation. You need to use DeMorgan's theorem in the first step. And at some point you MUST use T8' (whenever it seems helpful). You must show what theorems you are applying at each step (though you can apply 2 or 3 theorems per step). Write neatly and circle your final answer. We strongly recommend you (PLEASE!!) plan your work on the scratch paper first to determine your approach but your final solution must be on this page. Singe/multi variable and DeMorgan's theorem are listed below.

Step	Theorem(s) or Manipulation(s) Used
$G=\bar{A} \cdot \bar{D}+[\overline{(A+\bar{D}) \cdot(A+(B \cdot \bar{C}))}]+A \cdot \bar{C} \cdot[B \cdot D+\overline{(\bar{B}+D)}]$	
$G=\bar{A} \cdot \bar{D}+\ldots+A \cdot \bar{C} \cdot[\ldots$	DeMorgan's Theorem

Use only the rows needed

8. (8 pts.) Tree Muxes. - Suppose you are given 8 data inputs: A-H that correspond to the select combinations shown in the table below. Now suppose we ONLY want to design a 5 -to-1 mux to select and pass a subset of 5 of the 8 input using the select bits MS2, MS1, MS0. Billy Bruin's initial attempt to design the 5 -to-1 mux is shown. However, Billy was unsure what to connect to some of the inputs and, instead, used placeholder variables: $\mathbf{x 1 - x 4}$. Assuming Billy's design follows the specification of input / select combinations in the table below and can output 5 UNIQUE inputs from the set A-H, help Billy by answering the following questions.

MS2	MS1	MS0	Y			
0	0	0	A			
0	0	1	B			
0	1	0	C			
0	1	1	D			
1	0	0	E			
1	0	1	F			
1	1	0	G			
1	1	1	H			

8.1. Whenever MS1 is $\mathbf{0}$, the select bit that will pass/connect to S0 input of the 4-to-1 mux is (circle the correct answer):

MS2 / MSO
8.2. What input(s) (or subset of inputs if many are possible), A-H, could correctly be connected to the input labelled $\mathbf{x 1}$ (circle all that are possible):
x1: A B C D E F G H
8.3. What inputs (from the options A-H, MS2, MS1, and MSO) MUST be connected to $\mathbf{x 2}, \mathbf{x 3}$, and $\mathbf{x 4}$.

$$
x 2=\ldots \quad x 3=\ldots \quad x 4=\ldots
$$

8.4. Because of where Billy has connected \mathbf{C} and \mathbf{H} to inputs 2 and 3 of the 4 -to-1 mux, which two inputs listed below cannot be connected anywhere. Or said differently, which two inputs could never be selected and passed to the output of the mux.
(Circle two): A B D E F G
9. (17 pts) State Machines - Complete the implementation of Arduino code (on this and the following page) to implement the following behavior which will require the use of state. Two circuits produce 4-bit unsigned numbers: \mathbf{X} [3:0] and $\mathrm{Y}[3: 0]$ and are connected to group D as shown below. A button: \mathbf{A} (on group \mathbf{C}, bit $\mathbf{1}$) is connected as shown below. Two LEDs are connected: LED1 is connected to group \mathbf{C}, bit $\mathbf{3}$ and LED2 to group \mathbf{C}, bit $\mathbf{4}$. The state should transition based on the values of the 4-bit numbers X and Y as well as the button A as shown in the state diagram below. The buttons MUST be sampled (and state updated) every 250 ms . The LEDs should be off, blink, or be on as described in the state diagram.

- You should NOT add any other delay statements (delay ms()) to the code.
- You may not change the structure or values of the code provided in the skeleton.
- You need not worry about debouncing.

Assume the following \#includes and declarations should you want to use them.

1	\#include <avr/io.h>
2	\#include <util/delay.h> // allows for _delay_ms() function
3	\#include <stdlib.h> // allows abs() - absolute value
4 5 6 7	$\begin{aligned} & \text { const int } A=1 ; \text { LED1 }=3 \text {, LED2 }=4 \text {; } \\ & \text { enum }\{\text { IDLE, XY1, DONE, LOCK\}; } \end{aligned}$

8 9 10	```int main() { char state = IDLE, cnt; // state variable and 3 sec. count /* Other necessary intiailization code */```
...	
11	while(1) \{ // this is the only loop allowed
12	_delay_ms(250); /* this is the ONLY delay statement allowed */
13	
14	
15	// combined next state and output logic
16	if(state == IDLE) \{
17	[/ / appropriate output action
18	if(_) \{ state = XY1; \}
19	\} ${ }^{\text {c }}$
20	else if (state == XY1) \{
21	unsigned char inp = PIND;
22	// extract 4-bits of x and y as separate numbers that can be compared
23	char $\mathrm{y}=$ (inp \& 0x___ ${ }^{\text {a }}$)
24	char $\mathrm{x}=\ldots$
25	if(x > 14) ${ }^{\text {l }}$
26	state = DONE;
27	\}
28	else if(abs(x-y) > 1) \{
29	state = LOCK;
30	cnt = ___;
31	else \{
32	PORTC ___ ($1 \ll$ LED1); // Enter operator to flip/toggle LED1
33	\} -_
34	$\}$
35	else if(state == DONE) \{
36	[_;
37	if(__) \{ state = IDLE; \}
38	\}
39	else \{
40	PORTC ___ // Clear the appropriate LED
41	cnt++;
42	$\operatorname{if}($ (cnt \% ___ $)==$
43	\{ PORTC ___ ($1 \ll$ LED2) ; \} // Enter operator to flip/toggle LED2
44	if(cnt == ___ $)$ \{
45	state = IDLE;
46	\} \}
47	\} /* end while */
48	return 0;
49	\} /* end main */

