
1

EE109: Introduction to Embedded Systems

Spring 2023 - Midterm Exam

3/7/23, 7PM – 8:40PM
[Complete all the information in the box below.]

Name:____Solutions______________

Student ID: __

Email: ___________________@usc.edu

Lecture section (Circle One):

Ques. Your score Max score Recommended
Time

- - 0 min.

1 6.5 6 min.

2 2 2 min.

3 4.5 5 min.

4 7 10 min.

5 8 10 min.

6 12 15 min.

7 10 15 min.

8 8 12 min.

9 17 25 min.

Total 75

All work MUST be on these EXAM PAGES. No Scratch work will be graded or viewed.

Redekopp Redekopp Weber Puvvada Redekopp Weber Annavaram

9:30 a.m. 11 a.m. 12:30 p.m. 2 p.m. 11 a.m. 12:30 p.m. 2 p.m.

2

1. (6.5 pts) Number Systems

1.1. Convert 153 decimal to an 8-bit unsigned binary number: ___10011001________

153 = 128 + 16 + 8 + 1

1.2. Convert 1000111011101.110 binary to hexadecimal: ___11DD.C_______

0001 0001 1101 1101 . 1100

1.3. Using a 6-bit code to represent colors would allow for

how many unique colors to be represented: __64______

2. (2 pts.) Mux Behavior

The circuit to the right can be equivalently replaced with a single 2-input logic

gate (e.g. NAND, OR, XOR…) with inputs: {X,Y} and output F. Identify that gate:

Equivalent gate type: __OR___

 Truth table: XY/F: 00/0, 01/1, 10/1, 11/1

3. (4.5 pts.) Decoder Behavior

Consider the three circuits below. Indicate which ones form a valid 1-to-2 decoder with enable. Hint:

Use your knowledge of a decoder but apply DeMorgan's theorem to manipulate the circuits and verify if

they do indeed implement a valid 1-to-2 decoder. (Circle the correct option for each circuit).

I0

E

Y0

Y1

I0

E

Y0

Y1

I0

E

Y0

Y1

Valid / Invalid

Valid / Invalid

Valid / Invalid

4. (7 pts.) Analog Circuits

Consider the resistive circuit to the right and answer the following questions.

4.1. When SW1 and SW2 open,

what is V1? __4__ V

V1 = 10V * (2 / (2 + 3)) = 10*(2/5)

4.2. When SW1 is open and SW2 closed,

what is the equivalent resistance

of all the resistors? __4__ ohms

Req = (2 + 3||6) = 2+2 = 4

4.3. When SW1 AND SW2 are closed, what is the equivalent resistance

of ALL the resistors and what is the current, i1,?

 (w/ SW1 closed, we have 2 = (0 || 3 || 6) = 2 + 0 __2__ ohms i1 = V/R=10/2 = 5 A

0

1

Y

S

Y

X

1
F

R3=2Ω

+ V3 -
SW1

R1=2Ω

R2=3Ω

R4=4Ω

10V

SW2

+ V1 -

i1

3

5. (8 pts.) Logic Simplification

Billy Bruin arrived at what he believes is a minimal, POS equation for a function, F, that he

desired to implement. The equation he found was:

𝐹(𝑤, 𝑥, 𝑦, 𝑧) = (𝑤 + 𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑧)(𝑤 + 𝑧)

To prove or disprove that Billy Bruin’s equation truly is a minimal, POS implementation,

construct a Karnaugh map in the area below using the equation above to fill in the values.

Then group and translate to show the minimal, POS equation yielded by your Karnaugh Map

and show your answer in the blank below to see if it agrees with the equation Billy found.

5.1. Construct, group and translate a Karnaugh map for the given equation in the

space below.

We just show where the 0's appear due to the equation above. Assume 1s in all other squares.

0

0
4

0
12

0
8

1 5 13 9

3 7 15 11

0
2

0
6

0
14

0
10

W X

Y Z 00 01 11 10

00

01

11

10

(w + x + y z)

F = (x z)(w z)(y z)

5.2. Minimal POS equation for F that you found:

F = _____(x’+z)(w’+z)(y’+z)_________________

4

6. (12 pts.) Logic Function Design

Consider a circuit which takes as input a 1-bit value A, and a 3-bit unsigned input B[2:0] (i.e.

B2,B1,B0). The output of the circuit should be an unsigned value, Z given by the description

below. Then use the K-maps to find the specified minimal expressions.

if (A is 0) then Z = B[2:0]

else if (A is 1 and B[2:0] < 3) then Z = 2*B[2:0] + 1

else Z = B[2:0] - 3

Note: If you consider the above description, a negative result is NOT possible.

Ex. 1: if A = 1 and B = 010 (2 decimal) then because A is 1 and 𝐵 < 3, Z = 2*2 + 1 = 5 dec.

Ex. 2: if A = 1 and B = 110 (6 decimal) then because A is 1 and 𝐵 ≮ 3, Z = 6 – 3 = 3 dec.

6.1. What is the minimum number of output bits needed for Z? _Output Range: 0 to 7 => 3 bits_

6.2. Complete the truth table for this circuit showing the Z output bits .

6.3. Use the Karnaugh maps to find the minimal SOP expression for Z0 and minimal

 POS expression for Z1. You do not have to implement any other bits of Z.

A B2 B1 B0 Z2 Z1 Z0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 1 0 0

0 1 0 1 1 0 1

0 1 1 0 1 1 0

0 1 1 1 1 1 1

1 0 0 0 0 0 1

1 0 0 1 0 1 1

1 0 1 0 1 0 1

1 0 1 1 0 0 0

1 1 0 0 0 0 1

1 1 0 1 0 1 0

1 1 1 0 0 1 1

1 1 1 1 1 0 0

Fill in the minimal SOP expression for Z0.

Z0 minimal,SOP = __ (A*B0')+(A'*B0)+(A*B2'*B1')_ or _(same)+(same)+(B2'*B1'*B0)__

 ½ credit for POS (grouping 0s): (A+B0)(A'+B2'+B0')(A'+B2'+B1')

Fill in the minimal POS expression for Z1.

Z1 minimal,POS = _ (A+B1)(B1+B0)(A’+B1'+B0')(A’+B2+B1') or (same)(same)(same)(A’+B2+B0)

 ½ credit for SOP (grouping 1s): A'B1 + AB1'B0 + B2B1B0'

0
0

0
4

0
12

0
8

0
1

0
5

1
13

1
9

1
3

1
7

0
15

0
11

1
2

1
6

1
14

0
10

A B2

B1B0 00 01 11 10

00

01

11

10

Z1 = (A+B1)(B1+B0)(A B1'+B0')(A B2+B1')
or

Z1 = (same)(same)(same)(A B2+B0)

0
0

0
4

1
12

1
8

1
1

1
5

0
13

1
9

1
3

1
7

0
15

0
11

0
2

0
6

1
14

1
10

A B2

B1B0 00 01 11 10

00

01

11

10

Z0 = (A*B0')+(A B0)+(A*B2'*B1')
Or

Z0 = (same)+(same)+(B2'*B1'*B0)

A

B[2:0]

Z[__:0]

5

7. (10 pts.) Boolean Algebra: Use theorems to simplify the given equation for G to its

minimal SOP representation. You need to use DeMorgan's theorem in the first step. And at

some point you MUST use T8' (whenever it seems helpful). You must show what theorems

you are applying at each step (though you can apply 2 or 3 theorems per step). Write

neatly and circle your final answer. We strongly recommend you (PLEASE!!) plan your

work on the scratch paper first to determine your approach but your final solution must be

on this page. Singe/multi variable and DeMorgan's theorem are listed below.

Step
Theorem(s) or

Manipulation(s) Used

𝐺 = 𝐴 ∙ 𝐷 + [(𝐴 + 𝐷) ∙ (𝐴 + (𝐵 ∙ 𝐶))] + 𝐴 ∙ 𝐶 ∙ [𝐵 ∙ 𝐷 + (𝐵 + 𝐷)]

𝐺 = 𝐴 ∙ 𝐷 + [(𝐴 + 𝐷) + (𝐴 + (𝐵 ∙ 𝐶))] + 𝐴 ∙ 𝐶 ∙ [𝐵 ∙ 𝐷 + 𝐵 ∙ 𝐷] DeMorgan's Theorem

𝐺 = 𝐴 ∙ 𝐷 + [𝐴 ∙ 𝐷 + 𝐴 ∙ (𝐵 + 𝐶)] + 𝐴 ∙ 𝐶 ∙ [𝐵 ∙ 𝐷 + 𝐵 ∙ 𝐷] DeMorgan's Theorem

𝐺 = 𝐴 ∙ 𝐷 + 𝐴 ∙ 𝐷 + 𝐴 ∙ (𝐵 + 𝐶) + 𝐴 ∙ 𝐶 ∙ 𝐵 T10

𝐺 = 𝐴 + 𝐴 ∙ (𝐵 + 𝐶) + 𝐴 ∙ 𝐶 ∙ 𝐵 T10

𝐺 = [𝐴 + 𝐴 ∙ 𝐶 ∙ 𝐵] T9

𝐺 = [(𝐴 + 𝐴)(𝐴 + 𝐶 ∙ 𝐵)] T8'

= [𝐴 + 𝐶𝐵] T5/T1'

Use only the rows needed

Single-Variable Theorems

(T1) X + 0 = X (T1’) X • 1 = X (Identities)

(T2) X + 1 = 1 (T2’) X • 0 = 0 (Null elements)

(T3) X + X = X (T3’) X • X = X (Idempotency)

(T4) (X’)’ = X (Involution)

(T5) X + X’ = 1 (T5’) X • X’ = 0 (Complement)

Two- and Three-Variable Theorems

(T6) X +Y = Y + X (T6’) X • Y = Y • X (Commutativity)

(T7) (X+Y)+Z = X+(Y+Z) (T7’) (X•Y) •Z = X• (Y•Z) (Associativity)

(T8) X•(Y+Z) = X•Y + X•Z (T8’) X+(Y•Z) = (X+Y) • (X+Z) (Distributivity)

(T9) X + X•Y = X (T9’) X • (X + Y) = X (Covering)

(T10) X•Y + X•Y’ = X (T10’) (X+Y) • (X+Y’) = X (Combining)

(T11) X•Y+X’•Z+Y•Z = X•Y+X’Z (T11’) (X+Y)•(X’+Z)•(Y+Z) = (X+Y)•(X’+Z) (Consensus)

DeMorgan’s Theorem

 (X • Y)’ = X’ + Y’ (X +Y)’ = X’ • Y’ (DeMorgan’s)

6

8. (8 pts.) Tree Muxes. – Suppose you are given 8 data inputs: A-H that correspond to the

select combinations shown in the table below. Now suppose we ONLY want to design a

5-to-1 mux to select and pass a subset of 5 of the 8 input using the select bits MS2,

MS1, MS0. Billy Bruin's initial attempt to design the 5-to-1 mux is shown. However, Billy

was unsure what to connect to some of the inputs and, instead, used placeholder

variables: x1-x4. Assuming Billy's design follows the specification of input / select

combinations in the table below and can output 5 UNIQUE inputs from the set A-H, help

Billy by answering the following questions.

0

1

2

3 S0S1

Y

0

1

Y

S

x1x2

x3

x4

C
Y

H

0

1

Y

S

MS2

MS1

MS0

MS1

8.1. Whenever MS1 is 0, the select bit that will pass/connect to

S0 input of the 4-to-1 mux is (circle the correct answer): MS2 / MS0

8.2. What input(s) (or subset of inputs if many are possible), A-H, could correctly be

connected to the input labelled x1 (circle all that are possible):

x1: A B C D E F G H

8.3. What inputs (from the options A-H, MS2, MS1, and MS0)

MUST be connected to x2, x3, and x4.

 x2=_E_ x3=_F_ x4= MS0

8.4. Because of where Billy has connected C and H to inputs 2 and 3 of the

4-to-1 mux, which two inputs listed below cannot be connected anywhere. Or said

differently, which two inputs could never be selected and passed to the output of the

mux.

(Circle two): A B D E F G

MS2 MS1 MS0 Y

0 0 0 A
0 0 1 B
0 1 0 C
0 1 1 D
1 0 0 E
1 0 1 F
1 1 0 G
1 1 1 H

7

9. (17 pts) State Machines - Complete the implementation of Arduino code (on this and the

following page) to implement the following behavior which will require the use of state. Two

circuits produce 4-bit unsigned numbers: X[3:0] and Y[3:0] and are connected to group D

as shown below. A button: A (on group C, bit 1) is connected as shown below. Two LEDs

are connected: LED1 is connected to group C, bit 3 and LED2 to group C, bit 4. The state

should transition based on the values of the 4-bit numbers X and Y as well as the button A

as shown in the state diagram below. The buttons MUST be sampled (and state updated)

every 250 ms. The LEDs should be off, blink, or be on as described in the state diagram.

Must sample buttons and

potentially change states

EVERY 250 ms

Arduino

Group

D7

D6

D5

D4

D3

D2

D1

D0

A

Group

C3

R
LED1

Circuit producing

Y[3:0]

X3

X2

X1

X0

Y3

Y2

Y1

Y0

Circuit producing

X[3:0]

Group

C1

Group

C4
LED2

R

IDLE
LED1 and LED2

are OFF

A pressed

XY1

X < 14 and

|X-Y| <= 1

LED2 OFF

LED1 blinks at 2Hz

(on 250ms / off for

250 ms)

LOCK

X < 14 and

|X-Y| > 1

LED1 OFF

LED2 blinks at 1Hz

(on 500ms / off for

500 ms)

3 seconds has

passed

< 3 seconds

has passed

DONE
LED1 ON

constantly

A NOT

pressed

Reset /

Initial

State

X >= 14

A NOT pressed

• You should NOT add any other delay statements (_delay_ms()) to the code.

• You may not change the structure or values of the code provided in the skeleton.

• You need not worry about debouncing.

Assume the following #includes and declarations should you want to use them.

1
2
3
4
5
6
7

#include <avr/io.h>
#include <util/delay.h> // allows for _delay_ms() function
#include <stdlib.h> // allows abs() – absolute value

const int A = 1; LED1 = 3, LED2 = 4;
enum {IDLE, XY1, DONE, LOCK};

8

8
9
10

…

11
12

13
14
15
16

17

18
19
20
21
22

23

24
25
26
27
28
29

30
31

32
33
34
35

36

37
38
39

40
41

42

43

44
45
46
47
48
49

int main() {
 char state = IDLE, cnt; // state variable and 3 sec. count
 /* Other necessary intiailization code */
 DDRC |= (1 << LED1) | (1 << LED2);

 PORTC |= (1 << A); // pullup resistor

 PORTD |= 0xff; // unnecessary but fine if included

 while(1) { // this is the only loop allowed
 _delay_ms(250); /* this is the ONLY delay statement allowed */

 char a = (_PINC_ & _(1 << A) /* or 0x02*/_); // sample the A button input

 // combined next state and output logic
 if(state == IDLE) {

 PORTC &= ~(1 << LED1); // or &= ~0x08 or &= 0xf7 appropriate output action

 // or turn off both: PORTC &= ~((1 << LED1)|(1 << LED2)) or &= ~0x18 or &= 0xe7

 if(a != 0 /* or (a) or a == (1 << A) or a == 0x02 */_) { state = XY1; }
 }
 else if (state == XY1) {
 unsigned char inp = PIND;
 // extract 4-bits of x and y as separate numbers that can be compared

 char y = (inp & 0x___0x0F___________);

 char x = (inp >> 4); // or (inp >> 4) & 0x0f;
 if(x >= 14){
 state = DONE;
 }
 else if(abs(x-y) > 1){
 state = LOCK;

 cnt = _0_;
 else {

 PORTC _^__= (1 << LED1); // Enter operator to flip/toggle LED1
 }
 }
 else if(state == DONE) {

 PORTC |= (1 << LED1); // or 0x08; // turn on LED1 constantly

 if(__a == 0 /* or !a */) { state = IDLE; }
 }
 else {

 PORTC __ &= ~(1 << LED1); // or 0xf7 Clear the appropriate LED
 cnt++;

 if((cnt % __2____) == __0____)

 { PORTC _^__= (1 << LED2); } // Enter operator to flip/toggle LED2

 if(cnt == _12____){
 state = IDLE;
 } }
 } /* end while */
 return 0;
} /* end main */

