
1

EE109: Introduction to Embedded Systems

Fall 2023 – Quiz 1

09/26/23, 7PM – 8:15PM
[Complete all the information in the box below.]

Name:___Solutions_____________

Student ID: __

Email: ___________________@usc.edu

Lecture section (Circle One):

Ques. Your score Max score Recommended
Time

1 8 8 min.

2 10 10 min.

3 12 15 min.

4 6 7 min.

5 14 35 min.

Total 50 75 min.

Calculators are ONLY allowed on Question 3 – Analog/Resistive Circuits.

Using them on any other problem is an academic integrity violation.

Only work on this exam will be graded (no work on scratch paper will be considered).

Do NOT write in the upper corner with the QR / Page number code.

Weber Redekopp Puvvada Weber Redekopp Redekopp Weber Annavaram

9:30 a.m. 11 a.m. 12:30 p.m. 2 p.m. 2 p.m. 11 a.m. 12:30 p.m. 2 p.m.

2

1. (8 pts.) Number Systems

1.1. Convert 11001101 binary to unsigned decimal: _128+64+8+4+1 = 205 dec.__

1.2. Convert 91 decimal to (unsigned) binary (use exactly 8 bits):

91 = 64 + 16 + 8 + 2 + 1

0b__0101 1011_______________

1.3. Convert 1101101.101 unsigned binary to hexadecimal:

_____6 D . A_______________________ hexadecimal

A market stocks 36 different kinds of vegetables and 14 kinds of fruits.

1.4. If we wanted to assign a unique binary number to JUST

the 36 vegetables how many bits would this require? ____6 (2^5 = 32 while 2^6=64)_____

The market wants to assign fixed-size, unique binary numbers to each type of vegetable and

fruit (i.e. fixed size means codes for fruits and vegetables should be the same number of bits).

However, it wants to differentiate vegetables and fruits quickly by using the MOST-

SIGNIFICANT bit to identify vegetables (i.e. MSB=0) from fruits (i.e. MSB = 1).

1.5. What is the minimum number of bits required to represent

vegetables and fruits to meet this new system? ___7______

2. (10 pts.) Bit Manipulations. Complete the following single-line statements to perform the

desired operation stated in the line(s) above the blanks. Assume a standard bit numbering

(bit 7 is the MSB, bit 0 is the LSB = Least Significant Bit). You may NOT change the

structure or code given.

2.1. Turn on (set to 1), bit 6 and 3 of PORTB without affecting other bits of PORTB.

PORTB _|= (1<<6) | (1<<3)_; // mask can be: (9<<3) or 0x48 or 0b01001000

2.2. Turn off (clear to 0), bit 1 of DDRC without affecting other bits of DDRC.

DDRC _&= ~(1 << 1)_; // mask can be: 0xfd or 0b11111101 or ~(0x02)

2.3. Assume bit 4, 3, and 2 of Group D are already configured to be inputs.

Complete the if statement to be true ONLY if

bit 4 is 1 (high voltage) and bit 3 and 2 are 0 (low voltage).

if(_(PIND & 0x1c) == 0x10_) {…};

// 0x1c can be replaced with (1<<4)|(1<<3)|(1<<2) or 0b00011100 or (7 << 2)

// Comparison constant can be (1<<4) or 0b00010000

3

3. (12 pts.) Resistive Circuits. Examine the circuit below and to the right and then answer the

questions. Notice a.) all resistors labelled Rx are 4 ohms and b.) the mystery device which

could be a resistor, wire, or open-circuit.

 Show work for potential partial credit. A calculator may be used for this problem only.

For 3.1-3.4, determine and write T (for true) or F (for false) assuming SW1 and SW2 are closed.

3.1. _T___ T / F: If the mystery device is an

open-circuit, then iA = iB + iC.

3.2. _ T___ T / F: If the mystery device is a

resistor with non-zero resistance,

then Vm will be 0.

3.3. _T__ T / F: If the mystery device is a wire,

V2 = 12V – V0

3.4. _T__ T / F: Regardless of what the mystery device is, R1, R2, R3, and R4 are in parallel.

For 3.5-3.7, assume the mystery device is an OPEN CIRCUIT.

3.5. (2 pts.) With SW1 and SW2 open, solve for the voltage V1 (round to 2 decimal places, if

needed). R0 and R1 are in series when both SW open. Thus we can use voltage divider.

V1 = ____8______ V = 12V * (4 / (2+4)) = 12 * 2/3 = 8V

3.6. (2 pts.) Now with SW1 closed and SW2 open, solve for the voltage V1 (round to 2 decimal

places, if needed).

Now R2 and R1 are in parallel (equal to 2 ohms), and that combination is in series with R0.

Also V1 = V2.

V1 = ____6_____ V = 12V * (2 / (2 + 2)) = 12V / 2 = 6V

3.7. (2 pts.) Now with SW1 closed and SW2 closed, solve for the voltage V1 (round to 2 decimal

places, if needed).

Now R1-R4 are in parallel (equal to 1 ohms), and that combination is in series with R0.

V1 = ___4______ V = 12V * (1 / (2 + 1)) = 12V / 3 = 4V

3.8. (2 pt.) If SW1 closed, SW2 is back to open, and assuming the

mystery devices is a 6 ohm resistor, what is the equivalent

resistance of all resistors (round to 1 decimal place if necessary).

R1 is in parallel with R2 which is parallel with the series of Mystery device

and two parallel R3 and R4: (4 || 4 || (6 + (4 || 4))) = 4 || 4 || 8 = 1 / (1/4 + ¼

+ 1/8) = 8/5 = 1.6. We then add 2 since R0 is in series with all the others.

Req =____3.6________ ohms

12V Req = ??

12V
SW2

SW1

R0=2Ω

R
1

=
4
Ω

iA
iB iC

-
V

1
 +

-
V

2
 +

+ Vm -

+ V0 -

Mystery
Device

R
2

=
4
Ω

R
3

=
4
Ω

R
4

=
4
Ω

4

4. (6 pts.) Logic Circuits: Consider the circuit shown below and reproduced at the bottom for

markup.

Z

W
X

Y
F

Questions:

4.1) Given {W,X,Y,Z} = 1,0,1,0 respectively, what value will F output? __1____

4.2) How many levels of logic is this circuit? ___4___

4.3) It is possible to make the output, F, produce a `1` by assigning only 2 of the 4 inputs to specific

values (i.e. the other two bit values don't matter). Two such pairs exist; find one and list them below.

First bit name: _X_ First bit value: _0_ Second bit name: _Y_ Second bit value: _1_

 Or W,1 Y,1

4.4) It is possible to make the output, F, produce a `0` by assigning only 2 of the 4 inputs to specific

values (i.e. the other two bit values don't matter). Two such pairs exist; find one but you may NOT use

the exact same two bits as you used in 4.3 above. List your answer below.

First bit name: _X_ First bit value: _1_ Second bit name: _Y_ Second bit value: _0_

 Or Z,0 Y,0

 Or X,1 W,0

4.5) By assigning only 2 of the 3 inputs W, Y, and/or Z to specific values, we can make the output, F,

ALWAYS equal/match `not X`, (i.e. when X=0, F will be 1 and when X=1, F will be 0. Find the two

inputs (from W, Y, and Z) and their values. List your answer below.

First bit name: _W_ First bit value: _0_ Second bit name: _Y_ Second bit value: _1_

Repeated drawings for your own scratch work and annotation (will not be graded):

Z

W
X

Y
F

 Z

W
X

Y
F

5

5. (14 pts.) READ THE ENTIRE PAGE before solving. Using the Arduino circuit below

(exactly as drawn) with two buttons (A and B) on group C, bit 3 and 1, respectively, and

two LEDs (LED1 and LED2) on group C, bit 5 and 0, respectively, complete the

Arduino C-code program on the following page that implements the behavior described

below.

Implement the software state machine specified in the state diagram below. In the S3

state, LED1 is OFF and 4 periods of the waveform pattern should be generated on LED2.

If A is pressed during generation of the 4 periods, immediately stop and transition to S1.

Otherwise, transition to S1 immediately after the 4th period completes fully. Review the

state diagram for the specification of how the S1 and S2 should work and what actions

should be taken in those state. You must sample the input buttons every 100ms and make

the appropriate state transition. Most of the code is given on the next page. Your task is to

fill in the missing blanks on the next page with the correct code.

Initial State

(Start here)

S1
S2

S3

A pressed OR

4
th
 period complete

A NOT pressed

AND still producing

4 periods

You must sample the

buttons every 100 ms

Arduino

Group

C3
Group

C5

A

LED1
R

B
C1

LEDs OFF
LED1 = ON

LED2 = OFF

LED1 = OFF

Produce 4 periods

of the waveform

below on LED2

B and A pressed

otherwise

Desired LED2

waveform when

in state S3

t+100

ms
t

ms

t+200

ms

t+300

ms

t+400

ms

t+500

ms

t+600 ms ...

...

RLED2

Group

C0

LED2 Periodic Waveform
LED2 Waveform

Repeats 3 more times

B pressed but

 A NOT pressed

otherwise

Both buttons NOT

pressed

Important Requirements

• The code separates Next State Transition Logic and Output Logic into separate if statements.

You must use this approach and cannot alter the code structure.

• The bit positions for buttons: A and B and outputs: LED1 and LED2 are defined at the

start of the program. These can be used wherever needed in the program.

• The program must check/sample the button inputs every 100 ms and update the state

appropriately.

• You may NOT add other DELAY (e.g. _delay_ms()) statements than the one provided.

• You may NOT alter the code given, but may only fill in the blanks shown.

• You need not worry about debouncing the button presses.

Complete your code on the page below!

6

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15

16
17
18

19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36

37

38
39
40

41
42

43

44
45
46
47
48

#include <avr/io.h>
#include <util/delay.h>
const int A = 3, B = 1;
const int LED1 = 5, LED2 = 0;
enum {S1, S2, S3};
unsigned char btnmask = _0x0a or (1<<A)|(1<<B) or (5 << 1) or 0b00001010__________;
 // ^^^^^^^^^^^^^^^^ mask for the two bit locations of A and B
int main() {
 char state = S1, cnt = 0; // state variable plus count for waveform

 __DDRC______ _|_= (1 << LED1)|(1 << LED2); // fill in reg. name and operator
 // pullups for buttons

 PORTC _|= btnmask (or equivalent mask from above)_____________;

 while(1) { // this is the only loop allowed
 _delay_ms(100); /* this is the ONLY delay statement allowed */

 char inp = __PINC_________; // sample inputs by filling in one register name
 // next state logic
 if(state == S1) {

 if((inp & ____btnmask (or equiv)____) == __0____) { state = S2; }
 }
 else if(state == S2) {
 if((inp & btnmask) == _(1<<A) or 0x08 or 0b00001000______) {
 state = S3;

 _cnt = 0________________;
 }
 else if((inp & btnmask) == __btnmask (or equiv)______) {
 state = S1;
 }
 }
 else {
 cnt++;

 if((__cnt___ == ___24___) || ((inp & (_(1<<A) or 0x08_)) _==___ 0)) {
 state = S1; // stop pattern and go to S1
 }
 }
 // Output logic (LED actions)

 if(state == S1) { PORTC _&= ~((1 << LED1)|(1 << LED2)); } // &= ~0x21 OR &= 0xde

 else if(state == S2) { PORTC _|= (1 << LED1)_; }
 else {
 PORTC _&= ~(1 << LED1)__________;

 if(__cnt % 6 == 0 || cnt % 6 == 2____________)
 { PORTC |= (1 << LED2); } // turn on at t+0 and t+200

 else if(__cnt % 6 == 1 || cnt % 6 == 3______________) {

 PORTC _&= ~(1<< LED2)______________); // turn off at t+100 and t+300
 } }
 } /* end while */
 return 0;
} /* end main */

Initial State

(Start here)

S1
S2

S3

A pressed OR

4
th
 period complete

A NOT pressed

AND still producing

4 periods
LEDs OFF

LED1 = ON

LED2 = OFF

LED1 = OFF

Produce 4 periods

of the waveform

below on LED2

B and A pressed

otherwise

B pressed but

 A NOT pressed

otherwise

Both buttons NOT

pressed

