Introduction to Computer Science
CSCI 109

Andrew Goodney .
Fall 2019

Lecture 8: Operating Systems October 21th, 2019

Operating Systems

Working Together

Schedule

Date|Topic Assigned |[Due |Quizzes/Midterm/Final Slide Deck
26-Aug |Introduction What is computing, how did computers
come to be? 1
2-Sep|Labor day
- Py -
9-Sep|Computer architecture How. is @ modern computer built? Basic HW1
architecture and assembly 2
- 5 - - - -
16-Sep|Data structures Why gr.ganlze data? Basic structures for Quiz 1 on material taught in
organizing data class 8/26 and 9/9 3
23-Sep| Data structures Trees, Graphs and Traversals HW2 HW1 4
30-Sep More Algorithms/Data Structures Recursion and run-time 5
7-Oct How "long" does it take to run an Quiz 2 on material taught in
Complexity and combinatorics algorithm. P vs NP class 9/16 and 9/23 5
14-Oct|Algorithms and programming Programming, languages and compilers HW2 Quiz 3 on material taught in
class 9/30 7
21-Oct|Operating systems What is an 0S? Why do you need one? HW3 Quiz 4 on material taught in
class 10/7 8
28-Oct | Midterm Midterm Midterm on all material
taught so far.
— -
4-Nov|Computer networks How are netw9rks organized? How is the HW3
Internet organized? 9
T - - - - -
11-Nov|Artificial intelligence What is AI. Search, plannnlng and a quick Quiz 5 on material taught in
introduction to machine learning class 9/4 10
18-Nov|The limits of computation What can (and can't) be computed? HW4 Quiz 6 on material taught in
class 11/11 11
25-Nov|Robotics Robotics: background 'ar“ld modern Quiz 7 on material taught in
systems (e.g., self-driving cars) class 11/18 12
2-Dec|Summary, recap, review Summary, recap, review for final HW4 Quiz 8 on material taught in
class 11/25 13
13-Dec Final exam 11 am - 1 pm in SGM 123 Final on all material covered

in the semester

o Talk about operating systems

¢ Midterm Style Questions
¢ Quiz #4

Operating Systems

¢ What is an OS?

¢ The kernel, processes and St. Amant Ch. 6
resources

Reading:

o Protection/Isolation/Security
¢ Competing for time

Before Operating Systems

¢ One computer < one program

o Program runs start to finish (or crashes)

+ Once done, load the next program

¢ Thought experiment?

+ Program waits 10ms to load a data item from tape (every once in a
while)

« Over the course of the program execution loads 1,000,000 data items.

« What happens to the 10,000s while the program was waiting?

Observation

& Most programs perform some 1/0O

+ 1/Ois slow (tape, disk, network, human user, etc.)

o CPU literally does nothing while waiting for 1/0O
« This is inefficient

¢ What if we could share the CPU so when one program is
waiting we can run another program?

o Operating systems came out of this need to “time-share” the
CPU

The need for an OS

Executes on

l 0
: Compiles

to

The OS as a executive manager

' ar_lavinal |

+ Low-level
I :
m Instructions

Executions
¢managed by

l

FLOOSrAM =
FLOSramam to

® Program

What is an Operating System?

¢ An executive manager for the computer

o Manages resources
+»Space (i.e. memory)
+»Time (i.e. CPU compute time)
+ Peripherals (i.e. input and output)

¢0S is a program that starts, runs, pauses,
restarts, and ends other programs

¢ (some content from the following slides is courtesy of Mark Redekopp and CS350)

Definition

* A piece of software that
manages a computer’s
resources

 What resources need
managing?
— CPU (threads and processes)

— Memory (Virtual memory,
protection)

— 1/O (Abstraction, interrupts,
protection)

User
mode

System
Library

N 4
Processes & File
Scheduling R Systems)

Kernel
Mode

. N { N
I/O Drivers Memory
& Protocols) ¢ Translation)

[Processor] [Network]

Mem. Graphics
Management Unit P

Hardware
SR

10

Examples of Operating Systems

& Microsoft Family
MSDOS, Windows 3.1 — 98, WindowsNT -> Windows 10

Predominately x86 (Intel) hardware, some PowerPC, some ARM
FreeDOS

o POSIX (UNIX/like)

macOS, FreeBSD, openBSD, netBSD, Solaris, AlIX, and others
+ Run on most processor architectures

i0S
Linux

+ Little side project of university student

+ "UNIX clone” that won the war

¢ 20+ popular distributions

+ Android: heavily customized Linux and Java on phone/tablet

o Others
PlaystationOS, VxWorks

11

History of Modern Operating Systems

55 10CS IBSYS
- CTSS
65 ST SRRy
DOS/360 OS/360 o MuLTIcS
» T80 UNIX gty
| | AT-11 - cpa
" UNIXV.7
DOSNDSE MVS/370 VM/370 sy MS10 |
80 | | sysTEMIIT _—AABEXENIX | MBLOS10
. %SUN 0s e | ~—._DRDOS
as| VS Mvsixa VMO -SYSTEMV_ AR posx| MACH | WiNao OS2
TTNANa70 - | -OSEL — 43BSD VMS54 WIN3.1
® vaesa wvees vEsa S o A T
a5 | Liux AXESA SOLARIS2 3 yap ™ |-
: WIINT i ox
o VMS73 WIN2000 |
\ s
o3 LINUX 2.6 R WIN XP
i WIN Sener 2003
Operatng Sysems || Intro, Hstory 12 PT/FF 2014

12

MVS (QO’S) Multics (60')

N
- ~._ \\\
MS/DOS (70's) VMS (70') UNIX (70’5)\\
[™
/ VMware
Windqws (80') I BSD UNIX (80%) Mach (80%)
7\ , v & ISsas s
/ e iy =
I -
Windows Windows Free Linux NEXT MacOS

MobileNT (90’) BSD (90'- pres) \ /

Androud MacOS X

Windows 8 (2012) |OS

————— Influence

Descendant

13

Important Vocabulary

¢ Resource

« Some part of the computer that programs use:
Memory, CPU, Input/Output devices

¢ Policy

» Rules enforced by algorithms that share access to resources

o OS Developers (humans) write policies that achieve some set
of goals for the operating systems

14

What does an Operating System do?

o A bare computer is just hardware

o Programs are written to use that hardware, but
exclusive use is inefficient

¢ In simple terms, the OS:

+» Enables more than one program at a time to use
the computer hardware

+» Present computer resources (CPU, disk, I/0)
through abstract interfaces to allow sharing

+ Enforce policies to manage/regulate the sharing of
resources

15

Referee

— Protection against other applications

— Enforce fair resource sharing

 Why doesn't an infinite loop require a reboot?

Illusionist (Virtualization)

— Each program thinks it is running separately

— Each program thinks it has full access to computer's resources (or unlimited

resources)

Glue

Common services (such as copy/paste)
Files can be read by any application

Ul routines for look & feel

Separate applications from hardware

* so you don’t need to know which keyboard, disk drive, etc

16

OS Design Criteria

o Reliability (and availability)
¢ Security & Privacy
o Performance

o Portability

17

Reliability and Availably

o Reliable systems work properly

+ Correct (or expected) outputs are generated for a set of inputs
» If this is not the case, the system has failed

Examples?

o Available systems are available to do work

¢ Available does not imply reliable

+ System can be available but not reliable (system has bugs, generates
wrong results)

+ System can be reliable but not available

Crash every 5 minutes, but saves results and restarts 5 minutes later

18

Privacy, Security, Isolation

o For an OS security means the OS does not run unintended
code or get into a compromised state

» No virus/malware

o OS privacy means programs should not get access to data
they should not have

« Password keychains, files in other users directories

o Security and Privacy require some tradeoffs with
performance, which is why OS’s are not 100% secure

«» Some are better than others!

19

Portability

¢ Many machine types exist: x86, x86_64, PPC, ARM, MIPS

¢ Many different motherboards or hardware platforms exist:
server with 8 CPUs 12 PCle slots to RaspberryPi, to AppleTV,
etc.

o OS with good portability abstracts these differences into a
stable APl so programmers don’t notice

o Also, can the OS itself be ported to new hardware easily?

¢ Good portability leads to wide adoption

« Linux, Windows

20

Performance

¢ What does performance mean?

+ Lots of computation?
« Fluid GUI for game?

« Low latency disk for database?

o OS balances these with policies

« Major axis is throughput vs. response time
« Different OS’s are tuned based on use case

« DB server has different policies than Windows gaming rig

21

Examples of Policies

e Tasks are given priorities; higher priority
tasks are handled first

eSome kind of tasks are never interrupted
o All tasks are equal priority; round-robin
eSome tasks can only use part of a disk

¢oSome tasks can use network

22

The kernel

o The kernel is the core of an OS

eKernel coordinates other programs

oWhen the computer starts up the kernel is
copied from the disk to the memory

eKernel runs until some other program
needs to use the CPU

eKernel pauses itself to run other program

23

Multitasking

¢ One program uses the CPU at a time
o OS switches CPU usage (rapidly)

o Creates an illusion that all the programs are running
at the same time

¢ Changeover from one program to another is called a
context switch

¢ Examples of context switching?
o Can context switching be good for a program?
o Can context switching be good for a CPU?

25

Abstractions: Processes and Resources

¢ Resources ¢ OS doesn’t worry
» Space (memory) about what each

* Time (CPU) program does
+ Peripherals (printers etc.)

o Process: an executing ¢ Instead OS cares about

program +» What resources does a
+» Program counter process need?

» Contents of registers +~ How long will it run?

« Allocated memory & » How important is it?

contents

26

Protection/lsolation

o Other processes have to be prevented from writing to
the memory used by the kernel

o Crash in one program shouldn’t crash OS or other
programs

o OS has access to all resources: privileged mode
¢ User programs have restricted access: user mode

¢ When a user program needs access to protected
resources it makes a system call (e.g., managing files,
accessing a printer)

o Principle of least privilege (kernel has highest
privilege)

27

Keep the CPU busy!

o Keeping CPU busy is THE MOST IMPORTANT THING EVER!
o Lets look at some policies that can help us do that.

o We assume we have lots of work (i.e. different programs)

28

Competing for time

¢ Think of the time the CPU spends in chunks or
olocks

¢ How can blocks of time be allocated to different
processes so that work can be done efficiently?

e Policy: rules to enforce process prioritization

29

Process Scheduling Policies

¢ The process queue

¢ Round-robin
e First-come, first-served

e Priority-based
+ Preset priority for each process
+» Shortest-remaining-time

¢ All these policies keep the CPU busy

¢ Are there other ways to judge a policy?

30

Keeping CPU busy

->"
JobQueue ——— > Ready Queue

" ~ 1/O Waiting :
I/0 Queue

B Exit

31

How to evaluate a policy?

o Utilization: how much work the CPU does
& Throughput: # of processes that use the CPU in a certain time
o Latency: average amount of time that processes have to wait before running

& Fairness: every process gets a chance to use the CPU

CPU utilization | Throughput | Latency Fairness

Round-robin Good Variable Potentially | Yes
high No starvation

First-come first- Good Variable Yes
served
Shortest Good High Potentially | No
remaining time high Could have starvation
Fixed priority Good

32

Everyday policies

o Planes taking off: first come first served
+» High efficiency for the runway
+ |f several smaller planes in line before a large one, not
efficient for the average passenger
o Traffic at an intersection w/light out: round robin
+ First traffic in one direction, then another
+ |f a police car arrives, then switch to priority-based
+» Unlikely to ever be shortest remaining time

33

()

> s S -

S I I -

Q. o }

e W] -
| w—

e s i s -
b S B [e
@ 1
I

n e | -
o S --eeq oo
- —— o

S’ I R I
(D) I I B
> I I I
G

Q R s
(Up) AR e

e e S . i
(Up)

<. I I

f e— R i ——
~ = -
(D) 4moAaK
O 2

4 g S

o S =

— v W

LL 2 3

34

Tick ISR

pC/OS-lI

Task #1
Priority X

Task #2
Priority X

Task #3
Priority X

Round Robin (pre-emptive)

Time |
Quanta

(3)

A

\J

(4)

(7)

Al

¥

(8)

Task

Task

(2)

(6)

(1)

Task

Task

Task

Task

35

Weighted Round Robin

n4 1%

b |
WA IO Y% W28 % WE=HE %

a’l
W1 =A% WIS 2%

Ci a2 -
2 3
- - | = ~

& - A
.
m-w'_"' @9

36

Shortest-time Remaining

. Process . Time
(arrival time, burst time)

-0
e
dero
4w
RS

v
-
e~
-0
-+
15

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
e

P1(0, 1) |

p2(0, 2) I .

P3(0, 3) l I

P4(0, 4) l |

P4(0, 5) [|

P5(0, 6) [| | |
P6(16, 1)]

P7(16, 2) |

P8(16, 3) l I

P8(16, 4) l |

P9(27, 1) [

P10(27, 2) - .

P10(27, 3) \ I

wait time
Il burst time

37

Midterm Style Questions

Which of the problems described CANNOT be solved optimally with an MST (minimum
spanning tree)?

A. Build the shortest-length bridge network between a set of islands.

B. Eliminate loops in a computer network.

C. Given a list of cities and the distances between each pair, find the shortest
possible route that visits each city and returns to the starting city.

D. Eliminate multiple paths between any two vertices in a graph.

E. All of the above CAN be solved optimally with a MST.

Which of the following is TRUE about binary search?

A. Considering the input data, binary search will ALWAYS have a smaller runtime vs.
sequential search on the same data.

B. Binary search can be applied to any list

C. Binary search has runtime complexity of O(2N) for an unsorted list

D. Binary search can be implemented recursively

E. None of the above is true

38

Midterm Style Questions

Which choice for pivot always allows optimal runtime of the quicksort algorithm?
A. Maximum element

B. Minimum element

C. Average among all elements

D. Average between maximum and minimum elements

E. None of the above

You are in a maze and a friend suggests that you put your right hand on the wall and
follow the wall until you find the exit. This “right hand rule” represents an algorithm for
solving the maze. Which algorithm discussed in class does the approach correspond to?

A. Breadth First Search
B. Depth First Search
C. Kruskal’s Algorithm
D.

Binary Search

39

Midterm Style Questions

The Jacquard Loom (and similar machines) are considered information transformers,
but not computers. Which answer best describes why:

A. Programming these machines doesn’t scale

B. Programming these machines requires punch-cards

C. Machines like these do not have memory or control flow

D. Machines like these are too old to be considered computers

The subset-sum problem has time complexity O(N*2N). Where does the factor N come
from?

A: That is how many subsets a set of size N has.

B: O(N) is the time complexity required to check each possible subset sum.

C: That is the time complexity of the algorithm that generates the subsets.

D: None of the above.

40

Midterm Style Questions

28.You are working with a list of test scores that was supposedly entered in numerical
order. However, about 1% of the scores are instead out of place by one spot. Which
sorting algorithm will complete the job faster?
A. Selection Sort
B. Insertion Sort
C. Doesn’t matter, we will get the same runtime.
D. Not enough information has been given to answer this question.

20. When an instruction is loaded from memory, it is desirable to load the contents of a few

succeeding memory addresses into the cache. Why is that?

A. The CPU is unable to only load one instruction at a time

B. Those contents are likely to be useful in the immediate future according to the
spatial locality principle

C. Those contents are likely to be useful in the immediate future according to the
temporal locality principle

D. The contents stored after the instruction are the values used in the computation of
the instruction and therefore must be loaded with the instruction.

41

