
Introduction to Computer Science
CSCI	109

Andrew	Goodney
Fall	2019

China	– Tianhe-2

Readings
St.	Amant,	Ch.	5

Lecture	7:	Compilers	and	Programming																																						10/14,	2019

Reminders

u Quiz	3	today	– at	the	end

u Midterm	10/28

u HW	#2	due	tomorrow

u HW	#3	not	out	until	next	week

1

Where are we?

2

Side Note

u Two	things	funny/note	worthy	about	this	cartoon

u #1	is	COBOL	(we’ll	talk	about	that	later)

u #2	is	??

3

“Y2k Bug”

u Y2K	bug??

u In	the	1970’s-1980’s	how	to	store	a	date?

u Use	MM/DD/YY
v More	efficient	– every	byte	counts	(especially	then)

u What	is/was	the	issue?

u What	was	the	assumption	here?
v “No	way	my	COBOL	program	will	still	be	in	use	25+	years	from	now”

u Wrong!

4

Agenda

u What	is	a	program

u Brief	History	of	High-Level	Languages

u Very	Brief	Introduction	to	Compilers

u ”Robot	Example”

u Quiz

6

What is a Program?

uA	set	of	instructions	expressed	in	a	language	the	
computer	can	understand	(and	therefore	
execute)

uAlgorithm:	abstract	(usually	expressed	‘loosely’	
e.g.,	in	English	or	a	kind	of	programming	pidgin)

uProgram:	concrete	(expressed	in	a	computer	
language	with	precise	syntax)
v Why	does	it	need	to	be	precise?

8

Programming in Machine Language is Hard

u CPU	performs	fetch-decode-execute	cycle	millions	of	
time	a	second

u Each	time,	one	instruction	is	fetched,	decoded	and	
executed

u Each	instruction	is	very	simple	(e.g.,	move	item	from	
memory	to	register,	add	contents	of	two	registers,	etc.)

u To	write	a	sophisticated	program	as	a	sequence	of	these	
simple	instructions	is	very	difficult	(impossible)	for	
humans

9

Machine Language Example

10

Machine Language Example

11

Assembly Language Example

u Machine	code	is	impossible,	assembly	language	is	very	hard

12

How to Program

u Machine	code	is	hard

u Assembly	doesn’t	scale

u Need	to	use	High	Level	Language

13

High Level Languages

u High	Level	Languages	let	us	express	algorithms	in	“English	
like”	syntax

u Provide	*tons*	of	abstractions	that	let	us:
v Define	basic	data	types	(text,	integers,	floating	point)	and	operations
v Define	abstract	data	types	(trees,	graphs,	lists,	whatever!)
v Interact	with	users	(GUIs)
v Interact	with	OS	for	file	I/O,	network	I/O

u Provide	a	full	compile/execution	stack:
v code	->	assembly	->	machine	code
v code	->	byte	code	->	VM	(->	machine	code)

14

High Level Languages

15

https://www.tiobe.com/tiobe-index/https://spectrum.ieee.org/

High Level Language History

u To	understand	where	we	are	in	2018,	we	need	some	history

u 1950’s	many	“main	frame”	computers	were	being	built

u Programmed	in	machine	code
v Usually	using	punch-cards!

u Error	prone,	costly	(human	resources)

u Lots	of	people/projects,	but	two	stand	out:
v Grace	Hopper	(US	Navy	and	others)
v John	Backus	(IBM)

16

Rear Admiral Dr. Grace Hopper

u Many	accomplishments	in	the	field	
of	computer	science

u Pioneered	the	idea	that	
programmers	should	write	code	in	
English	like	syntax:	“It’s	much	easier	for	
most	people	to	write	an	English	statement	than	it	is	
to	use	symbols.	So	I	decided	data	processors	ought	
to	be	able	to	write	their	programs	in	English,	and	the	
computers	would	translate	them	into	machine	code.”

u Pioneered	the	idea	that	code	
should	be	compiled	to	machine	
code

17

A-0

u Dr.	Hopper’s	work	towards	”English”	programming	was	
incremental

u 1952	at	UNIVAC	released	A-0
u Linked	together	precompiled	sub-routines	with	arguments	into	
programs

u Probably	the	first	“useful”	compiled	language
u Subroutines	had	a	number,	arguments	were	given
u 15	3	2;	17	3.14;
u 15	=	power(3,	2);	17	=	sin(3.14)
u Can’t	find	existing	example	of	this	version

18

A-2

u Dr.	Hopper	followed	up	with	
A-1	and	then	A-2	in	1953

u Even	closer	to	our	modern	
idea	of	a	programming	
language

u Still	can’t	find	code	examples
u https://www.mirrorservice.org/sites/www.bi

tsavers.org/pdf/computersAndAutomation/1
95509.pdf

19

More Hopper Quotes

20

A series continued

u Work	continued	on	the	A	
series	of	languages

u A3	and	AT3	could	compile	for	
more	than	one	machine	– high	
level	code	was	“portable”	

21

Flow-Matic

u B-0	“Flow-Matic”

u Internet	is	amazing!	We	have	the	Flow-Matic advertising	
handout.

22

A-series, B-0 lineage

u The	A-series	and	B-0	brings	us	to	our	first	living	fossil:	COBOL
v “Common	business-oriented	language”

u Designed	for	business	processing,	not	computer	science

u “COBOL	has	an	English-like	syntax,	which	was	designed	to	be	
self-documenting	and	highly	readable.”

u Released	in	1959
v Still	in	heavy	use:	financial	industries,	airlines

23

FORTRAN

u John	Backus	at	IBM	developed	FORTRAN
v FORmula TRANslation

u First	high-level	language,	proposed	1954,	
compiler	delivered	1957

u “Much	of	my	work	has	come	from	being	lazy.	I	didn't	like	
writing	programs,	and	so,	when	I	was	working	on	
the IBM	701,	writing	programs	for	computing	missile	
trajectories,	I	started	work	on	a	programming	system	to	
make	it	easier	to	write	programs.”

u Backus	won	a	Turing	Award,	among	many	
other	accolades

24

Being lazy isn’t all bad…

25
https://xkcd.com/1205/

FORTRAN

u FORTRAN	was	adopted	by	academics	and	scientific	
computing	community

u Originally	programmed	on	punch	cards

u Many	developments	in	compilers	were	driven	by	the	need	to	
optimize	FORTRAN	->	machine	code	generation

26https://upload.wikimedia.org/wikipedia/commons/5/58/FortranCardPROJ039.agr.jpg

FORTRAN Example

27

COBOL, Fortran…

u Hopper	and	Backus’	work	gave	us	high-level,	compiled	
languages

u English-like	syntax

u Portable	across	many	machine	types
v By	1963	~40	FORTRAN	compilers	existed	for	various	machines
v Write	code	one,	run	any	where

u Led	to	an	explosion	in	languages	developed	by	industry	and	
computer	scientists

u One	more	family	is	worth	visiting

28

BCPL

u Basic	Combined	Programming	Language
v Martin	Richards,	Cambridge	1966
v Originally	intended	to	“bootstrap”	or	help	write	compilers	for	other	

languages	(how	meta!)
v Progenitor	of	the	curly	brace!
v Supposedly	the	first	”Hello	World”	program	was	in	BCPL

29

GET "LIBHDR"

LET START() = VALOF {
FOR I = 1 TO 5 DO

WRITEF("%N! = %I4*N", I, FACT(I))
RESULTIS 0

}

AND FACT(N) = N = 0 -> 1, N * FACT(N - 1)

B

u B	– stripped	down	version	of	BCPL

u Developed	at	Bell	Labs	circa	1969	by	Ken	Thomson	and	
Dennis	Ritchie

u Gave	us	=	for	assignment,	==	for	equality,	=+	for	“plus-
equals”,	++	and	-- for	increment/decrement

30

/* The following function will print a non-negative number, n,
to the base b, where 2<=b<=10. This routine uses the fact that
in the ASCII character set, the digits 0 to 9 have sequential
code values. */

printn(n, b) {
extrn putchar;
auto a;
if (a = n / b) /* assignment, not test for equality */

printn(a, b); /* recursive */
putchar(n % b + '0');

}

B is followed by C

u Bell	Labs	developed	original	version	of	UNIX	in	assembly	
language

u Wanted	to	re-write	UNIX	in	high-level	language	for	PDP-11
u B	couldn’t	work	well	on	PDP-11
u Dennis	Ritchie	expanded	B	into	C	(that	we	know	and	love)
u Designed	with	a	simple	compiler	in	mind
u Designed	to	give	low-level	access	to	memory
u Parts	of	UNIX	rewritten	into	C	in	early	1970’s	are	still	around	
in	macOS (40+	years	later!)

31

C code

u C	gave	us	Objective-C,	C++
v Swift,	Rust

u Syntax	directly	influenced	Java,	C#

32

High Level Programming as an
Abstraction

u High-level	languages	based	on	some	observations:
v Machine	code/assembly	is	too	hard	to	program	effectively
v In	the	end	we	don’t	care	about	the	details	of	the	computer

u High-level	languages	program	an	’abstract	machine’
v Simple	programming	model,	simple	memory	model,	sequential	

execution,	etc.
v The	machine	doesn’t	exist,	but	that	doesn’t	matter

u High-level	languages	translate,	or	compile	code	from	the	
’abstract	machine’	to	the	real	computer

33

Very Brief Introduction to Compilers

u All	high	level	languages	must	be	compiled	in	some	sense
u High	level	languages	are	a	sequence	of	statements

v Each	statement	stands	for	some	number	of	assembly	language	(or	
machine	language)	statements

u At	a	high-level	the	compiler	merely	translates	from	a	known	set	of	
statements	to	a	known	set	of	assembly	language	statements

u However,	the	statements	can	be	lexigraphically complex	and	we	
need	to	consider	things	like	memory,	variables,	functions,	the	
stack…etc.

u Also	we	need	to	consider	how	to	compile	code	for	different	
machine	(architectures)
v C-code	can	run	on	fastest	super-computer	and	smallest	microcontroller

34

What is a compiler?

u Compiler	is	a	piece	of	software

u Inputs:
v High-level	code
v Target	machine	architecture
v Optional	inputs:	OS	type/version,	memory	size	or	restrictions,	CPU	

specific	optimizations,	cache	size,	etc.

u Output:
v Machine	code	(binary	data)	for	execution	on	specific	machine	type

35

36

From Description to Implementation

● Lexical analysis (Scanning): Identify logical
pieces of the description.

● Syntax analysis (Parsing): Identify how those
pieces relate to each other.

● Semantic analysis: Identify the meaning of the
overall structure.

● IR Generation: Design one possible structure.

● IR Optimization: Simplify the intended structure.

● Generation: Fabricate the structure.

● Optimization: Improve the resulting structure.

37

The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

38

The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

Machine
independent

39

The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

Machine
dependent

40

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

41

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_PlusAssign
T_Identifier x
T_Semicolon
T_CloseBrace

42

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z

43

Lexical Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

Sequence

=

x +

a b

=

y +

y x

int

int int

int

int
int

int

int int

int

void

void

Semantic Analysis

<

y z

int int

bool

44

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

Loop: x = a + b
 y = x + y
 _t1 = y < z
 if _t1 goto Loop

IR Generation

45

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 x = a + b
Loop: y = x + y
 _t1 = y < z
 if _t1 goto Loop

IR Optimization

46

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 add $1, $2, $3
Loop: add $4, $1, $4
 slt $6, $1, $5
 beq $6, loop

47

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 add $1, $2, $3
Loop: add $4, $1, $4
 blt $1, $5, loop

Simple Example in C

48

49

main ()

loop 1

FREQ:0

<bb 4>:

y_1 = PHI <y_5(2), y_7(3)>

if (y_1 < z_2)

goto <bb 3>;

else

goto <bb 5>;

FREQ:0

<bb 3>:

x_6 = a_3 + b_4;

y_7 = y_1 + x_6;

[0%]

FREQ:0

<bb 5>:

_8 = 0;

[0%]

[0%]

ENTRY

EXIT

FREQ:0

<bb 2>:

z_2 = 10;

a_3 = 1;

b_4 = 2;

y_5 = 0;

goto <bb 4>;

[0%]

[0%]

FREQ:0

<bb 6>:

<L3>:

return _8;

[0%]

[0%]

main ()

loop 1

FREQ:0

<bb 4>:

y_1 = PHI <y_5(2), y_7(3)>

if (y_1 < z_2)

goto <bb 3>;

else

goto <bb 5>;

FREQ:0

<bb 3>:

x_6 = a_3 + b_4;

y_7 = y_1 + x_6;

[0%]

FREQ:0

<bb 5>:

_8 = 0;

[0%]

[0%]

ENTRY

EXIT

FREQ:0

<bb 2>:

z_2 = 10;

a_3 = 1;

b_4 = 2;

y_5 = 0;

goto <bb 4>;

[0%]

[0%]

FREQ:0

<bb 6>:

<L3>:

return _8;

[0%]

[0%]

Simple Example

50

Typical Programming Sequence

Algorithm	(typically	natural	language	or	pseudocode)

54

High-level	program	(source	code:	Java,	C++,	C,	…)

Low-level	program	or	(machine	code:	assembly)

The	human	act	of	programming	or	software	
development

The	act	of	compilation	(happens	automatically	
inside	the	computer)

Robot Example (St. Amant, pp. 86)

Make	a	robot	move	along	the	outline	of	a	square	
and	report	the	distance	it	has	moved

55

Robot Example

u What	is	the	most	simple	version	of	this	program	possible?

56

Program Design and Refinement

57

Version 1: move, turn, move, turn etc.
To follow a square path: 1

Move 8 inches forward 2
Turn left 3
Move 8 inches forward 4
Turn left 5
Move 8 inches forward 6
Turn left 7
Move 8 inches forward 8
Turn left 9
Output the number 32 as a result 10

Block

Robot Example

u What	is	missing	from	this	program?

u Is	it	very	useful?

u Observations?

58

Program Design and Refinement

59

Version 1: move, turn, move, turn etc.
To follow a square path: 1

Move 8 inches forward 2
Turn left 3
Move 8 inches forward 4
Turn left 5
Move 8 inches forward 6
Turn left 7
Move 8 inches forward 8
Turn left 9
Output the number 32 as a result 10

Block

Robot Example

u Programming	concept:	basic	block	(or	just	block)

u Series	of	instructions	that	will	be	executed	start	to	finish
v Once	you	enter	a	basic	block,	all	instructions	will	be	excecuted

u All	programs	are	made	up	of	a	set	of	basic	blocks	tied	
together	in	a	particular	order

u Can	we	continue	to	improve	the	program?

60

Looping

61

Version 2: repeat move, turn, 4 times
To follow a square path: 1

Do the following 4 times in a row 2
Move 8 inches forward 3
Turn left 4

Output the number 32 as a result 5

Robot Example

u Programming	Concept:	Looping

u Basic	blocks	are	often	repeated	in	a	‘loop’,	we	can	identify	
the	loops	in	the	high-level	language

u Gives	us	looping	structures	like	’for’	and	‘while’

u Makes	code	simpler	to	read	and	more	flexible	(e.g.	#loops	is	
now	variable	instead	of	hard-coded)

62

Introducing Variables

63

Version 3: repeat move, turn, 4 times. Total distance is
updated each time and produced as output
To follow a square path: 1

Set the total distance to 0 2
Do the following 4 times in a row 3

Move 8 inches forward 4
Turn left 5
Add 8 to the total distance 6

Output total distance 7

Robot Example

u Programming	Concept:	variables

u Named	items	in	a	program	that	can	take	on	different	values	
at	different	points	of	a	program

u Naming	is	for	us,	the	programmer.	Makes	code	easier	to	build	
and	debug

64

If-then-else

65

Version 4: repeat move, turn, 4 times. Total distance is
updated each time and produced as output. Side length and
total distance in inches, clockwise is true or false
To follow a square path of a given
side length, clockwise or not: 1
Set the total distance to 0 2

Do the following 4 times in a row 3
Move ‘side length’ inches forward 4
If clockwise 5

then turn right 6
else turn left 7
Add ‘side length’ to the total distance 6

Output total distance 9

Robot Example

u Programming	Concept:	control	flow

u Statements	that	evaluate	the	state	of	variables	and	change	
the	course	of	program	operation

u Let	the	programmer	control	the	order	in	which	basic	blocks	
are	executed

u If,	if-else,	and	similar

66

Summary

u ‘High-level’	programming	are	designed	for	human	
convenience

u ‘High-level’	programming	is	an	abstraction	to	make	
programming	easier

u ‘High-level’	programs	are	‘block’	structured
uOne	‘high-level’	statement	produces	many	‘low-level’	
instructions

u ‘Low-level’	programs	(machine	language)	are	what	
really	run	on	a	the	CPU

67

