Introduction to Computer Science

CSCI 109

WE NEED COBOL 1IF YOU SEE ANYONE
PROGRAMMERS FOR WHO LOOKS LIKE

OUR MAINFRAME A COBOL PROGRAMMER,
MILLENTIUM PROBLEM. LET ME KNOW.

K

www.unitedmedia.com

ARE YOU A coso
PROGRAMMER 7
NO, BUT T'M orr
TOD T LOOK LIK
ONE..

|47  © 1997 United Feature Syndicate, Inc.

S Adms

Readings

Andrew Goodney St. Amant. Ch. 5

Fall 2019

Lecture 7: Compilers and Programming 10/14, 2019



Reminders

¢ Quiz 3 today — at the end
¢ Midterm 10/28
¢ HW #2 due tomorrow

¢ HW #3 not out until next week



Where are we?

Date | Topic Assigned |Due  |Quizzes/Midterm/Final Slide Deck
26-Aug | Introduction What is computing, how did computers
come to be? 1
2-Sep|Labor day
- e -
9-Sep| Computer architecture Howlls a modern computer built? Basic HW1
architecture and assembly 2
- 5 - - - -
16-Sep|Data structures Why (?r.ganlze data? Basic structures for Quiz 1 on material taught in
organizing data class 8/26 and 9/9 3
23-Sep|Data structures Trees, Graphs and Traversals HW2 HW1 4
30-Sep . . .
More Algorithms/Data Structures Recursion and run-time 5
7-Oct How "long" does it take to run an Quiz 2 on material taught in
Complexity and combinatorics algorithm. P vs NP class 9/16 and 9/23 5
14-Oct|Algorithms and programming Programming, languages and compilers HW?2 Quiz 3 on material taught in
class 9/30 7
21-Oct|Operating systems What is an OS? Why do you need one? HW3 Quiz 4 on material taught in
class 10/7 8
28-Oct| Midterm Midterm Midterm on all material
taught so far.
— -
4-Nov|Computer networks How are netw?rks organized? How is the HW3
Internet organized? 9
P - - - - -
11-Nov|Artificial intelligence What is AI. Search, ;.)Iannnlng. and a quick Quiz 5 on material taught in
introduction to machine learning class 9/4 10
18-Nov|The limits of computation What can (and can't) be computed? HW4 Quiz 6 on material taught in
class 11/11 11
25-Nov| Robotics Robotics: background .ar\d modern Quiz 7 on material taught in
systems (e.g., self-driving cars) class 11/18 12
2-Dec|Summary, recap, review Summary, recap, review for final HW4 Quiz 8 on material taught in
class 11/25 13
13-Dec Final exam 11 am - 1 pm in SGM 123 Final on all material covered

in the semester




Side Note

WE NEED COBOL 1F YOU SEE ANYONE
PROGRAMMERS FOR WHO LOOKS LIKE

OUR MAINFRAME A COBOL PROGRAMMER,
MILLENIUM PROBLEM. LET ME KNOW.

5 Adams www.unitedmedia.com
=)
Z

© 1997 United Feature Syndicate, Inc.

lll‘th7

ARE YOU A COBOL
PROGRAMMER ?
NO, BUT T'M orr
TOWD 1 LOOK LIK
ONE. .

YOU RE
HIRED.

+ Two things funny/note worthy about this cartoon

o #1 is COBOL (we’ll talk about that later)

& H2is ??



“Y2k Bug”

o Y2K bug??
¢ In the 1970’s-1980’s how to store a date?
¢ Use MM/DD/YY

« More efficient — every byte counts (especially then)
¢ What is/was the issue?

¢ What was the assumption here?

» “No way my COBOL program will still be in use 25+ years from now”

¢ Wrong!



¢ What is a program

o Brief History of High-Level Languages
o Very Brief Introduction to Compilers
¢ "Robot Example”

¢ Quiz



What is a Program?

¢ A set of instructions expressed in a language the
computer can understand (and therefore
execute)

e Algorithm: abstract (usually expressed ‘loosely’
e.g., in English or a kind of programming pidgin)

e Program: concrete (expressed in a computer
language with precise syntax)

+» Why does it need to be precise?



Programming in Machine Language is Hard

¢ CPU performs fetch-decode-execute cycle millions of
time a second

o Each time, one instruction is fetched, decoded and
executed

¢ Each instruction is very simple (e.g., move item from
memory to register, add contents of two registers, etc.)

o To write a sophisticated program as a sequence of these
simple instructions is very difficult (impossible) for
humans



Machine Language Example

exl.c

~int main()

{

int x = 5;
(x > 0)

10



exl.c

int main()

{

3872
3916
3960

4048
4092
4136
4180
4224
4268
4312
4356

int x

(alalalala]a]a]a)
(4lala1a]a]a]a]a)
88888886
34888888
alalalaalala]a
1FBBBa6a
(alalalala]a]a]a)
talala)gaala]a)
646166066
1CaBaa0a
64796C64
78312E63
383036036

(x > 0)

alalalalalalala
(alalalala]a]a]a)
88888666

34886886

BBa15F 68
alalalalala15]a
4DBBABAG
1666668
alalalalalala]a)
a1660661
BF737475
ABZF 7661
30676E2F

(alalalala]a]a]a)
69906660

B@BF@@@B
A5a0625F
Sa1FBa6a
66836160
A16666060
alalalala]a]a]a)
alalalalalala]s
625F6269
T2ZF666F
542F6578

alalalalalalala
60006666

CA A

BBBBBBBB
6D685F65
alalalalala15]a
A5BADARS
240060608
B2608000
alalalalalal5]a
6E646572
60646572
31203665

(alalalala]a]a]a)
4]a]aa]a]a]a]a}

rrrrrr

alalalalalalala
60006666

1% %1%

(alalalala]a]a]a)
4]a]aa]a]a]a]a}

rrrrr

alalalalalalala
60006666

a1%1%1%

(alalalala]a]a]a)
69906660

rrrrrr

alalalalalalala
60006666

Machine Language Example

(alalalala]a]a]a)
69906660

4 [1Canaana
3486006008
78656375
2bapanna
(alalalala]a]a]a)
ZFBBaBan
AFa11666
208a5F5F
ABZFE573
T32FBE3A
33623133

alalalalala]a]a)
A3000008
74655F68
640000608
A1666666
alalalalalalala
alalalalalala]a)
6D6E5F65
6572732F
2FEF3363
ZE6FBB5F

1CBBBBBB
ACana16a
65616465
alalalalala15]a
ZEA166060
A16666060
16666066
76656375
676F6F64
BF633132
6D61696E

86680998
16666166
7280216D
alalalalala15]a
talala]galala]a)
4E616668
166666066
74655F63
B6E6BET7IZF
31363337
falalalalalala]a

1ChBaBna
alalalalalala]a
61696E60
470600008
A16666066
ZFBBaBan
AF 166060
65616465
T372632F
66633535
alalalalalala]s

82680998
alalalalala 15N
25020008
640000608
ta]aialalalala]a)
alalalalalalala
talala galala]a)
72885F6D
63733130
66763476

BBBFBBBB
alalalalalala]a
ABa30a5a
alalalalala15]a
248160600
A16666060
16666066
61696E606
392FBA65
32313932

11



Assembly Language Example

¢ Machine code is impossible, assembly language is very hard

push rbp
exl.c mov rbp, rsp
. . mov dword [rbp+var_4], 0x@
int maln() mov dword [rbp+var_B8], 0x5
loc_100000192:
cmp dword [rbp+var_B8), 0x@
jle loc_100000fTaa
mov eax, dword [rbp+var_8]
sub eax, oxl
mov dword [rbp+var_B], eax
jmp Lloc_100000192
loc_1000008faa:
mov eax, dword [rbp+var_4]
pop rbp
ret

12



How to Program

¢ Machine code is hard
¢ Assembly doesn’t scale

¢ Need to use High Level Language

13



High Level Languages

o High Level Languages let us express algorithms in “English
like” syntax

o Provide *tons™* of abstractions that let us:
+ Define basic data types (text, integers, floating point) and operations
+ Define abstract data types (trees, graphs, lists, whatever!)
« Interact with users (GUIs)
» Interact with OS for file I/O, network 1/0

o Provide a full compile/execution stack:
+ code -> assembly -> machine code
+» code -> byte code -> VM (-> machine code)

14



High Level Languages

Language Rank Types Spectrum Ranking
1000
1. Python @ [;] ’ 100.0 Oct 2018 Oct 2017 Change Programming Language Ratings Change
2. C++ 0E&s 1 1 Java 17.801% +5.37%
| 2 2 Cc 15.376% +7.00%
3. Java
3 3 C++ 7.593% +2.59%
4. C s
4 5 ~ Python 7.156% +3.35%
5. C# &0
5 8 -~ Visual Basic .NET 5.884% +3.15%
6. PHP @ 6 4 v C# 3.485% -0.37%
7. R = 7 7 PHP 2.794% +0.00%
. JavaScri 8 6 v JavaScript 2.280% -0.73%
p
9 A sQL 2.038% +2.04%
9. Go ® o R

10 16 A Swift 1.500% -0.17%

10. Assembly 8

https://spectrum.ieee.org/ https://www.tiobe.com/tiobe-index/

15



High Level Language History

o To understand where we are in 2018, we need some history
¢ 1950’s many “main frame” computers were being built

¢ Programmed in machine code

+ Usually using punch-cards!
o Error prone, costly (human resources)

o Lots of people/projects, but two stand out:

+ Grace Hopper (US Navy and others)
« John Backus (IBM)

16



Rear Admiral Dr. Grace Hopper

¢ Many accomplishments in the field
of computer science

o Pioneered the idea that
programmers should write code in

English like syntax: “it’s much easier for

most people to write an English statement than it is
to use symbols. So | decided data processors ought
to be able to write their programs in English, and the
computers would translate them into machine code.”

¢ Pioneered the idea that code
should be compiled to machine
code

17



Dr. Hopper’s work towards "English” programming was
incremental

1952 at UNIVAC released A-0O

Linked together precompiled sub-routines with arguments into
programs

Probably the first “useful” compiled language
Subroutines had a number, arguments were given
153 2;17 3.14;

15 = power(3, 2); 17 = sin(3.14)

Can’t find existing example of this version

18



A-2

BASIC ELEMENTS OF THE A-2 COMPILER SYSTEM

Four basic elements are fundamental to the
operation of the A-2 Compiler System. They are:

o Dr. Hopper followed up with

1. Sub-Routines
A-1 and then A-2 in 1953 3. BsentorCode
4. Compiler

SUB-ROUTINES. A sub-routine may be defined

‘ Even Closer to Our mOdern as a set of instructions necessary to direct the
d f . computer to carry out a well defined mathematical

or logical operation. For our specific purposes

I ea O a programmlng it is a list or set of "C-10" coded instructions.

A typical sub-routine may be one that is coded to

|angu age calculate the sine of an angle, or perform the four

basic arithmetic operations of addition, subtrac-
tion, multiplication, or division.

¢ Still can’t find code examples LIBRARY. A library is an ordered set or col-

lection of standard and proven sub-routines. In
the A-2 Compiler System, these sub-routines a re

¢ https://www.mirrorservice.org/sites/www.bi  pexmanently recorded and stored on magnetic tape

. in alphabetical order.
tsavers.org/pdf/computersAndAutomation/1
PSEUDO-CODE. Pseudo-code is a special code

95509.pdf which must be translated into computer code if it
is to direct the computer. The A-2 Compile r
Pseudo-Code is intelligible to the Compiler Sy s—
tem only (unintelligible to the computer itself).

THE COMPILER. The A-2 Compiler is a Master
Routine which translates the pseudo-code into com—
puter code (C-10). This translation must always
be performed prior to the actual solution of the
problem since Univac will only execute coded in-
structions expressed in its own language. 19




More Hopper Quotes

In answer to questions from J. W. Backus, Dr. Hooner showed how' to code
the evaluation of the scalar product of two vectors. She said that matrix

opsrations were coded using a special matrix'library.

L. A. Voorhees asked whether the compiler was used because psovle were
diasatiafied with tha_machine. Dr. Hooper replied that the reason was solely
to éimplify and shorten coding. A 3-address code was used merely because i3

20



B)

o

A series continued

¢ Work continued on the A
series of languages EPERTOINS OF MATH.MATIC GONTROL STATRENTS

{(A) READAXAYAZA.,

o A3 and AT3 could compile for 7 *
more than one machine — high
level code was “portable”

(B) READAXAYAZAIFASENTINELAJUMPATO(SENTENCEARA.,

TYPE=-INOXAY LZ.0,

PRINT-OUTX Y LZ4,

&~ W N
o o o

(A) EDITAXAYAZA.
{B) EDITZCONVERTEDAXATAZA.,

{C) EDITAFORAUNIPRINTERAXAYAZA,

NAROOTOM (/AT

The above functional call word will, depending on iis parameters, pro-
2
A/B 565
$

duce the most suiteble Arith-matic coperations to compute A 2eey

30ROOTAA will give the result 4 M2 or 74 ).

21



Flow-Matic

¢ B-0 “Flow-Matic”

¢ Internet is amazing! We have the Flow-Matic advertising
handout.

22



A-series, B-o lineage

o The A-series and B-0 brings us to our first living fossil: COBOL

« “Common business-oriented language”

o Designed for business processing, not computer science

o “COBOL has an English-like syntax, which was designed to be
self-documenting and highly readable.”

¢ Released in 1959

« Still in heavy use: financial industries, airlines

23



FORTRAN

o John Backus at IBM developed FORTRAN
- FORmula TRANSslation

o First high-level language, proposed 1954,
compiler delivered 1957

¢ “Much of my work has come from being lazy. | didn't like
writing programs, and so, when | was working on
the IBM 701, writing programs for computing missile
trajectories, | started work on a programming system to
make it easier to write programs.”

& Backus won a Turing Award, among many
other accolades

24



Being lazy isn't all bad...

HOW LONG (AN YOU WORK ON MAKING A ROUTINE TASK MORE
EFFCIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?

(ACROSS FIVE YEARS)

HOW OFTEN YOU DO THE TRSK
"oy Sy DALY \EEKY MONFLY YERRY
| 1 5ECOND 1| DAY | 2 HOURS M|N3lgl-:5 m:lm rmulwt sec§vs
5 sezon0s | (Bonvs| 12 voues | 2 vo0es | 2L |4 Ores | seios
30 SECONDS | e L3 OFYS |12 ooRs | 2 vooks | SO | 2
0w 4 mwore (ZUEES (T8 oavs [T oA | 4 Houks | 1 Ho ,1..31;5
Yoo 5 Mnres |7 vowms| T (6] onvs | 21 ks | Svows || 23
HAVE 30 1nues 6 Honws| B s | 5]01S | [T] o | 2 o
1 HOUR 10 riowrs| 2 vows | [10] oA (2] orvs | 5 Houks
6 HOURS 2 voNT5 | 7 s | [ 1] DAY
[T) o Bukero (5108

https://xkcd.com/1205/

25



FORTRAN

o FORTRAN was adopted by academics and scientific
computing community

o Originally programmed on punch cards

o Many developments in compilers were driven by the need to
optimize FORTRAN -> machine code generation

UJUDOUUUUUUDUOGGOUO'Q[)O

g ' 2 .« 23
l'lllllllllllIlllll!lllll|I 1 RERMBREUE DT 1]1]! Illllllllllllllllll

2]22122 2222222222222222222222222222222222222 22222222222220222222212

i
11333311135313333331333333",3333":,‘TJ 3 33333333333 33333333133 33133333I3]
|

|
ll‘llHlllld«H% 44444444 44444484444444444444

ﬂssssss|5|ss 55505055555 §5555555555555555555555555555555555555555555555/55555555

5‘55585’5 66666 sH6666666666 666666666666 6 6 666 BEBSSEIGEG

1]7711!17 11711211 IRRRER 11 117 i 111111

|
|lusaaa|a| BeNaNasHsNs88853888568888883 g 885886208050888880588888888883888

’!!!Si 53 5 9999999999959999999939999959989 ,.iJf3{’;‘9?399‘593::999993'99@
NONBDN2DNBSOBBY M - - 3051 2SS S S REBHE

|
17177117“1117777\
\

n- lllll

https://upload.wikimedia.org/wikipedia/commons/5/58/FortranCardPROJ039 .agr.jpg 26



FORTRAN Example

A Program in FORTRAN 77

Program Example

Fortran Example program
Input: An integer, ListlLen, where ListLen is less
than 100, follows by List Len-Integer values
Output: The number of input values that are greater
than the average of all input values
INTEGER INTLIST (99)
INTEGER LISTLEN, COUNTER, SUM, AVERAGE, RESULT
RESULT = 0
SUM = 0
READ *, LISTLEN
IF ((LISTLEN .GT. 0) .AND. (LISTLEN .LT. 100)) THEN
C Read Input data into an array and compute its sum
DO 101 COUNTER = 1, LISTLEN
READ *, INTLIST (COUNTER)
SUM = SUM + INTLIST (COUNTER)
101 CONTINUE

QaaQaoaan

program cable

this program computes the velocity of a cable car on a thousand-foot
cable with three towers

integer :: totdis, dist, tower

write(x,1)
1 format('1', 9x,'cable car report'/' ','distance', 2x,'nearest tower', 2x, &
'velocity'/1x,2x, '(ft)', 19x, '(ft/sec)')

totdis = @
do while (totdis <= 1000)
if (totdis <= 25@) then
tower = 1

dist = totdis
else if (totdis <= 750) then

tower = 2

dist = iabs(totdis - 500)
else

tower = 3

dist = 1000 - totdis
end if

if (dist <= 30) then

vel = 2.425 + 0.00175*distxdist
else

vel = 0.625 + 0.12xdist - 0.00025%dist*dist
end if

write(x,40) totdis, tower, vel
40 format(' ',i4,11x,i1,9x,f7.2)

totdis = totdis + 10
end do

end

27



COBOL, Fortran...

¢ Hopper and Backus’ work gave us high-level, compiled
languages

o English-like syntax

o Portable across many machine types
+» By 1963 ~40 FORTRAN compilers existed for various machines

« Write code one, run any where

o Led to an explosion in languages developed by industry and
computer scientists

¢ One more family is worth visiting

28



o Basic Combined Programming Language
- Martin Richards, Cambridge 1966

» Originally intended to “bootstrap” or help write compilers for other
languages (how meta!)

» Progenitor of the curly brace!
- Supposedly the first “"Hello World” program was in BCPL

GET "LIBHDR"

LET START() = VALOF {
FORI =1 TO 5 DO
WRITEF("%N! = %I4*N", I, FACT(I))
RESULTIS ©

}

AND FACT(N) = N =0 -> 1, N * FACT(N - 1)

29



& B —stripped down version of BCPL

o Developed at Bell Labs circa 1969 by Ken Thomson and
Dennis Ritchie

o Gave us = for assignment, == for equality, =+ for “plus-
equals”, ++ and -- for increment/decrement

/* The following function will print a non-negative number, n,
to the base b, where 2<=b<=10. This routine uses the fact that
in the ASCII character set, the digits © to 9 have sequential
code values. */

printn(n, b) {
extrn putchar;
auto a;
if (a =n/ b) /* assignment, not test for equality */
printn(a, b); /* recursive */
putchar(n %2 b + '0');

30



B is followed by C

o Bell Labs developed original version of UNIX in assembly
language

¢ Wanted to re-write UNIX in high-level language for PDP-11
¢ B couldn’t work well on PDP-11

o Dennis Ritchie expanded B into C (that we know and love)
o Designed with a simple compiler in mind

o Designed to give low-level access to memory

o Parts of UNIX rewritten into Cin early 1970’s are still around
in macOS (40+ years later!)

31



o C gave us Objective-C, C++
« Swift, Rust

o Syntax directly influenced Java, C#

exl.c

int main()
{
int x = 5;
(x > 0)

32



High Level Programming as an

Abstraction

o High-level languages based on some observations:
+ Machine code/assembly is too hard to program effectively

+ In the end we don’t care about the details of the computer

o High-level languages program an ‘abstract machine’

+ Simple programming model, simple memory model, sequential
execution, etc.

« The machine doesn’t exist, but that doesn’t matter

o High-level languages translate, or compile code from the
‘abstract machine’ to the real computer

33



Very Brief Introduction to Compilers

o All high level languages must be compiled in some sense

o High level languages are a sequence of statements

» Each statement stands for some number of assembly language (or
machine language) statements

¢ At a high-level the compiler merely translates from a known set of
statements to a known set of assembly language statements

¢ However, the statements can be lexigraphically complex and we
need to consider things like memory, variables, functions, the
stack...etc.

¢ Also we need to consider how to compile code for different
machine (architectures)

+ C-code can run on fastest super-computer and smallest microcontroller

34



What is a compiler?

¢ Compiler is a piece of software

¢ Inputs:
+ High-level code
<+ Target machine architecture
+ Optional inputs: OS type/version, memory size or restrictions, CPU
specific optimizations, cache size, etc.
¢ Output:

+ Machine code (binary data) for execution on specific machine type

35



From Description to Implementation

Lexical analysis (Scanning): Identify logical
pieces of the description.

Syntax analysis (Parsing): Identify how those
pieces relate to each other.

Semantic analysis: Identify the meaning of the
overall structure.

IR Generation: Design one possible structure.
IR Optimization: Simplify the intended structure.
Generation: Fabricate the structure.

Optimization: Improve the resulting structure.

36



The Structure of a Modern Compiler

Source
Code

[

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

37



The Structure of a Modern Compiler

Source
Code

—

IR Optimization

= Machine
independent

Code Generation

Optimization

38



The Structure of a Modern Compiler

Source ====> | Lexical Analysis
Code

Syntax Analysis

Semantic Analysis

IR Generation

J—
Machine
dependent
— D
39




while (y < z) {

int x

y += x;

a + b;

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

40



while (y < z) {
a + b;

int x =
y += x;
}
T While

T LeftParen
T Identifier
T Less

T Identifier
T RightParen
T OpenBrace
T Int

T Identifier
T Assign

T Identifier
T Plus

T Identifier
T Semicolon
T Identifier
T PlusAssign
T Identifier
T Semicolon
T CloseBrace

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

41



while (y < z) {
int x = a + b;
y += x;

[ While }

[ Sequence }

Lexical Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

42



while (y < z) {
int x = a + b;
y += X;

[ While void

E Sequence ] void

int int int

int int

Lexical Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

43



while (y < z) {
int x = a + b;

y += x;
}
Loop: X = a + b
Y = X Ty
tl =y < z

1f tl goto Loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Optimization

Code Generation

Optimization

44



while (y < z) {
int x = a + b;

y += X;
}
X
Loop: vy
_t1
1f

1

X o

A+ +
N O

goto Loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

Code Generation

Optimization

45



while (y < z) {
int x = a + b;

y += Xx;
}
add S$1,
Loop: add $4,
slt So,
beq $0,

S2, $3
S1, 54
S1, $5
loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Optimization

46



while (y < z) {
int x = a + b;

y += x;
}
add $1,
Loop: add $4,
blt $1,

$2/
$1/
S5,

$3
$4
loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

47



Simple Example in C

exl.c

int main()
{
int z
int a
int b
int y

< inuwuwn

48



FREQ:0

<bb 2>:

z_2=10;

a3=1;

b 4=2;

y_5=0;

goto <bb 4>;

0%]

|

.
.

#y_1 = PHI <y_5(2)y_7(3)>

if (y_1<z_2) o
goto <bb 3>; *

goto <bb 5>;

FREQ:0
<bb 5>: J0%]
_8=0;
0%]

, y
FREQ:0 FREQ:0
<bb 6>:
<L3>: x_6=a3+b_4; W
return _8; y_7=y_l+x6; [, * *

2. as®

e =




Simple Example

50

HEE BEGINNING OF PROCEDURE
; Variables:
- var_4: -4
- var_8: -8
- var_C: -12
- var_10: -16
- var_14: -20
- var_18: -24
_main:
P200B0010200OTER push rbp
0200000100000 T61 mov rbp, rsp
0000000100000 T64 mov dword [rbp+var_4], 0x@
0200000102008 TED mov dword [rbp+var_8], 0xa
0200000100008 T72 mov dword [rbp+var_C], 0x1
P200R00100200BTT79 mov dword [rbp+var_10], 0x2
0000000102000 TEG mov dword [rbp+var_14], 0x0
loc_100000787:
(—5’ 0000000100000T87 mov eax, dword [rbp+var_14] ; CODE XREF=_main+69
0200000100000 TBa cmp eax, dword [rbp+var_g8]
" 0000000100000 T8Bd jge loc_100000faa
P200R0010200BTS3 mov eax, dword [rbp+var_C]
P20020010200BTO6 add eax, dword [rbp+var_10]
0200000100008 T99 mov dword [rbp+var_18], eax
0000000100008 C mov eax, dword [rbp+var_18]
0200000102008 TOT add eax, dword [rbp+var_14]
P000000100000BTa2 mov dword [rbp+var_14], eax
— P000R0010R0B0RBTaS jmp loc_100000787
loc_l00000Taa:
> 0000000100000 Taa mov eax, dword [rbp+var_4] ; CODE XREF=_main+45
02000001020 0ATad pop rbp
0200000100200 Tae ret
; endp




Typical Programming Sequence

Algorithm (typically natural language or pseudocode)

The human act of programming or software
development

!

High-level program (source code: Java, C++, C, ...)

The act of compilation (happens automatically
inside the computer)

Low-level program or (machine code: assembly)

54



Robot Example (St. Amant, pp. 86)

Make a robot move along the outline of a square
and report the distance it has moved

]

55



Robot Example

o What is the most simple version of this program possible?

56



Program Design and Refinement

Version 1: move, turn, move, turn etc.
To follow a square path:

Move 8 inches forward

Turn left

Move 8 inches forward

Turn left

Move 8 inches forward

Turn left

Move 8 inches forward

Turn left

Output the number 32 as a result

Block

© 00 2 O O b & 0+

p—
O

57



Robot Example

¢ What is missing from this program?
¢ Is it very useful?

¢ Observations?

58



Program Design and Refinement

Version 1: move, turn, move, turn etc.
To follow a square path:

Move 8 inches forward

Turn left

Move 8 inches forward

Turn left

Move 8 inches forward

Turn left

Move 8 inches forward

Turn left

Output the number 32 as a result

Block

© 00 2 O O b & 0+

p—
O

59



Robot Example

& Programming concept: basic block (or just block)

¢ Series of instructions that will be executed start to finish

« Once you enter a basic block, all instructions will be excecuted

o All programs are made up of a set of basic blocks tied
together in a particular order

o Can we continue to improve the program?

60



Welo]ollgle

Version &: repeat move, turn, 4 times
To follow a square path:
Do the following 4 times in a row

Move 8 inches forward
Turn left

Output the number 32 as a result

gl 3 O

61



Robot Example

¢ Programming Concept: Looping

& Basic blocks are often repeated in a ‘loop’, we can identify
the loops in the high-level language

o Gives us looping structures like ‘for’ and ‘while’

& Makes code simpler to read and more flexible (e.g. #loops is
now variable instead of hard-coded)

62



Introducing Variables

Version 3: repeat move, turn, 4 times. Total distance is
updated each time and produced as output

To follow a square path: 1
Set thel|total distance|to O &

Do the following 4 times in a row 3

Move 8 inches forward -
5

6

7

Turn left
Add 8 to theltotal distance
Output [total distance

63



Robot Example

¢ Programming Concept: variables

o Named items in a program that can take on different values
at different points of a program

o Naming is for us, the programmer. Makes code easier to build
and debug

64



If-then-else

Version 4: repeat move, turn, 4 times. Total distance is

updated each time and produced as output. Side length and
total distance in inches, clockwise is true or false

To follow a square path of a given
side length], [clockwise|or not:
Set the total distance to O
Do the following 4 times in a, row
Move fside lengthl inches forward
Iflclockwise]
then turn right
else turn left
Add iside Iengthl’ to the total distance
Output total distance

LJLJ

© OO0 O b & O+

65



Robot Example

& Programming Concept: control flow

o Statements that evaluate the state of variables and change
the course of program operation

o Let the programmer control the order in which basic blocks
are executed

¢ If, if-else, and similar

66



Summary

¢ ‘High-level’ programming are designed for human
convenience

¢ ‘High-level’ programming is an abstraction to make
programming easier

¢ ‘High-level’ programs are ‘block’ structured

¢ One ‘high-level’ statement produces many ‘low-level’
Instructions

¢ ‘Low-level’ programs (machine language) are what
really run on a the CPU

67



