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Reminders

u Quiz	3	today	– at	the	end

u Midterm	10/28

u HW	#2	due	tomorrow

u HW	#3	not	out	until	next	week
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Where are we?
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Side Note

u Two	things	funny/note	worthy	about	this	cartoon

u #1	is	COBOL	(we’ll	talk	about	that	later)

u #2	is	??
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“Y2k Bug”

u Y2K	bug??

u In	the	1970’s-1980’s	how	to	store	a	date?

u Use	MM/DD/YY
v More	efficient	– every	byte	counts	(especially	then)

u What	is/was	the	issue?

u What	was	the	assumption	here?
v “No	way	my	COBOL	program	will	still	be	in	use	25+	years	from	now”

u Wrong!

4



Agenda

u What	is	a	program

u Brief	History	of	High-Level	Languages

u Very	Brief	Introduction	to	Compilers

u ”Robot	Example”

u Quiz
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What is a Program?

uA	set	of	instructions	expressed	in	a	language	the	
computer	can	understand	(and	therefore	
execute)

uAlgorithm:	abstract	(usually	expressed	‘loosely’	
e.g.,	in	English	or	a	kind	of	programming	pidgin)

uProgram:	concrete	(expressed	in	a	computer	
language	with	precise	syntax)
v Why	does	it	need	to	be	precise?
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Programming in Machine Language is Hard

u CPU	performs	fetch-decode-execute	cycle	millions	of	
time	a	second

u Each	time,	one	instruction	is	fetched,	decoded	and	
executed

u Each	instruction	is	very	simple	(e.g.,	move	item	from	
memory	to	register,	add	contents	of	two	registers,	etc.)

u To	write	a	sophisticated	program	as	a	sequence	of	these	
simple	instructions	is	very	difficult	(impossible)	for	
humans
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Machine Language Example
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Machine Language Example
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Assembly Language Example

u Machine	code	is	impossible,	assembly	language	is	very	hard
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How to Program

u Machine	code	is	hard

u Assembly	doesn’t	scale

u Need	to	use	High	Level	Language
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High Level Languages

u High	Level	Languages	let	us	express	algorithms	in	“English	
like”	syntax

u Provide	*tons*	of	abstractions	that	let	us:
v Define	basic	data	types	(text,	integers,	floating	point)	and	operations
v Define	abstract	data	types	(trees,	graphs,	lists,	whatever!)
v Interact	with	users	(GUIs)
v Interact	with	OS	for	file	I/O,	network	I/O

u Provide	a	full	compile/execution	stack:
v code	->	assembly	->	machine	code
v code	->	byte	code	->	VM	(->	machine	code)
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High Level Languages
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https://www.tiobe.com/tiobe-index/https://spectrum.ieee.org/



High Level Language History

u To	understand	where	we	are	in	2018,	we	need	some	history

u 1950’s	many	“main	frame”	computers	were	being	built

u Programmed	in	machine	code
v Usually	using	punch-cards!

u Error	prone,	costly	(human	resources)

u Lots	of	people/projects,	but	two	stand	out:
v Grace	Hopper	(US	Navy	and	others)
v John	Backus	(IBM)
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Rear Admiral Dr. Grace Hopper

u Many	accomplishments	in	the	field	
of	computer	science

u Pioneered	the	idea	that	
programmers	should	write	code	in	
English	like	syntax:	“It’s	much	easier	for	
most	people	to	write	an	English	statement	than	it	is	
to	use	symbols.	So	I	decided	data	processors	ought	
to	be	able	to	write	their	programs	in	English,	and	the	
computers	would	translate	them	into	machine	code.”

u Pioneered	the	idea	that	code	
should	be	compiled	to	machine	
code
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A-0

u Dr.	Hopper’s	work	towards	”English”	programming	was	
incremental

u 1952	at	UNIVAC	released	A-0
u Linked	together	precompiled	sub-routines	with	arguments	into	
programs

u Probably	the	first	“useful”	compiled	language
u Subroutines	had	a	number,	arguments	were	given
u 15	3	2;	17	3.14;
u 15	=	power(3,	2);	17	=	sin(3.14)
u Can’t	find	existing	example	of	this	version
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A-2

u Dr.	Hopper	followed	up	with	
A-1	and	then	A-2	in	1953

u Even	closer	to	our	modern	
idea	of	a	programming	
language

u Still	can’t	find	code	examples
u https://www.mirrorservice.org/sites/www.bi

tsavers.org/pdf/computersAndAutomation/1
95509.pdf
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More Hopper Quotes
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A series continued

u Work	continued	on	the	A	
series	of	languages

u A3	and	AT3	could	compile	for	
more	than	one	machine	– high	
level	code	was	“portable”	
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Flow-Matic

u B-0	“Flow-Matic”

u Internet	is	amazing!	We	have	the	Flow-Matic advertising	
handout.
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A-series, B-0 lineage

u The	A-series	and	B-0	brings	us	to	our	first	living	fossil:	COBOL
v “Common	business-oriented	language”

u Designed	for	business	processing,	not	computer	science

u “COBOL	has	an	English-like	syntax,	which	was	designed	to	be	
self-documenting	and	highly	readable.”

u Released	in	1959
v Still	in	heavy	use:	financial	industries,	airlines
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FORTRAN

u John	Backus	at	IBM	developed	FORTRAN
v FORmula TRANslation

u First	high-level	language,	proposed	1954,	
compiler	delivered	1957

u “Much	of	my	work	has	come	from	being	lazy.	I	didn't	like	
writing	programs,	and	so,	when	I	was	working	on	
the IBM	701,	writing	programs	for	computing	missile	
trajectories,	I	started	work	on	a	programming	system	to	
make	it	easier	to	write	programs.”

u Backus	won	a	Turing	Award,	among	many	
other	accolades
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Being lazy isn’t all bad…
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https://xkcd.com/1205/



FORTRAN

u FORTRAN	was	adopted	by	academics	and	scientific	
computing	community

u Originally	programmed	on	punch	cards

u Many	developments	in	compilers	were	driven	by	the	need	to	
optimize	FORTRAN	->	machine	code	generation

26https://upload.wikimedia.org/wikipedia/commons/5/58/FortranCardPROJ039.agr.jpg



FORTRAN Example
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COBOL, Fortran…

u Hopper	and	Backus’	work	gave	us	high-level,	compiled	
languages

u English-like	syntax

u Portable	across	many	machine	types
v By	1963	~40	FORTRAN	compilers	existed	for	various	machines
v Write	code	one,	run	any	where

u Led	to	an	explosion	in	languages	developed	by	industry	and	
computer	scientists

u One	more	family	is	worth	visiting
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BCPL

u Basic	Combined	Programming	Language
v Martin	Richards,	Cambridge	1966
v Originally	intended	to	“bootstrap”	or	help	write	compilers	for	other	

languages	(how	meta!)
v Progenitor	of	the	curly	brace!
v Supposedly	the	first	”Hello	World”	program	was	in	BCPL
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GET "LIBHDR" 

LET START() = VALOF { 
FOR I = 1 TO 5 DO 

WRITEF("%N! = %I4*N", I, FACT(I)) 
RESULTIS 0 

} 

AND FACT(N) = N = 0 -> 1, N * FACT(N - 1)



B

u B	– stripped	down	version	of	BCPL

u Developed	at	Bell	Labs	circa	1969	by	Ken	Thomson	and	
Dennis	Ritchie

u Gave	us	=	for	assignment,	==	for	equality,	=+	for	“plus-
equals”,	++	and	-- for	increment/decrement
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/* The following function will print a non-negative number, n, 
to   the base b, where 2<=b<=10.  This routine uses the fact that
in the ASCII character set, the digits 0 to 9 have sequential
code values.  */

printn(n, b) {
extrn putchar;
auto a;
if (a = n / b)        /* assignment, not test for equality */

printn(a, b); /* recursive */
putchar(n % b + '0');

}



B is followed by C

u Bell	Labs	developed	original	version	of	UNIX	in	assembly	
language

u Wanted	to	re-write	UNIX	in	high-level	language	for	PDP-11
u B	couldn’t	work	well	on	PDP-11
u Dennis	Ritchie	expanded	B	into	C	(that	we	know	and	love)
u Designed	with	a	simple	compiler	in	mind
u Designed	to	give	low-level	access	to	memory
u Parts	of	UNIX	rewritten	into	C	in	early	1970’s	are	still	around	
in	macOS (40+	years	later!)
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C code

u C	gave	us	Objective-C,	C++
v Swift,	Rust

u Syntax	directly	influenced	Java,	C#
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High Level Programming as an 
Abstraction

u High-level	languages	based	on	some	observations:
v Machine	code/assembly	is	too	hard	to	program	effectively
v In	the	end	we	don’t	care	about	the	details	of	the	computer

u High-level	languages	program	an	’abstract	machine’
v Simple	programming	model,	simple	memory	model,	sequential	

execution,	etc.
v The	machine	doesn’t	exist,	but	that	doesn’t	matter

u High-level	languages	translate,	or	compile	code	from	the	
’abstract	machine’	to	the	real	computer
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Very Brief Introduction to Compilers

u All	high	level	languages	must	be	compiled	in	some	sense
u High	level	languages	are	a	sequence	of	statements

v Each	statement	stands	for	some	number	of	assembly	language	(or	
machine	language)	statements

u At	a	high-level	the	compiler	merely	translates	from	a	known	set	of	
statements	to	a	known	set	of	assembly	language	statements

u However,	the	statements	can	be	lexigraphically complex	and	we	
need	to	consider	things	like	memory,	variables,	functions,	the	
stack…etc.

u Also	we	need	to	consider	how	to	compile	code	for	different	
machine	(architectures)
v C-code	can	run	on	fastest	super-computer	and	smallest	microcontroller
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What is a compiler?

u Compiler	is	a	piece	of	software

u Inputs:
v High-level	code
v Target	machine	architecture
v Optional	inputs:	OS	type/version,	memory	size	or	restrictions,	CPU	

specific	optimizations,	cache	size,	etc.

u Output:
v Machine	code	(binary	data)	for	execution	on	specific	machine	type
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From Description to Implementation

● Lexical analysis (Scanning): Identify logical 
pieces of the description.

● Syntax analysis (Parsing): Identify how those 
pieces relate to each other.

● Semantic analysis: Identify the meaning of the 
overall structure.

● IR Generation: Design one possible structure.

● IR Optimization: Simplify the intended structure.

● Generation: Fabricate the structure.

● Optimization: Improve the resulting structure.
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The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code
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The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

Machine 
independent
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The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

Machine 
dependent
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Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}
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Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_PlusAssign
T_Identifier x
T_Semicolon
T_CloseBrace
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Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z
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Lexical Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}
While

Sequence

=

x +

a b

=

y +

y x

int

int int

int

int
int

int

int int

int

void

void

Semantic Analysis

<

y z

int int

bool
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Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}

Loop: x   = a + b
      y   = x + y
      _t1 = y < z
      if _t1 goto Loop

IR Generation
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Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}

      x   = a + b
Loop: y   = x + y
      _t1 = y < z
      if _t1 goto Loop

IR Optimization
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Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}

      add $1, $2, $3
Loop: add $4, $1, $4
      slt $6, $1, $5
      beq $6, loop
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Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}

      add $1, $2, $3
Loop: add $4, $1, $4
      blt $1, $5, loop



Simple Example in C
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main ()

loop 1

FREQ:0

<bb 4>:

# y_1 = PHI <y_5(2), y_7(3)>

if (y_1 < z_2)

goto <bb 3>;

else

goto <bb 5>;

FREQ:0

<bb 3>:

x_6 = a_3 + b_4;

y_7 = y_1 + x_6;

[0%]

FREQ:0

<bb 5>:

_8 = 0;

[0%]

[0%]

ENTRY

EXIT

FREQ:0

<bb 2>:

z_2 = 10;

a_3 = 1;

b_4 = 2;

y_5 = 0;

goto <bb 4>;

[0%]

[0%]

FREQ:0

<bb 6>:

<L3>:

return _8;

[0%]

[0%]

main ()

loop 1

FREQ:0

<bb 4>:

# y_1 = PHI <y_5(2), y_7(3)>

if (y_1 < z_2)

goto <bb 3>;

else

goto <bb 5>;

FREQ:0

<bb 3>:

x_6 = a_3 + b_4;

y_7 = y_1 + x_6;

[0%]

FREQ:0

<bb 5>:

_8 = 0;

[0%]

[0%]

ENTRY

EXIT

FREQ:0

<bb 2>:

z_2 = 10;

a_3 = 1;

b_4 = 2;

y_5 = 0;

goto <bb 4>;

[0%]

[0%]

FREQ:0

<bb 6>:

<L3>:

return _8;

[0%]

[0%]



Simple Example
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Typical Programming Sequence

Algorithm	(typically	natural	language	or	pseudocode)
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High-level	program	(source	code:	Java,	C++,	C,	…)

Low-level	program	or	(machine	code:	assembly)

The	human	act	of	programming	or	software	
development

The	act	of	compilation	(happens	automatically	
inside	the	computer)



Robot Example (St. Amant, pp. 86)

Make	a	robot	move	along	the	outline	of	a	square	
and	report	the	distance	it	has	moved
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Robot Example

u What	is	the	most	simple	version	of	this	program	possible?
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Program Design and Refinement
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Version 1: move, turn, move, turn etc.
To follow a square path: 1

Move 8 inches forward 2
Turn left 3
Move 8 inches forward 4
Turn left 5
Move 8 inches forward 6
Turn left 7
Move 8 inches forward 8
Turn left 9
Output the number 32 as a result 10

Block



Robot Example

u What	is	missing	from	this	program?

u Is	it	very	useful?

u Observations?
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Program Design and Refinement
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Version 1: move, turn, move, turn etc.
To follow a square path: 1

Move 8 inches forward 2
Turn left 3
Move 8 inches forward 4
Turn left 5
Move 8 inches forward 6
Turn left 7
Move 8 inches forward 8
Turn left 9
Output the number 32 as a result 10

Block



Robot Example

u Programming	concept:	basic	block	(or	just	block)

u Series	of	instructions	that	will	be	executed	start	to	finish
v Once	you	enter	a	basic	block,	all	instructions	will	be	excecuted

u All	programs	are	made	up	of	a	set	of	basic	blocks	tied	
together	in	a	particular	order

u Can	we	continue	to	improve	the	program?
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Looping
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Version 2: repeat move, turn, 4 times
To follow a square path: 1

Do the following 4 times in a row 2
Move 8 inches forward 3
Turn left 4

Output the number 32 as a result 5



Robot Example

u Programming	Concept:	Looping

u Basic	blocks	are	often	repeated	in	a	‘loop’,	we	can	identify	
the	loops	in	the	high-level	language

u Gives	us	looping	structures	like	’for’	and	‘while’

u Makes	code	simpler	to	read	and	more	flexible	(e.g.	#loops	is	
now	variable	instead	of	hard-coded)
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Introducing Variables
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Version 3: repeat move, turn, 4 times. Total distance is 
updated each time and produced as output
To follow a square path: 1

Set the total distance to 0 2
Do the following 4 times in a row 3

Move 8 inches forward 4
Turn left 5
Add 8 to the total distance 6

Output total distance 7



Robot Example

u Programming	Concept:	variables

u Named	items	in	a	program	that	can	take	on	different	values	
at	different	points	of	a	program

u Naming	is	for	us,	the	programmer.	Makes	code	easier	to	build	
and	debug
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If-then-else
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Version 4: repeat move, turn, 4 times. Total distance is 
updated each time and produced as output. Side length and 
total distance in inches, clockwise is true or false
To follow a square path of a given
side length, clockwise or not: 1
Set the total distance to 0 2

Do the following 4 times in a row 3
Move ‘side length’ inches forward 4
If clockwise 5

then turn right 6
else turn left 7
Add ‘side length’ to the total distance 6

Output total distance 9



Robot Example

u Programming	Concept:	control	flow

u Statements	that	evaluate	the	state	of	variables	and	change	
the	course	of	program	operation

u Let	the	programmer	control	the	order	in	which	basic	blocks	
are	executed

u If,	if-else,	and	similar
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Summary

u ‘High-level’	programming	are	designed	for	human	
convenience

u ‘High-level’	programming	is	an	abstraction	to	make	
programming	easier

u ‘High-level’	programs	are	‘block’	structured
uOne	‘high-level’	statement	produces	many	‘low-level’	
instructions

u ‘Low-level’	programs	(machine	language)	are	what	
really	run	on	a	the	CPU
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