
Introduction to Computer Science
CSCI	109

Andrew	Goodney
Fall	2019

China	– Tianhe-2

Readings
St.	Amant,	1-4,	8

Lecture	6:	First	Half	Review October	6th,	2019

Where are we?

1

Review

u Last	time	we	got	a	little	ahead

u So	we’ll	review	the	first	half	of	the	semester

2

Lecture #1

3

Lecture #1

4

Computational Thinking

u “thought	processes	involved	in	formulating	problems	and	their	
solutions	so	that	the	solutions	are	represented	in	a	form	that	can	be	
effectively	carried	out	by	an	information-processing	agent” (Cuny,	Snyder,	
Wing)

v way	of	solving	problems,	designing	systems,	and	understanding	human	
behavior	that	draws	on	concepts	fundamental	to	computer	science
u To	flourish	in	today's	world,	computational	thinking	has	to	be	a	fundamental	part	

of	the	way	people	think	and	understand	the	world
v creating	and	making	use	of	different	levels	of	abstraction,	to	understand	and	

solve	problems	more	effectively
v thinking	algorithmically and	with	the	ability	to	apply	mathematical	concepts	

such	as	induction to	develop	more	efficient,	fair,	and	secure	solutions
v understanding	the	consequences	of	scale,	not	only	for	reasons	of	efficiency	

but	also	for	economic	and	social	reasons

5

Humans	thinking	(i.e.,	transforming	information)	to	devise	procedures	
for	execution	by	information	transformers	(human	and/or	machine)

Before Mechanical Computers

Electronic	computers	were	preceded	by	
mechanical	computers	and	mechanical	computers	
were	preceded	by…					

…	looms

6

Discrete Machines: State

uHow	does	the	loom	behave	as	a	function	of	time?
u At	any	given	time	a	set	of	threads	is	raised	and	the	rest	
are	lowered

uWriting	down	the	sequence	of	raised	(and	lowered)	
threads	tells	us	the	steps	the	machine	went	through	to	
produce	the	cloth/tapestry/whatever

u The	pattern	of	raised	(and	lowered)	threads	is	called	the	
state of	the	machine

7

CS Topic: State

u State	is	a	very	common	CS	concept

u Here	we	have	the	state	of	a	physical	machine

u In	CS	we	talk	about	the	“state”	of	an	object
v Of	a	database
v Of	a	robot
v Of	a	“state-machine”	(finite,	Turing,	etc…)
v Of	a	system	(physical	or	virtual)
v …

u Then	we	need	a	way	to	describe	the	state
v Gives	us	the	notion	of	an	encoding

8

CS Topic: Discrete Machines, State and
Encoding

u Choosing	a	state	representation	takes	skill.	The	state	
should	be
v Parsimonious:	it	should	be	a	“small”	descriptor	of	what	the	machine	is	

doing	at	any	given	time
v Adequate:	it	should	be	“big	enough”	to	capture	everything	“interesting”	

about	the	machine

u These	are	sometimes	contradictory.	They	are	also	
qualitative	and	depend	on	what	behavior	of	the	
machine	we	want	to	describe

uUsually	you	need	a	vocabulary	(encoding)	to	describe	
state.	In	the	case	of	a	loom,	state	can	be	expressed	as	a	
binary	pattern	(1	for	raised,	0	for	lowered)

9

Discrete Machines: Abstraction

u The	loom	is	a	discrete	machine
v State	is	binary	pattern	– i.e.	discrete
v The	notion	of	time	is	discrete	– i.e.	time	is	modeled	as	proceeding	in	steps	or	

finite	chunks

uMore	precisely,	the	loom	can	be	usefully	modeled	as	a	
discrete	machine
v Because	of	course	being	a	physical	device	there	is	variation,	nothing	is	

exactly	precise
v But	modeling	the	machine	as	discreet	is	good	enough	and	works	for	this	

purpose

u This	is	an	example	of	an	abstraction – a	key	concept	in	
Computer	Science 10

CS topic: Abstraction

u One	of	the	fundamental	“things”	we	do	in	CS

u Reducing	or	distilling	a	problem	or	concept	to	the	essential	
qualities
v Simple	set	of	characteristics	that	are	most	relevant	to	the	problem

u Many	(most,	all)	of	what	we	do	in	engineering	and	computer	
science	involves	abstractions

u Here	the	abstraction	is	modelling	the	loom	as	a	simple	
discreet	state	machine
v Makes	it	possible	to	understand
v And	makes	it	possible	to	“program”	the	loom

11

Lecture #1

u What	makes	a	computer?
v Lots	of	things	can	help	us	compute	(information	transformation)
v Computers	need

u Memory
u Control-flow

u State

u Abstraction

12

Lecture #2

13

Motivation

u What	do	computers	do?
v Math	with	binary	numbers

u So	what	do	we	need	to	build	a	computer?
v Place	to	store	binary	numbers
v Way	to	do	math

14

Arithmetic/Logic

u “math”	we	need	to	do	with	numbers	in	memory
v ADD
v SUBTRACT
v MULTIPLY
v DIVIDE
v AND,OR,XOR,NOT
v Etc…

u Assume	we	can	build	a	circuit	that	can	do	this
u Takes	numbers	represented	as	digital	(electrical)	values,	produces	
results	as	the	same

15

OP2

Start building a circuit…

16

bus

Instructing the CPU

u Now	we	can	make	instructions…

u Instructions	are	binary	numbers	that	tell	the	circuit	what	to	
do

u Select	the	1st operand,	2nd operand,	destination	and	function

u With	a	series	of	such	instructions	the	circuit	can	perform	
arbitrary	computations

17

Where to get the instructions?

u Instruction	Memory

18
Controller

ALU

How to compute?

u Fill	instruction	memory	with	desired	program

u Initialize	data	memory

u Run	an	instruction	(given	by	program	counter)
v Then	increment	program	counter
v Run	next	instruction,	increment	program	counter…

u Some	early	computers	were	pretty	much	just	this

19

The Central Processing Unit (CPU)

20

u Controller	+	ALU	=	Central	Processing	Unit	(CPU)
u CPU	has	a	small	amount	of	temporary	memory	within	it

v Registers
v A	special	register	called	the	program	counter	(PC)

u CPU	performs	the	following	cycle	repeatedly

Fetch	
Instruction

Decode
Instruction

Execute
Instruction

Fetch-Decode-Excecute

u Fetch
v Get	the	next	instruction	from	memory

u Decode
v Send	the	proper	signals	from	the	controller	to	the	ALU	and	Registers

u Execute
v Let	the	ALU	do	its	work	to	produce	a	result

21

The Storage Hierarchy

22

Cheaper	&	
larger

FasterRegisters

RAM	(memory)

Secondary	Storage	(Disk	Space)

Trade-offs

u An	aside…

u Identifying	trade-offs	is	a	fundamental	engineering	skill

u Understanding	and	balancing	trade-offs	is	part	of	design	process

u Not	always	easy	to	manage!

u Conflicting	interests

u Speed	vs.	space	is	very	common	tradeoff	in	CS
v So	if	you	want	faster	execution	you	need	more	memory

23

Cache

u Small	(but	bigger	than	registers)
u Volatile
u Fast	(not	as	fast	as	registers,	but	faster	than	RAM)
uWhat	to	keep	in	the	cache	?	

v Things	that	programs	are	likely	to	need	in	the	future
v Locality	principle:	

u Look	at	what	items	in	memory	are	being	used
u Keep	items	from	nearby	locations	(spatial	locality)
u Keep	items	that	were	recently	used	(temporal	locality)

24

Modern Computer Architecture diagram

25

Controller

ALU

I/O Devices

(USB, etc)

CPU

Registers &

Program Counter

Memory

DRAM

Disk

L2

Cache

L3

Cache

Boot ROM

I/O Controller

Disk controller

On die, but not

part of "CPU"

Programming a CPU

u How	to	compute?

u Develop	a	series	of	low-level	instructions
v Using	the	registers	and/or	main	memory	for	storage
v Using	only	low-level	operations	made	available	by	the	particular	CPU

u ”Assembly	language”
v Or	maybe	even	machine	code	(probably	not,	though)

26

Typical Operations
u ADD	Ri Rj Rk Add	contents	of	registers	Ri and	Rj and	put	result	in	register	Rk
u SUBTRACT	Ri Rj Rk Subtract	register	Rj from	register	Ri and	put	result	in	register	Rk
u AND	Ri Rj Rk Bitwise	AND	contents	of	registers	Ri,	Rj and	put	result	in	register	Rk
u NOT	Ri Bitwise	NOT	the	contents	of	register	Ri
u OR	Ri Rj Rk Bitwise	OR	the	contents	of	registers	Ri,	Rj and	put	result	in	register	Rk
u SET	Ri value Set	register	Ri to	given	value
u SHIFT-LEFT	Ri Shift	bits	of	register	Ri left	
u SHIFT-RIGHT	Ri Shift	bits	of	register	Ri right	
u MOVE	Ri Rj Copy	contents	from	register	Ri to	register	Rj
u LOAD	Mi Ri Copy	contents	of	memory	location	Mi to	register	Ri
u WRITE	Ri Mi Copy	contents	of	register	Ri to	memory	location	Mi
u GOTO	Mi Jump	to	instruction	stored	in	memory	location	Mi
u COND_GOTO	Ri Rj Mi If	Ri >	Rj,	jump	to	instruction	stored	in	memory	location	Mi

27

Lecture #2 Summary

u Computers	do	two	things:
v Binary	Math
v Move	data

u So	we	build	a	state	machine	(CPU):
v Controller,	Registers,	ALU
v Fetch-Decode-Execute	Cycle

u Memory	Hierarchy	and	Caching

u Assembly	Language	Programming

28

Lecture #3

29

u “The	architecture	level	gives	us	a	very	detailed	view	of	what	
happens	on	a	computer.	But	trying	to	understand	everything	
a	computer	does	at	this	level	would	be…(insert	analogy	
about	perspective).	If	all	we	can	see	is	fine	detail,	it	can	be	
hard	to	grasp	what’s	happening	on	a	larger	scale.”

30

Problem Solving

u Architecture	puts	the	computer	under	the	microscope
v Imagine	solving	*all*	problems	by	thinking	about	the	computer	at	the	

architecture	level

u Early	computer	scientists	*had*	to	do	this
v Luckily	we	don’t.

31

Problem Solving

u Computers	are	used	to	solve	problems
u Abstraction	for	problems

v How	to	represent	a	problem	?	
v How	to	break	down	a	problem	into	smaller	parts	?	
v What	does	a	solution	look	like	?

u Two	key	building	blocks
v Abstract	data	types
v Algorithms

32

Abstract Data Types

uModels	of	collections	of	information
v Chosen	to	help	solve	a	problem

u Typically	at	an	abstract	level
v Don’t	deal	with	implementation	details:	memory	layout,	pointers,	etc.

“…	describes	what	can	be	done	with	a	collection	of	
information,	without	going	down	to	the	level	of	computer	
storage.”	[St.	Amant,	pp.	53]

33

Motivation for Abstract Data Structures

u The	nature	of	some	data,	and	the	way	we	need	to	accesses	it	
often	requires	some	structure,	or	organization	to	make	things	
efficient	(or	even	possible)

u Data:	large	set	of	names	(maybe	attendance	data)

u Problems:	did	Jelena	attend	on	9/9?	How	many	lectures	did	
Mario	attend?	Which	students	didn’t	attend	8/26?

34

Sequences, Trees and Graphs

35

u Sequence:	a	list
v Items	are	called	elements
v Item	number	is	called	the	index

uGraph

u Tree
Eric

Emily Jane

Terry Bob

Jim

Mike Chris

Bob

Sequences aka Lists

u Sequences	are	our	first	fundamental	data	structure

u Sequences	hold	items
v Items	=	what	ever	we	need.	It’s	abstract.	

u Sequences	have	the	notion	of	order
v Items	come	one	after	another

u Sequences	can	be	accessed	by	index,	or	relative
v Find	the	5th item
v Or	move	to	next	or	previous	from	current	item

u The	“how”	(implementation)	is	not	important	(now)
v Arrays	(C,	C++),	Vectors	(C++),	ArrayList (Java),	Lists	(Python)…
v These	are	all	different	implementations	of	this	abstract	data	structure

36

Sequence Tasks

u Most	“questions”	(problems)	that	are	solved	using	sequences	
are	essentially	one	of	two	questions:

u Is	item	A	in	sequence	X?

u Where	in	sequence	Y	is	item	B?

u Both	of	these	are	answered	by	searching	the	sequence

37

Sequences: Searching

u Sequential	search:	start	at	1,	proceed	to	next	
location…

u If	names	in	the	list	are	sorted (say	in	alphabetical	
order),	then	how	to	proceed?
v Start	in	the	‘middle’
v Decide	if	the	name	you’re	looking	for	is	in	the	first	half	or	second
v ‘Zoom	in’	to	the	correct	half
v Start	in	the	‘middle’
v Decide	if	the	name	you’re	looking	for	is	in	the	first	half	or	second
v ‘Zoom	in’	to	the	correct	half
v …

u Which	is	more	efficient	(under	what	conditions)?
38

brute	
force

divide-
and-
conquer

Sorting

u If	searching	a	sorted	sequence	is	more	efficient	(per	search),	
this	implies	we	need	a	way	to	sort	a	sequence!

u Sorting	algorithms	are	fundamental	to	CS
v Used	A	LOT	to	teach	various	CS	and	programming	concepts

u Computer	Scientists	like	coming	up	with	better	more	efficient	
ways	to	sort	data
v Even	have	contests!

u We’ll	look	at	two	algorithms	with	very	different	designs
v Selection	Sort
v Quick	Sort

39

Sorting: Selection Sort

40

u Sorting:	putting	a	set	of	items	in	order
u Simplest	way:	selection	sort

v March	down	the	list	starting	at	the	beginning	and	find	the	
smallest	number

v Exchange	the	smallest	number	with	the	number	at	location	1
v March	down	the	list	starting	at	the	second	location	and	find	
the	smallest	number	(overall	second-smallest	number)

v Exchange	the	smallest	number	with	the	number	at	location	2
v …

Sorting: Quicksort

41

u Pick	a	‘middle’	element	in	the	sequence	(this	is	called	the	pivot)

u Put	all	elements	smaller	than	the	pivot	on	its	left

u Put	all	elements	larger	than	the	pivot	on	the	right

u Now	you	have	two	smaller sorting	problems	because	you	have	an	unsorted	list	to	the	left	of	the	pivot	and	an	
unsorted	list	to	the	right	of	the	pivot

u Sort	the	sequence	on	the	left	(use	Quicksort!)
v Pick	a	‘middle’	element	in	the	sequence	(this	is	called	the	pivot)

v Put	all	elements	smaller	than	the	pivot	on	its	left

v Put	all	elements	larger	than	the	pivot	on	the	right

v Now	you	have	two	smaller sorting	problems	because	you	have	an	unsorted	list	to	the	left	of	the	pivot	and	an	unsorted	list	to	the	right	of	the	pivot

v Sort	the	sequence	on	the	left	(use	Quicksort!)

v Sort	the	sequence	on	the	right	(use	Quicksort!)

u Sort	the	sequence	on	the	right	(use	Quicksort!)
v Pick	a	‘middle’	element	in	the	sequence	(this	is	called	the	pivot)

v Put	all	elements	smaller	than	the	pivot	on	its	left

v Put	all	elements	larger	than	the	pivot	on	the	right

v Now	you	have	two	smaller sorting	problems	because	you	have	an	unsorted	list	to	the	left	of	the	pivot	and	an	unsorted	list	to	the	right	of	the	pivot

v Sort	the	sequence	on	the	left	(use	Quicksort!)

v Sort	the	sequence	on	the	right	(use	Quicksort!)

Quicksort

42

Lecture #3 Summary

u Solving	a	problem	with	a	computer	usually	involves:
v A	structured	way	to	store	(organize)	data
v An	algorithm	that	accesses	and	modifies	that	data

u Algorithms	have	characteristics,	like	brute-force or	divide-and-conquer that	
help	us	understand	how	they	work

u Thinking	about	abstract	data	types	and	algorithms	frees	us	from	worrying	
about	the	implementation	details

u Sequences	are	a	fundamental	ADT	used	to	organize	data	in	an	ordered	list.
u Sequences	can	be	searched:

v Linear	search	(brute-force)
v Binary	search	(divide-and-conquer),	but	requires	sorted	list

u Sequences	can	be	sorted:
v Selection	sort	(brute-force)
v Quick-sort	(divide-and-conquer

43

Lecture #4

44

Abstract Data Types

uModels	of	collections	of	information
u Typically	at	an	abstract	level	

“…	describes	what	can	be	done	with	a	collection	of	
information,	without	going	down	to	the	level	of	computer	
storage.”	[St.	Amant,	pp.	53]

45

Sequences, Trees and Graphs

46

u Sequence:	a	list
v Items	are	called	elements
v Item	number	is	called	the	index

uGraph

u Tree
Eric

Emily Jane

Terry Bob

Jim

Mike Chris

Bob

Motivation for Abstract Data Structures
(Graphs, Trees)

u The	nature	of	some	data,	and	the	way	we	need	to	accesses	it	
often	requires	some	structure,	or	organization	to	make	things	
efficient	(or	even	possible)

u Data:	large	set	of	people	and	their	family	relationship	used	
for	genetic	research

u Problems:	two	people	share	a	rare	genetic	trait,	how	closely	
are	the	related?	(motivates	for	a	tree)

47

Motivation for Abstract Data Structures
(Graphs, Trees)

u Data	set:	roads	and	intersections.

u Problem:	how	to	travel	from	A	to	B	@5pm	on	a	Friday?	How	
to	avoid	traffic	vs.	prefer	freeways?	(motivates	a	weighted	
graph)	

u Data	set:	freight	enters	country	at	big	port	(LA/Long	Beach).	

u Problem:	How	to	route	freight	given	train	lines/connections?
v Route	fastest,	vs.	lowest	cost?

u Data	set:	airport	locations

u Problem:	how	to	route	and	deliver	a	package	to	any	address	
in	the	US	with	minimum	cost?	Think	UPS,	FedEx

48

Motivation for Abstract Data Structures
(Graphs, Trees)

u Data	set:	network	switches	and	their	connectivity	(network	
links)

u Problem:	Chose	a	subset	of	network	links	that	connect	all	
switches	without	loops	(networks	don’t	like	loops).	Motivates	
graphs,	and	graph	->	tree	algorithm

49

Motivation for Abstract Data Structures
(Graphs, Trees)

u Data	set:	potential	solutions	to	a	big	problem

u Problem:	how	to	find	an	optimal	solution	to	the	problem,	
without	searching	every	possibility	(solution	space	too	big).	
Motivates	graphs	and	graph	search	to	solve	problems.

u Other	data/problems	that	motivate	graphs/trees:
v Financial	networks	and	money	flows,	social	networks,	rendering	HTML	

code,	compilers,	3D	graphics	and	game	engines… and	more

50

Trees

u Each	node/vertex	has	
exactly	one	parent	
node/vertex

u No	loops
u Directed	(links/edges	point	
in	a	particular	direction)

u Undirected	(links/edges	
don’t	have	a	direction)

u Weighted	(links/edges	have	
weights)

u Unweighted (links/edges	
don’t	have	weights)

51

Eric

Emily Jane

Terry Bob

Which of these are NOT trees?

52

1

2

3

5

6

7

4 8

Graph/Tree Traversal

u Traversing	a	graph	or	a	tree:	“moving”	and	examining	the	
nodes	to	enumerate	the	nodes	or	look	for	solutions

u Example:	find	all	living	descendants	of	X	in	our	genetic	
database.

u For	traversing	a	graph	we	pick	a	starting	node,	then	two	
methods	are	obvious:
v Depth	first

u Go	as	deep	(far	away	from	starting	node)	as	possible	before	backtracking

v Breadth	first
u Examine	one	layer	at	a	time

53

Tree Traversal

u Depth	first	traversal
Eric,	Emily,	Terry,	Bob,	Drew,	Pam,	Kim,	Jane

u Breadth	first	traversal
Eric,	Emily,	Jane,	Terry,	Bob,	Drew,	Pam,	Kim
Eric,	Jane,	Emily,	Bob,	Terry,	Pam,	Drew,	Kim

54

Eric

Emily Jane

Terry Bob

Drew Pam

Kim

Tree Traversal

u Depth	first	vs.	Breadth	first	eventually	visit	all	nodes,	but	do	
so	in	a	different	order

u Used	to	answer	different	questions
v Depth	first:	good	for	game	trees,	evaluating	down	a	certain	path
v Breadth	first:	look	for	shortest	path	between	two	nodes	(e.g for	

computer	networks)

u Roughly:
v Depth	first:	find	‘a’	solution	to	the	problem
v Breadth	first:	find	‘the’	solution	to	the	problem

55

Graphs: Directed and Undirected

56

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Directed

Graph to Tree Conversion Algorithms

u Sometimes	the	question	is	best	answered	by	a	tree,	but	we	
have	a	graph

u Need	to	convert	graph	to	tree	(by	deleting	edges)

u Usually	want	to	create	a	“spanning	tree”

57

Spanning Trees

u Spanning	tree:	Any	tree	that	covers	all	vertices
v “Cover”	=	“include”	in	graph-speak

u Example:	graph	of	social	network	connections.	Want	to	
create	a	“phone	tree”	to	disseminate	information	in	the	
event	of	an	emergency

u Example:	network	of	switches	with	redundant	links	and	
multiple	paths	between	switches	(there	are	loops	aka	cycles	
in	the	graph).	Need	to	chose	a	set	of	links	that	connects	all	
switches	with	no	loops.

58

Minimum Spanning trees

uSpanning	tree:	Any	tree	that	covers	all	vertices,	not	
as	common	as	the	MST

uMinimum spanning	tree	(MST):	Tree	of	minimal	total	
edge	cost

u If	you	have	a	graph	with	weighted	edges,	a	MST	is	
the	tree	where	the	sum	of	the	weights	of	the	edges	
is	minimum

uThere	is	at	least	one	MST,	could	be	more	than	one
u If	you	have	unweighted	edges	any	spanning	tree	is	a	
MST 59

uWhy	compute	the	minimum	spanning	tree?
v Minimize	the	cost	of	connections	between	cities	
(logistics/shipping)

v Minimize	of	cost	of	wires	in	a	layout	(printed	
circuit,	integrated	circuit	design)

60

Computing the MST

uTwo	greedy	algorithms	to	compute	the	MST
v Prim’s	algorithm:	Start	with	any	node	and	greedily	
grow	the	tree	from	there

v Kruskal’s	algorithm:	Order	edges	in	ascending	order	of	
cost.	Add	next	edge	to	the	tree	without	creating	a	
cycle.

u ‘Greedy’	means	solution	is	refined	at	each	step	
using	the	most	obvious	next	step,	with	the	hope	
that	eventual	solution	is	globally	optimal

61

Prim’s algorithm

u Initialize	the	minimum	spanning	tree	with	a	vertex	chosen	at	
random.

u Find	all	the	edges	that	connect	the	tree	to	new	vertices	(i.e
uncovered,	or	disconnected),	find	the	minimum	and	add	it	to	
the	tree

u Keep	repeating	step	2	until	all	vertices	are	added	to	the	MST

(adapted	from:	https://www.programiz.com/dsa)

62

Kruskal’s algorithm

u Sort	all	the	edges	from	low	weight	to	high

u Take	the	edge	with	the	lowest	weight,	if	adding	the	edge	
would	create	a	cycle,	then	reject	this	edge	and	select	the	
edge	with	the	next	lowest	weight

u Keep	adding	edges	until	we	reach	all	vertices.

(adapted	from:	https://www.programiz.com/dsa)

63

Shortest path

u For	a	given	source	vertex	(node)	
in	the	graph,	it	finds	the	path	
with	lowest	cost	(i.e.	the	shortest	
path)	between	that	vertex	and	
every	other	vertex.

u Say	your	source	vertex	is	Mike
u Lowest	cost	path	from	Mike	to	Jim	
is	Mike	– Bob	- Tia	– Jim	(cost	3)

u Lowest	cost	path	from	Mike	to	Joe	
is	Mike	– Bob	– Tia	– Jim	– Joe	
(cost	4)

v Very	important	for	networking	
applications!

64

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Dijkstra’s algorithm: Basic idea

u Fan	out	from	the	initial	node

u In	the	beginning	the	distances	to	the	neighbors	of	the	initial	node	
are	known.	All	other	nodes	are	tentatively	infinite	distance	away.

u The	algorithm	improves	the	estimates	to	the	other	nodes	step	by	
step.

u As	you	fan	out,	perform	the	operation	illustrated	in	this	example:	
if	the	current	node	A is	marked	with	a	distance	of	4,	and	the	edge	
connecting	it	with	a	neighbor	B has	length	2,	then	the	distance	to	
B (through	A)	will	be	4	+	2	=	6.	If	B	was	previously	marked	with	a	
distance	greater	than	6	then	change	it	to	6.	Otherwise,	keep	the	
current	value.

65

Lecture 4 Summary

u Trees	and	Graphs
v Sometimes	need	to	model	interactions,	connections	between	data
v Vertices,	edges
v Directed/undirected
v Weighted/unweighted

u Graph	Traversal
v BFS,	DFS

u Graph	to	Tree
v Spanning	trees,	minimum	spanning	trees

u Prim’s,	Kruskal’s

u Shortest	path:	Dijkstra’s

66

Lecture #5

67

Recursion

u Recursion,	recursion	relations,	recursive	data	structures,	
recursive	algorithms

u Defining	a	data	structure	or	algorithm	in	terms	of	itself

u Many	problems	are	easier	to	understand	(implement,	solve)	
as	recursive	algorithms

68

Recursion: abstract data types

uDefining	abstract	data	types	
in	terms	of	themselves	(e.g.,	
trees	contain	trees)

u So	a	list	is:	
The	item	at	the	front	of	the	

list,	and	then	the	rest	of	
the	list	(which	is,	an	
item	and	then	the	rest	
of	the	list…)

69

[1,3,5,7,32,6,7,121,7…]

Recursion: abstract data types

uDefining	abstract	data	types	
in	terms	of	themselves	(e.g.,	
trees	contain	trees)

u So	a	tree	is	
Either	a	single	vertex,	or
a	vertex	that	is	the	parent	

of	one	or	more	trees

70

Eric

Emily Jane

Terry Bob

Drew Pam

Kim

Recursion and algorithms

u Concept	of	recursion	applies	to	algorithms	as	well

u Some	algorithms	are	defined	recursively:
v Fibonacci	numbers:

u Fib(n)	=	0	(n=0),	1	(n=1),	fib(n-1)	+	fib(n-2)

u Some	can	be	expressed	iteratively:
v Factorial	=	n*(n-1)*(n-2)*(n-3)…*1

u Or	recursively:
v Factorial	=	n	*	factorial(n-1)

71

Recursion and algorithms

u If	an	abstract	data	type	can	be	thought	of	recursively	(like	a	
list)	these	often	inspire	recursive	algorithms	as	well

u List	sum:
v Sum	of	a	list	=	value	of	first	item	+	sum	of	the	rest	of	the	list

72

Recursion: algorithms

u Defining	algorithms	in	terms	of	themselves	(e.g.,	quicksort)
Check	whether	the	sequence	has	just	one	element.	If	it	
does,	stop
Check	whether	the	sequence	has	two	elements.	If	it	does,	
and	they	are	in	the	right	order,	stop.	If	they	are	in	the	
wrong	order,	swap	them,	stop.	
Choose	a	pivot	element	and	rearrange	the	sequence	to	
put	lower-valued	elements	on	one	side	of	the	pivot,	
higher-valued	elements	on	the	other	side
Quicksort	the	left	sublist
Quicksort	the	right	sublist

73

Recursion: algorithms

uHow	do	you	write	a	selection	sort	recursively	?
uHow	do	you	write	a	breadth-first	search	of	a	tree	
recursively	?	What	about	a	depth-first	search	?

74

Recursive Selection Sort

u How	to	do	this?

u Need	to	think	about	the	problem	in	recursive	terms:
v Think	of	the	problem	in	a	way	that	gets	smaller	each	time	you	consider	

it…
v Also	needs	to	have	a	terminating	condition	(base	case)

u Thinking	of	selection	sort	in	this	way…

75

Recursive selection sort

u Selection	sort	finds	minimum	element,	swaps	to	front.	Then	
finds	next	smallest,	swaps	to	2nd… and	so	on

u Observation:	the	front	element	is	either:
v Already	the	minimum	or
v The	minimum	is	in	the	rest	of	the	list

u Observation:	once	we	move	the	minimum	to	the	front	of	the	
list,	we	can	call	selection	sort	on	the	rest	of	the	list

76

Recursive selection sort

u We	actually	need	two	recursive	algorithms:
v find_min(list):	recursively	find	the	index	of	the	minimum	item
v selection_sort(list):

u If	the	length	of	the	list	is	one,	stop,	the	list	is	sorted	
u call	find_min()	to	find	the	minimum	element,	swap	with	the	front	of	the	list	

(if	necessary)
u Call	selection_sort()	on	the	rest	of	the	list

v Stop	when	”rest	of	list”	is	one	item

77

Recursive DFS, BFS

u Recursive	DFS	is	pretty	easy:
v for	each	neighbor	u	of	v:

u If	u	is	‘unvisited’:	call	dfs(u)

u Recursive	BFS…

78

Analysis of algorithms

uHow	long	does	an	algorithm	take	to	run?	
time	complexity

uHow	much	memory	does	it	need?	
space	complexity

79

Estimating running time

uHow	to	estimate	algorithm	running	time?
vWrite	a	program	that	implements	the	
algorithm,	run	it,	and	measure	the	time	it	takes

vAnalyze	the	algorithm	(independent	of	
programming	language	and	type	of	computer)	
and	calculate	in	a	general	way	how	much	work	
it	does	to	solve	a	problem	of	a	given	size

uWhich	is	better?	Why?
80

Analysis of binary search

u n	=	8,	the	algorithm	takes	3	steps
u n	=	32,	the	algorithm	takes	5	steps
u For	a	general	n,	the	algorithm	takes	log2n	steps 81

Big O notation

u Characterize	functions	according	to	how	fast	they	grow

u The	growth	rate	of	a	function	is	called	the	order	of	the	function.	
(hence	the	O)

u Big	O	notation	usually	only	provides	an	upper	bound on	the	
growth	rate	of	the	function

u Asymptotic	growth

f(x)	=	O(g(x))	as	x	->	∞	if	and	only	if	there	exists	a	positive	number	
M such	that	f(x)	≤	M	*	g(x)	for	all	x	>	x0

82

Conventions

uO(1)	denotes	a	function	that	is	a	constant
v f(n)	=	3,	g(n)	=	100000,	h(n)	=	4.7	are	all	said	to	be	O(1)

u For	a	function	f(n)	=	n2 it	would	be	perfectly	correct	to	
call	it	O(n2)	or O(n3)	(or	for	that	matter	O(n100))

uHowever	by	convention	we	call	it	by	the	smallest	order	
namely O(n2)	
v Why?

83

What do they have in common?

u (Binary)	search	of	a	sorted	list:	O(log2n)

u Selection	sort:	O(n2)

u Quicksort:	O(n	log	n)

u Breadth	first	traversal	of	a	tree:	O(V)

u Depth	first	traversal	of	a	tree:	O(V)

u Prim’s	algorithm	to	find	the	MST	of	a	graph:	O(V2)	

u Kruskal’s algorithm	to	find	the	MST	of	a	graph:	O(E	log	E)

u Dijkstra’s algorithm	to	find	the	shortest	path	from	a	node	in	a	
graph	to	all	other	nodes:	O(V2)	

84

Subset sum problem

u Given	a	set	of	integers	and	an	integer	s,	does	any	non-empty	
subset	sum	to	s?

u {1,	4,	67,	-1,	42,	5,	17}	and	s	=	24 No
u {4,	3,	17,	12,	10,	20}	and	s =	19 Yes {4,	3,	12}

u If	a	set	has	N elements,	it	has	2N subsets.
u Checking	the	sum	of	each	subset	takes	a	maximum	of	N
operations

u To	check	all	the	subsets	takes	2NN	operations
u Some	cleverness	can	reduce	this	by	a	bit	(2N	becomes 2N/2,	but	all	
known	algorithms	are	exponential

85

Travelling salesperson problem

u Given	a	list	of	cities	and	the	distances	between	each	pair	of	cities,	
what	is	the	shortest	possible	route	that	visits	each	city	exactly	
once	and	returns	to	the	origin	city?

u Given	a	graph	where	edges	are	labeled	with	distances	between	
vertices.	Start	at	a	specified	vertex,	visit	all	other	vertices	exactly	
once	and	return	to	the	start	vertex	in	such	a	way	that	sum	of	the	
edge	weights	is	minimized

u There	are	n! routes	(a	number	on	the	order	of	nn - much	bigger	
than	2n)

u O(n!)

86

Enumerating permutations

u List	all	permutations	(i.e.	all	possible	orderings)	of	n
numbers

uWhat	is	the	order	of	an	algorithm	that	can	do	this?

87

u So	we	have:
v Knapsack/Subset	sum:	N*2N

v Set	permutation:	n!
v Traveling	salesman:	n!

88

Analysis of problems

u Study	of	algorithms	illuminates	the	study	of	classes of	
problems

u If	a	polynomial	time	algorithm	exists	to	solve	a	problem	
then	the	problem	is	called	tractable

u If	a	problem	cannot	be	solved	by	a	polynomial	time	
algorithm	then	it	is	called	intractable

u This	divides	problems	into	three groups:
v Problems	with	known	polynomial	time	algorithms
v Problems	that	are	proven	to	have	no	polynomial-time	algorithm
v Problems	with	no	known	polynomial	time	algorithm	but	not	yet	
proven	to	be	intractable

89

Tractable and Intractable

u Tractable	problems	(P)
v Sorting	a	list
v Searching	an	unordered	list
v Finding	a	minimum	spanning	tree	

in	a	graph

90

u Intractable
v Listing	all	permutations	(all	

possible	orderings)	of	n	numbers

u Might	be	(in)tractable
v Subset	sum:	given	a	set	of	

numbers,	is	there	a	subset	that	
adds	up	to	a	given	number?

v Travelling	salesperson:	n	cities,	n!	
routes,	find	the	shortest	route

These	problems	have	no	known	
polynomial	time	solution

However	no	one	has	been	able	to	
prove	that	such	a	solution	does	not	
exist

Tractability and Intractability

u ‘Properties	of	problems’	(NOT ‘properties	of	algorithms’)

u Tractable:	problem	can	be	solved	by	a	polynomial	time	algorithm	
(or	something	more	efficient)

u Intractable:	problem	cannot	be	solved	by	a	polynomial	time	
algorithm	(all	solutions	are	proven	to	be	more	inefficient	than	
polynomial	time)

u Unknown:	not	known	if	the	problem	is	tractable	or	intractable	
(no	known	polynomial	time	solution,	no	proof	that	a	polynomial	
time	solution	does	not	exist)

91

Subset sum problem

u Given	a	set	of	integers	and	an	integer	s,	does	any	non-empty	
subset	sum	to	s?

u {1,	4,	67,	-1,	42,	5,	17}	and	s	=	24 No
u {4,	3,	17,	12,	10,	20}	and	s =	19 Yes {4,	3,	12}

u If	a	set	has	N elements,	it	has	2N subsets.
u Checking	the	sum	of	each	subset	takes	a	maximum	of	N
operations

u To	check	all	the	subsets	takes	2NN	operations
u Some	cleverness	can	reduce	this	by	a	bit	(2N	becomes 2N/2,	but	all	
known	algorithms	are	exponential)

92

P and NP

u P:	set	of	problems	that	can	be	solved	in	
polynomial	time

u Consider	subset	sum
v No	known	polynomial	time	algorithm
v However,	if	you	give	me	a	solution	to	the	
problem,	it	is	easy	for	me	to	check	if	the	
solution	is	correct	– i.e.	I	can	write	a	
polynomial	time	algorithm	to	check	if	a	given	
solution	is	correct

uNP:	set	of	problems	for	which	a	solution	
can	be	checked	in	polynomial	time

93

Easy	to	solve
(implies	easy	
to	check)

Easy	to	check	if	
solution	is	good

Easy to Solve vs. Easy to Check

u Easy	to	solve:	sorting
v Solve:	sort	the	list	in	O(n	log	n)
v Check:	is	the	list	sorted?	O(n)
v Clearly	sorting	is	in	P

u Hard	to	solve:	sub-set	sum
v Solve:	generate	all	subsets:	O(2n)
v Check:	sum-up	subset.	O(n)

u Hard	to	solve:	integer	factorization
v Solve:	check	all	numbers	between	2	and	sqrt(n)	O(2w)
v Check:	is	one	number	a	factor	of	another?	Divide	and	check	O(n2)

94

P=NP?

95

uAll	problems	in	P are	also	in	NP
uAre	there	any	problems	in	NP that	are	not	
also	in	P?

uIn	other	words,	is

P =	NP ?
uCentral	open	question	in	Computer	Science

P vs. NP Example

u Public	key	encryption	uses	two	large	prime	numbers	p,	q
u If	k	=	p*q,	 then	we	can	send	k in	the	clear	need	 p	and	q to	
decrypt

u Why	is	this	P	vs.	NP?
v p*q clearly	P	algorithm
v Finding	p	and	q given	just	k is	O(2w)	where	w	=	size	of	the	number	

(digits	or	bits)

u If	P	=	NP	then	public	key	encryption	would	be	“broken”
u Side	note:	as	computers	have	gotten	faster,	key	size	goes	up,	
making	problem	exponentially	harder
v Keys	are	now	>=	2048	bits	->	22048 is	a	preposterously	large	number
v Check	1B	keys/second	=	1.7	x	10600 years	to	crack

96

Midterm Style Questions

97

1. Based	on	the	information	presented	in	class	and	the	lecture	slides,	which	component	is	
not	part	of	a	modern	CPU:	
A. Arithmetic/logic	unit	
B. Program	Counter	
C. Cache	memory	
D. Disk	controller	
E. Registers	

	
2. Which	choice	for	pivot	always	allows	optimal	runtime	of	the	quicksort	algorithm?	

A.	Maximum	element	
B.	Minimum	element	
C.	Average	among	all	elements	
D.	Average	between	maximum	and	minimum	elements	
E.	None	of	the	above	

	
3. In	order	to	find	the	k-th	smallest	element	in	a	list	of	n	integers	we	run	as	many	

iterations	of	Selection	Sort	as	necessary	and	then	we	stop.	What	is	the	complexity	of	
this	algorithm	in	terms	of	k,	n?	
A. O(k*log(n))	
B. O(k*n*log(n))	
C. O(n*log(n))	
D. O(k*n)	
E. Not	enough	information	is	given	to	determine	the	correct	answer	

	
4. Which	is	TRUE	about	DFS	(depth	first	search)	vs.	BFS	(breadth	first	search)?	

A.	BFS	on	average	has	smaller	runtime	than	DFS	
B.	DFS	on	average	has	smaller	runtime	than	BFS	
C.	BFS	cannot	detect	loops	(i.e	would	not	work	on	graphs)	
D.	DFS	cannot	detect	loops	
E.	None	of	the	above	is	true	

	
5. Which	is	the	correct	ordering	of	memory	from	fastest	access	to	slowest	access?	

A. Registers,	RAM,	Cache,	Disk	
B. Disk,	RAM,	Cache,	Registers	
C. Registers,	Cache,	RAM,	Disk	
D. Cache,	Registers,	RAM,	Disk	
E. Disk,	Cache,	RAM,	Registers	

	
	

	

1. Based	on	the	information	presented	in	class	and	the	lecture	slides,	which	component	is	
not	part	of	a	modern	CPU:	
A. Arithmetic/logic	unit	
B. Program	Counter	
C. Cache	memory	
D. Disk	controller	
E. Registers	

	
2. Which	choice	for	pivot	always	allows	optimal	runtime	of	the	quicksort	algorithm?	

A.	Maximum	element	
B.	Minimum	element	
C.	Average	among	all	elements	
D.	Average	between	maximum	and	minimum	elements	
E.	None	of	the	above	

	
3. In	order	to	find	the	k-th	smallest	element	in	a	list	of	n	integers	we	run	as	many	

iterations	of	Selection	Sort	as	necessary	and	then	we	stop.	What	is	the	complexity	of	
this	algorithm	in	terms	of	k,	n?	
A. O(k*log(n))	
B. O(k*n*log(n))	
C. O(n*log(n))	
D. O(k*n)	
E. Not	enough	information	is	given	to	determine	the	correct	answer	

	
4. Which	is	TRUE	about	DFS	(depth	first	search)	vs.	BFS	(breadth	first	search)?	

A.	BFS	on	average	has	smaller	runtime	than	DFS	
B.	DFS	on	average	has	smaller	runtime	than	BFS	
C.	BFS	cannot	detect	loops	(i.e	would	not	work	on	graphs)	
D.	DFS	cannot	detect	loops	
E.	None	of	the	above	is	true	

	
5. Which	is	the	correct	ordering	of	memory	from	fastest	access	to	slowest	access?	

A. Registers,	RAM,	Cache,	Disk	
B. Disk,	RAM,	Cache,	Registers	
C. Registers,	Cache,	RAM,	Disk	
D. Cache,	Registers,	RAM,	Disk	
E. Disk,	Cache,	RAM,	Registers	

	
	

	

Midterm Style Questions

98

	
	
	
	
	
	
	
	
	
	
	

6. Consider	the	above	graph.	What	is	the	sequence	of	nodes	produced	by	running	Breadth	
First	Search	(BFS)	starting	from	v1?	For	BFS	on	a	directed	graph	only	follow	outgoing	
edges.	If	a	node	has	more	than	one	outgoing	edge,	follow	the	edge	to	the	vertex	with	the	
lowest	index	first	(node	index	is	k	for	vertex	Vk).	

A.	 v1	 v2	 v4	 v5	 v7	 v6	 v3	
B.	 v1	 v2	 v4	 v5	 v6	 v7	 v3	
C.	 v1	 v2	 v4	 v3	 v6	 v5	 v7	
D.	 v1	 v2	 v4	 v5	 v3	 v6	 v7	
E.		 v1	 v2	 v4	 v5	 v3	 v7	 v6	

	

7. For	the	same	graph	as	above,	what	is	the	sequence	of	nodes	produced	by	running	Depth	
First	Search	(DFS)	starting	from	v1.	For	DFS	on	a	directed	graph	only	follow	outgoing	
edges.	If	a	node	has	more	than	one	outgoing	edge,	follow	the	edge	to	the	vertex	with	the	
lowest	index	first	(node	index	is	k	for	vertex	Vk).	

A.		 v1	 v2	 v4	 v3	 v5	 v6	 v7	
B.		 v1	 v2	 v4	 v5	 v3	 v7	 v6	
C.		 v1	 v2	 v4	 v3	 v6	 v5	 v7	
D.	 v1	 v2	 v4	 v5	 v7	 v6	 v3	
E.										v1	 v2	 v4										v5														v3											v7									v6	

	

8. Which	of	the	problems	described	CANNOT	be	solved	optimally	with	an	MST	(minimum	
spanning	tree)?		

	
A.	Build	the	shortest-length	bridge	network	between	a	set	of	islands.	

										 B.	Eliminate	loops	in	a	computer	network.	
C.	Given	a	list	of	cities	and	the	distances	between	each	pair,	find	the	shortest	
possible	route	that	visits	each	city	and	returns	to	the	starting	city.	

										 D.	Eliminate	multiple	paths	between	any	two	vertices	in	a	graph.	
							E.	All	of	the	above	CAN	be	solved	optimally	with	a	MST.	

6

 V1
V2

2

4 10 1 3

 V3 		V4 V5 2 2

 V6 V7

5

1

8 4

9. Imagine	that	it	was	proved	that	P	=	NP.	Consider	the	following	statements:	
I) We	will	be	able	to	verify	any	computational	problem	in	polynomial	time.	

II) We	will	be	able	to	solve	any	computational	problem	in	polynomial	time.	

III) We	can	build	hardware	implementation	of	a	nondeterministic	Turing	machine	

IV) All	computational	problems	that	can	be	verified	in	polynomial	time	will	be	solvable	

in	polynomial	time	

V) We	will	be	able	to	solve	any	NP	hard	problem	in	polynomial	time	

A. II	and	V	are	true	
B. Only	II	is	true	
C. Only	IV	is	true	
D. I	and	IV	are	true	
E. All	statements	I	–	V	are	true	

	

10. What	is	the	role	of	the	program	counter?	
A. It	is	a	special	register	in	the	CPU	used	to	store	high-priority	data	
B. It	tracks	the	number	of	instructions	executed	by	the	currently	executing	program	
C. It	tracks	recently	accessed	memory	locations	to	help	implement	the	principle	of	

temporal	locality	

D. It	specifies	the	memory	location	from	where	the	CPU	will	fetch	the	next	instruction	
E. It	tracks	the	number	of	running	programs	asking	for	access	to	the	CPU	

	

11. Which	of	the	following	is	TRUE	about	binary	search?		
A. Considering	the	input	data,	binary	search	will	ALWAYS	have	a	smaller	runtime	vs.	
sequential	search	on	the	same	data.	

B. Binary	search	can	be	applied	to	any	list	
C. Binary	search	has	runtime	complexity	of	O(2N)	for	an	unsorted	list	
D. Binary	search	can	be	implemented	recursively	
E. None	of	the	above	is	true	

	

12. Which	statement	is	FALSE?	
A. Every	tree	is	a	graph	
B. Every	graph	has	a	cycle	
C. A	tree	has	no	cycles	
D. Every	connected,	undirected,	weighted	graph	has	at	least	one	spanning	tree	
E. The	number	of	vertices	in	the	minimum	spanning	tree	of	a	graph	is	the	same	as	the	
number	of	vertices	in	the	graph	itself	

	

	

	

	

Midterm Style Questions

99

13. When	considered	in	terms	of	big-O,	chose	the	ordering	of	the	following	functions	that	is	
in	order	of	increasing	asymptotic	growth	rates:	
A. 2n,	2n-1,	2n+1	
B. 2n-1,	2n+1,	2n	
C. 2n-1,	2n,	2n+1	
D. All	three	of	these	functions	have	the	same	big-O	growth	rate,	so	order	is	not	

important.	
	
14. There	exists	a	data	structure	called	a	MaxHeap	that	will	return	it’s	maximum	element	

(and	then	remove	it	from	the	heap)	in	O(log	n).	You	can	convert	an	unsorted	list	to	a	
MaxHeap	in	O(n).	Thus,	you	can	sort	an	unsorted	list	using	a	MaxHeap	(resulting	in	a	
reverse	or	descending	ordered	sort).	What	is	the	time	complexity	of	this	sorting	
algorithm?	
A. O(n2	log(n))	
B. O(n2)	
C. O(log(n)*log(n))	
D. O(n	log(n))	
E. O(n)	

	
15. What	best	describes	the	definition	of	an	algorithm?	

A. An	unambiguous	and	ordered,	step	by	step	description	of	actions	to	solve	a	problem	
written	to	be	understandable	by	humans	

B. sequence	of	instruction	written	to	run	directly	on	a	computer	
C. coded	language	used	by	programmers	to	write	instructions	that	a	computer	can	

understand	to	do	what	the	programmer	wants	
D. A	code	whose	target	alphabet	contains	only	digits	and/or	strings	of	digits	
E. A	mathematical	calculation	according	to	some	well-known	formula	

	
16. You	are	in	a	maze	and	a	friend	suggests	that	you	put	your	right	hand	on	the	wall	and	

follow	the	wall	until	you	find	the	exit.	This	“right	hand	rule”	represents	an	algorithm	for	
solving	the	maze.	Which	algorithm	discussed	in	class	does	the	approach	correspond	to?	
	
A.					Breadth	First	Search	
B.					Depth	First	Search	
C.					Kruskal’s	Algorithm	
D.					Binary	Search	

		
	
	

1. Based	on	the	information	presented	in	class	and	the	lecture	slides,	which	component	is	
not	part	of	a	modern	CPU:	
A. Arithmetic/logic	unit	
B. Program	Counter	
C. Cache	memory	
D. Disk	controller	
E. Registers	

	
2. Which	choice	for	pivot	always	allows	optimal	runtime	of	the	quicksort	algorithm?	

A.	Maximum	element	
B.	Minimum	element	
C.	Average	among	all	elements	
D.	Average	between	maximum	and	minimum	elements	
E.	None	of	the	above	

	
3. In	order	to	find	the	k-th	smallest	element	in	a	list	of	n	integers	we	run	as	many	

iterations	of	Selection	Sort	as	necessary	and	then	we	stop.	What	is	the	complexity	of	
this	algorithm	in	terms	of	k,	n?	
A. O(k*log(n))	
B. O(k*n*log(n))	
C. O(n*log(n))	
D. O(k*n)	
E. Not	enough	information	is	given	to	determine	the	correct	answer	

	
4. Which	is	TRUE	about	DFS	(depth	first	search)	vs.	BFS	(breadth	first	search)?	

A.	BFS	on	average	has	smaller	runtime	than	DFS	
B.	DFS	on	average	has	smaller	runtime	than	BFS	
C.	BFS	cannot	detect	loops	(i.e	would	not	work	on	graphs)	
D.	DFS	cannot	detect	loops	
E.	None	of	the	above	is	true	

	
5. Which	is	the	correct	ordering	of	memory	from	fastest	access	to	slowest	access?	

A. Registers,	RAM,	Cache,	Disk	
B. Disk,	RAM,	Cache,	Registers	
C. Registers,	Cache,	RAM,	Disk	
D. Cache,	Registers,	RAM,	Disk	
E. Disk,	Cache,	RAM,	Registers	

	
	

	

Midterm Style Questions

100

17. The	algorithm	from	#16	can	fail	on	some	mazes.	The	mazes	can	be	thought	of	as	graphs.	
If	the	graph	representation	of	the	maze	has	certain	properties,	then	the	“right	hand	
rule”	might	fail.	Which	property	can	cause	failure?	
A.		Weighted	(some	passages	are	smaller,	or	some	passages	force	you	to	crawl)	
B.		Cyclic	(there	are	loops	in	the	maze)			 													
C.		Planar	(the	maze	can	be	drawn	as	a	graph	where	no	edges	cross)		 					
D.		Acyclic	(there	are	no	loops	in	the	maze)	

		
18. Which	of	the	following	is	TRUE	about	trees	and	graphs?	

A.	All	trees	are	graphs	
B.	Every	graph	has	exactly	one	MST	
C.	All	trees	are	directed	graphs	
D.	All	graphs	are	trees	
E.	Not	all	graphs	have	a	MST	

		
19. The	Jacquard	Loom	(and	similar	machines)	are	considered	information	transformers,	

but	not	computers.	Which	answer	best	describes	why:	
A.	Programming	these	machines	doesn’t	scale	
B.	Programming	these	machines	requires	punch-cards	
C.	Machines	like	these	do	not	have	memory	or	control	flow	
D.	Machines	like	these	are	too	old	to	be	considered	computers	
	

20. When	an	instruction	is	loaded	from	memory,	it	is	desirable	to	load	the	contents	of	a	few	
succeeding	memory	addresses	into	the	cache.	Why	is	that?	
A.			The	CPU	is	unable	to	only	load	one	instruction	at	a	time	
B.			Those	contents	are	likely	to	be	useful	in	the	immediate	future	according	to	the	

spatial	locality	principle	
C.			Those	contents	are	likely	to	be	useful	in	the	immediate	future	according	to	the	

temporal	locality	principle	
D.			The	contents	stored	after	the	instruction	are	the	values	used	in	the	computation	of	

the	instruction	and	therefore	must	be	loaded	with	the	instruction.	
	

21. The	subset-sum	problem	has	time	complexity	O(N*2N).	Where	does	the	factor	N	come	
from?	
A:	That	is	how	many	subsets	a	set	of	size	N	has.	
B:	O(N)	is	the	time	complexity	required	to	check	each	possible	subset	sum.	
C:	That	is	the	time	complexity	of	the	algorithm	that	generates	the	subsets.	
D:	None	of	the	above.	
	

17. The	algorithm	from	#16	can	fail	on	some	mazes.	The	mazes	can	be	thought	of	as	graphs.	
If	the	graph	representation	of	the	maze	has	certain	properties,	then	the	“right	hand	
rule”	might	fail.	Which	property	can	cause	failure?	
A.		Weighted	(some	passages	are	smaller,	or	some	passages	force	you	to	crawl)	
B.		Cyclic	(there	are	loops	in	the	maze)			 													
C.		Planar	(the	maze	can	be	drawn	as	a	graph	where	no	edges	cross)		 					
D.		Acyclic	(there	are	no	loops	in	the	maze)	

		
18. Which	of	the	following	is	TRUE	about	trees	and	graphs?	

A.	All	trees	are	graphs	
B.	Every	graph	has	exactly	one	MST	
C.	All	trees	are	directed	graphs	
D.	All	graphs	are	trees	
E.	Not	all	graphs	have	a	MST	

		
19. The	Jacquard	Loom	(and	similar	machines)	are	considered	information	transformers,	

but	not	computers.	Which	answer	best	describes	why:	
A.	Programming	these	machines	doesn’t	scale	
B.	Programming	these	machines	requires	punch-cards	
C.	Machines	like	these	do	not	have	memory	or	control	flow	
D.	Machines	like	these	are	too	old	to	be	considered	computers	
	

20. When	an	instruction	is	loaded	from	memory,	it	is	desirable	to	load	the	contents	of	a	few	
succeeding	memory	addresses	into	the	cache.	Why	is	that?	
A.			The	CPU	is	unable	to	only	load	one	instruction	at	a	time	
B.			Those	contents	are	likely	to	be	useful	in	the	immediate	future	according	to	the	

spatial	locality	principle	
C.			Those	contents	are	likely	to	be	useful	in	the	immediate	future	according	to	the	

temporal	locality	principle	
D.			The	contents	stored	after	the	instruction	are	the	values	used	in	the	computation	of	

the	instruction	and	therefore	must	be	loaded	with	the	instruction.	
	

21. The	subset-sum	problem	has	time	complexity	O(N*2N).	Where	does	the	factor	N	come	
from?	
A:	That	is	how	many	subsets	a	set	of	size	N	has.	
B:	O(N)	is	the	time	complexity	required	to	check	each	possible	subset	sum.	
C:	That	is	the	time	complexity	of	the	algorithm	that	generates	the	subsets.	
D:	None	of	the	above.	
	

