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“An algorithm (pronounced AL-go-rith-
um) is a procedure or formula for
solving a problem. The word derives
from the name of the mathematician,
Mohammed ibn-Musa al-Khwarizmi,
who was part of the royal court in
Baghdad and who lived from about
780 to 850.”



Where are we?
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Sequences, Trees and Graphs
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u Sequence: a list
v Items are called elements
v Item number is called the index

u Graph

u Tree
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Recursion

u Recursion, recursion relations, recursive data structures, 
recursive algorithms

u Defining a data structure or algorithm in terms of itself

u Many problems are easier to understand (implement, solve) 
as recursive algorithms
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Recursion: abstract data types

u Defining abstract data types 
in terms of themselves (e.g., 
trees contain trees)

u So a list is: 
The item at the front of the 

list, and then the rest of 
the list (which is, an 
item and then the rest 
of the list…)
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[1,3,5,7,32,6,7,121,7…]

…



Recursion: abstract data types

u Defining abstract data types 
in terms of themselves (e.g., 
trees contain trees)

u So a tree is 
Either a single vertex, or
a vertex that is the parent 

of one or more trees
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Recursion and algorithms

u Concept of recursion applies to algorithms as well

u Some algorithms are defined recursively:
v Fibonacci numbers:

u Fib(n) = 0 (n=0), 1 (n=1), fib(n-1) + fib(n-2)

u Some can be expressed iteratively:
v Factorial = n*(n-1)*(n-2)*(n-3)…*1

u Or recursively:
v Factorial = n * factorial(n-1)
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Recursion and algorithms

u If an abstract data type can be thought of recursively (like a 
list) these often inspire recursive algorithms as well

u List sum:
v Sum of a list = value of first item + sum of the rest of the list
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Recursion: algorithms

u Defining algorithms in terms of themselves (e.g., quicksort)
Check whether the sequence has just one element. If it 
does, stop
Check whether the sequence has two elements. If it does, 
and they are in the right order, stop. If they are in the 
wrong order, swap them, stop. 
Choose a pivot element and rearrange the sequence to 
put lower-valued elements on one side of the pivot, 
higher-valued elements on the other side
Quicksort the left sublist
Quicksort the right sublist
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Recursion: algorithms 

u How do you write a selection sort recursively ?

u How do you write a breadth-first search of a tree 
recursively ? What about a depth-first search ?
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Recursive Selection Sort 

u How to do this?

u Need to think about the problem in recursive terms:
v Think of the problem in a way that gets smaller each time you consider 

it…
v Also needs to have a terminating condition (base case)

u Thinking of selection sort in this way…
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Recursive selection sort

u Selection sort finds minimum element, swaps to front. Then 
finds next smallest, swaps to 2nd… and so on

u Observation: the front element is either:
v Already the minimum or
v The minimum is in the rest of the list

u Observation: once we move the minimum to the front of the 
list, we can call selection sort on the rest of the list
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Recursive selection sort

u We actually need two recursive algorithms:
v find_min(list): recursively find the index of the minimum item
v selection_sort(list):

u If the length of the list is one, stop, the list is sorted 
u call find_min() to find the minimum element, swap with the front of the list 

(if necessary)
u Call selection_sort() on the rest of the list

v Stop when ”rest of list” is one item
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Recursive DFS, BFS

u Recursive DFS is pretty easy:
v for each neighbor u of v:

u If u is ‘unvisited’: call dfs(u)

u Recursive BFS…
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Analysis of algorithms

uHow long does an algorithm take to run? 
time complexity

uHow much memory does it need? 
space complexity
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Estimating running time

uHow to estimate algorithm running time?
v Write a program that implements the 

algorithm, run it, and measure the time it takes
v Analyze the algorithm (independent of 

programming language and type of computer) 
and calculate in a general way how much work 
it does to solve a problem of a given size

uWhich is better? Why?
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Analysis of binary search

u n = 8, the algorithm takes 3 steps
u n = 32, the algorithm takes 5 steps
u For a general n, the algorithm takes log2n steps
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Growth rates of functions

uLinear
uQuadratic
uExponential
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Big O notation

u Characterize functions according to how fast they grow

u The growth rate of a function is called the order of the function. 
(hence the O)

u Big O notation usually only provides an upper bound on the 
growth rate of the function

u Asymptotic growth

f(x) = O(g(x)) as x -> ∞ if and only if there exists a positive number 
M such that f(x) ≤ M * g(x) for all x > x0
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Examples

u f(n) = 3n2 + 70
v We can write f(n) = O(n2)
v What is a value for M?

u f(n) = 100n2 + 70
v We can write f(n) = O(n2)
v Why?

u f(n) = 5n + 3n5

u We can write f(n) = O(n5)

u Why?
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u f(n) = n log n
v We can write f(n) = O(n log n)
v Why?

u f(n) = πnn

v We can write f(n) = O(nn)
v Why?

u f(n) = (log n)5 + n5

u We can write f(n) = O(n5)

u Why?



Examples

u f(n) = logan and g(n) = logbn are both asymptotically O(log n)
v The base doesn’t matter because logan = logbn/logba, M = 1/logba

u f(n) = logan and g(n) = loga(nc) are both asymptotically O(log n)
v Why?

u f(n) = logan and g(n) = logb(nc) are both asymptotically O(log n)
v Why?

u What about f(n) = 2n and g(n) = 3n ?
v Are they both of the same order?
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Conventions

u O(1) denotes a function that is a constant
v f(n) = 3, g(n) = 100000, h(n) = 4.7 are all said to be O(1)

u For a function f(n) = n2 it would be perfectly correct to 
call it O(n2) or O(n3) (or for that matter O(n100))

u However by convention we call it by the smallest order 
namely O(n2) 
v Why?
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Complexity

u (Binary) search of a sorted list: O(log2n)

u Selection sort

u Quicksort

u Breadth first traversal of a tree

u Depth first traversal of a tree

u Prim’s algorithm to find the MST of a graph

u Kruskal’s algorithm to find the MST of a graph

u Dijkstra’s algorithm to find the shortest path from a node in a 
graph to all other nodes 
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Selection sort

u Putting the smallest element in place requires scanning all n
elements in the list (and n-1 comparisons)

u Putting the second smallest element in place requires scanning n-
1 elements in the list (and n-2 comparisons)

u …
u Total number of comparisons is 

v (n-1) + (n-2) + (n-3) + … + 1
v n(n-1)/2
v O(n2)

u There is no difference between the best case, worst case and 
average case

26



Quicksort

u Best case:
v Assume an ideal pivot
v The average depth is O(log n)
v Each level of processes at most n elements (compare to pivot, move)
v The total amount of work done on average is the product, O(n log n)
v Why is ideal pivot important? What breaks/changes in above if pivot is “bad”?

u Worst case:
v Accidentally (or on purpose) chose max (or min)
v Each time the pivot splits the list into one element and the rest
v Each level processes at most n elements… but
v How many levels? n levels * n/level = O(n2)

u Average case:
v O(n log n)    [but proving it is a bit beyond CS 109] 27



BF and DF traversals of a tree

u A breadth first traversal visits the vertices of a tree level 
by level

u A depth first traversal visit the vertices of a tree by 
going deep down one branch and exhausting it before 
popping up to visit another branch

u What do they have in common?
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BF and DF traversals of a tree

u A breadth first traversal visits the vertices of a tree level 
by level

u A depth first traversal visit the vertices of a tree by 
going deep down one branch and exhausting it before 
popping up to visit another branch

u What do they have in common?
u Both visit all the vertices of a tree

u If a tree has V vertices, then both BF and DF are O(V)
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Prim’s algorithm

u Initialize a tree with a single vertex, chosen arbitrarily from the 
graph

u Grow the tree by adding one vertex. Do this by adding the 
minimum-weight edge chosen from the edges that connect the 
tree to vertices not yet in the tree

u Repeat until all vertices are in the tree
u How fast it goes depends on how you store the vertices of the 

graph
u If you don’t keep the vertices of the graph in some readily sorted 

order then the complexity is O(V2) where the graph has V vertices
v Intuition: at each vertex search O(V) for minimum to add = V*O(V) = O(V2)
v Can do better with some fancy data structures 30



Kruskal’s algorithm

u Initialize a tree with a single edge of lowest weight
u Add edges in increasing order of weight
u If an edge causes a cycle, skip it and move on to the next highest 

weight edge
u Repeat until all edges have been considered
u Complexity
u |E| = number of edges, |V| = number of vertices

v We need to sort the edges = O( |E| log |E| )
v Then add in increasing order of weight, one per vertex

u ‘disjoint data set’ O( |V| log |V|)

u Total
v O( |E| log |E| ) + O( |V| log |V|) = O(|E| log |E|) 31



Dijkstra’s algorithm 

u At each iteration we refine the distance estimate through a new 
vertex we’re currently considering

u So for each of V vertices, we update O(V-1) paths

u In a graph with V vertices, a loose bound is O(V2)
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Recap

u (Binary) search of a sorted list: O(log2n)

u Selection sort: O(n2)

u Quicksort: O(n log n)

u Breadth first traversal of a tree: O(V)

u Depth first traversal of a tree: O(V)

u Prim’s algorithm to find the MST of a graph: O(V2) 

u Kruskal’s algorithm to find the MST of a graph: O(E log E)

u Dijkstra’s algorithm to find the shortest path from a node in a 
graph to all other nodes: O(V2) 
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What do they have in common?

u (Binary) search of a sorted list: O(log2n)

u Selection sort: O(n2)

u Quicksort: O(n log n)

u Breadth first traversal of a tree: O(V)

u Depth first traversal of a tree: O(V)

u Prim’s algorithm to find the MST of a graph: O(V2) 

u Kruskal’s algorithm to find the MST of a graph: O(E log E)

u Dijkstra’s algorithm to find the shortest path from a node in a 
graph to all other nodes: O(V2) 
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A knapsack problem

u You have a knapsack that can 
carry 20 lbs

u You have books of various 
weights

u Is there a collection of books 
whose weight adds up to 
exactly 20 lbs?

u Can you enumerate all 
collections of books that are 
20 lbs

35

Book Weight

Book 1 2

Book 2 3

Book 3 13

Book 4 7

Book 5 10

Book 6 6



A knapsack problem

u You have a knapsack that can 
carry 20 lbs

u You have books of various 
weights

u Is there a collection of books 
whose weight adds up to 
exactly 20 lbs?

u Can you enumerate all 
collections of books that are 
20 lbs

36

Book Weight

Book 1 2

Book 2 3

Book 3 13

Book 4 7

Book 5 10

Book 6 6



A knapsack problem

u You have a knapsack that can 
carry 20 lbs

u You have books of various 
weights

u Is there a collection of books 
whose weight adds up to 
exactly 20 lbs?

u Can you enumerate all 
collections of books that are 
20 lbs
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Book Weight

Book 1 2

Book 2 3

Book 3 13

Book 4 7

Book 5 10

Book 6 6



How many combinations are there?
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# of 
books

Combinations Combination
s

0 {} 1

1 {2} {3} {13} {7} {10} {6} 6

2 {2,3} {2,13} {2,7} {2,10} {2,6} 
{3,13} {3,7} {3,10} {3,6}
{13,7} {13,10} {13,6} 
{7,10} {7,6} 
{10,6}

15

3 {2,3,13} {2,13,7} {2,7,10} {2,10,6} {2,3,7} {2,3,10} {2,3,6} {2,13,10} {2,13,6} 
{2,7,6} {3,13,7} {3,13,10} {3,13,6} {3,7,10} {3,7,6} {3,10,6} {13,7,10} {13,10,6} 
{13,7,6} {7,10,6}

20

4 {2,3,13,7} {2,3,13,10} {2,3,13,6} {2,3,7,10} {2,3,7,6} {2,3,10,6} {2,13,7,10} 
{2,13,10,6} {2,13,7,6} {2,7,10,6} {3,13,7,10} {3,13,10,6} {3,13,7,6} {3,7,10,6} 
{13,7,10,6}

15

5 {2,3,13,7,10} {3,13,7,10,6} {13,7,10,6,2} {7,10,6,2,3} {10,6,2,3,13} {6,2,3,13,7} 6

6 {2,3,13,7,10,6} 1

TOTAL 64



How many combinations are there?

39

# of 
books

Combinations Combination
s

0 {} 1

1 {2} {3} {13} {7} {10} {6} 6

2 {2,3} {2,13} {2,7} {2,10} {2,6} 
{3,13} {3,7} {3,10} {3,6}
{13,7} {13,10} {13,6} 
{7,10} {7,6} 
{10,6}

15

3 {2,3,13} {2,13,7} {2,7,10} {2,10,6} {2,3,7} {2,3,10} {2,3,6} {2,13,10} {2,13,6} 
{2,7,6} {3,13,7} {3,13,10} {3,13,6} {3,7,10} {3,7,6} {3,10,6} {13,7,10} {13,10,6} 
{13,7,6} {7,10,6}

20

4 {2,3,13,7} {2,3,13,10} {2,3,13,6} {2,3,7,10} {2,3,7,6} {2,3,10,6} {2,13,7,10} 
{2,13,10,6} {2,13,7,6} {2,7,10,6} {3,13,7,10} {3,13,10,6} {3,13,7,6} {3,7,10,6} 
{13,7,10,6}

15

5 {2,3,13,7,10} {3,13,7,10,6} {13,7,10,6,2} {7,10,6,2,3} {10,6,2,3,13} {6,2,3,13,7} 6

6 {2,3,13,7,10,6} 1

TOTAL 64



Subset sum problem

u Given a set of integers and an integer s, does any non-empty 
subset sum to s?

u {1, 4, 67, -1, 42, 5, 17} and s = 24 No
u {4, 3, 17, 12, 10, 20} and s = 19 Yes {4, 3, 12}

u If a set has N elements, it has 2N subsets.
u Checking the sum of each subset takes a maximum of N

operations
u To check all the subsets takes 2NN operations
u Some cleverness can reduce this by a bit (2N becomes 2N/2, but all 

known algorithms are exponential – i.e. O(2NN)
40



Big O notation

u Characterize functions according to how fast they grow

u The growth rate of a function is called the order of the function. 
(hence the O)

u Big O notation usually only provides an upper bound on the 
growth rate of the function

u Asymptotic growth

f(x) = O(g(x)) as x -> ∞ if and only if there exists a positive number 
M such that f(x) ≤ M * g(x) for all x > x0
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What do they have in common?

u (Binary) search of a sorted list: O(log2n)

u Selection sort: O(n2)

u Quicksort: O(n log n)

u Breadth first traversal of a tree: O(V)

u Depth first traversal of a tree: O(V)

u Prim’s algorithm to find the MST of a graph: O(V2) 

u Kruskal’s algorithm to find the MST of a graph: O(E log E)

u Dijkstra’s algorithm to find the shortest path from a node in a 
graph to all other nodes: O(V2) 
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Subset sum problem

u Given a set of integers and an integer s, does any non-empty 
subset sum to s?

u {1, 4, 67, -1, 42, 5, 17} and s = 24 No
u {4, 3, 17, 12, 10, 20} and s = 19 Yes {4, 3, 12}

u If a set has N elements, it has 2N subsets.
u Checking the sum of each subset takes a maximum of N

operations
u To check all the subsets takes 2NN operations
u Some cleverness can reduce this by a bit (2N becomes 2N/2, but all 

known algorithms are exponential
43



Travelling salesperson problem

u Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city exactly 
once and returns to the origin city?

u Given a graph where edges are labeled with distances between 
vertices. Start at a specified vertex, visit all other vertices exactly 
once and return to the start vertex in such a way that sum of the 
edge weights is minimized

u There are n! routes (a number on the order of nn - much bigger 
than 2n)

u O(n!)
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Enumerating permutations

u List all permutations (i.e. all possible orderings) of n
numbers

u What is the order of an algorithm that can do this?

45



Enumerating permutations

u List all permutations (i.e. all possible orderings) of n
numbers

u What is the order of an algorithm that can do this?
u O(n!)

46



u So we have:
v Knapsack/Subset sum: N*2N

v Set permutation: n!
v Traveling salesman: n!

47



Analysis of problems

u Study of algorithms illuminates the study of classes of 
problems

u If a polynomial time algorithm exists to solve a problem 
then the problem is called tractable

u If a problem cannot be solved by a polynomial time 
algorithm then it is called intractable

u This divides problems into #?ree groups:known polynomial 
time algorithm but not yet proven to be intractable

48



Analysis of problems

u Study of algorithms illuminates the study of classes of 
problems

u If a polynomial time algorithm exists to solve a problem 
then the problem is called tractable

u If a problem cannot be solved by a polynomial time 
algorithm then it is called intractable

u This divides problems into three groups:
v Problems with known polynomial time algorithms
v Problems that are proven to have no polynomial-time algorithm
v Problems with no known polynomial time algorithm but not yet 

proven to be intractable
49



Tractable and Intractable

u Tractable problems (P)
v Sorting a list
v Searching an unordered list
v Finding a minimum spanning tree 

in a graph

50

u Intractable
v Listing all permutations (all 

possible orderings) of n numbers

u Might be (in)tractable
v Subset sum: given a set of 

numbers, is there a subset that 
adds up to a given number?

v Travelling salesperson: n cities, n! 
routes, find the shortest route

These problems have no known 
polynomial time solution

However no one has been able to 
prove that such a solution does not 
exist



Tractability and Intractability 

u ‘Properties of problems’ (NOT ‘properties of algorithms’)

u Tractable: problem can be solved by a polynomial time algorithm 
(or something more efficient)

u Intractable: problem cannot be solved by a polynomial time 
algorithm (all solutions are proven to be more inefficient than 
polynomial time)

u Unknown: not known if the problem is tractable or intractable 
(no known polynomial time solution, no proof that a polynomial 
time solution does not exist)
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Tractability and Intractability

u ‘Properties of problems’ (NOT ‘properties of algorithms’)

u Tractable: problem can be solved by a polynomial time algorithm 
(or something more efficient)

u Intractable: problem cannot be solved by a polynomial time 
algorithm (all solutions are proven to be more inefficient than 
polynomial time)

u Unknown: not known if the problem is tractable or intractable 
(no known polynomial time solution, no proof that a polynomial 
time solution does not exist)
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Subset sum problem

u Given a set of integers and an integer s, does any non-empty 
subset sum to s?

u {1, 4, 67, -1, 42, 5, 17} and s = 24 No
u {4, 3, 17, 12, 10, 20} and s = 19 Yes {4, 3, 12}

u If a set has N elements, it has 2N subsets.
u Checking the sum of each subset takes a maximum of N

operations
u To check all the subsets takes 2NN operations
u Some cleverness can reduce this by a bit (2N becomes 2N/2, but all 

known algorithms are exponential)
53



Take away

u Some simple problems seem to be very hard to solve 
because of exponential or factorial run-time

u Not so simple in practice:

54

Problem Naïve Solution(s) Best?

Knapsack N*2N N*2N/2, pseudopolynomial

Subset-sum N*2N N*2N/2 , pseudopolynomial

Travelling Salesman N! N22N



Pseudopolynomial?

u Sometimes we have to be careful about choosing ‘n’ a.k.a the 
size of the problem

u There are dynamic programming solutions to the subset-sum 
(and a lot of other similar problems) that appear to be 
polynomial time

u But on further inspection, if you chose n to be the size of the 
numbers in the problem (bits or digits) then the solution is 
exponential time
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P and NP

u P: set of problems that can be solved in 
polynomial time

u Consider subset sum
v No known polynomial time algorithm
v However, if you give me a solution to the 

problem, it is easy for me to check if the 
solution is correct – i.e. I can write a 
polynomial time algorithm to check if a given 
solution is correct

u NP: set of problems for which a solution 
can be checked in polynomial time

56

Easy to solve

(implies easy 
to check)

Easy to check if 
solution is good



Easy to Solve vs. Easy to Check

u Easy to solve: sorting
v Solve: sort the list in O(n log n)
v Check: is the list sorted? O(n)
v Clearly sorting is in P

u Hard to solve: sub-set sum
v Solve: generate all subsets: O(2n)
v Check: sum-up subset. O(n)

u Hard to solve: integer factorization
v Solve: check all numbers between 2 and sqrt(n) O(2w)
v Check: is one number a factor of another? Divide and check O(n2)
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P=NP?

58

uAll problems in P are also in NP
uAre there any problems in NP that are not 

also in P?
uIn other words, is

P = NP ?
uCentral open question in Computer Science



P=NP?

u Why do we care?

u “Aside from being an important problem in computational 
theory, a proof either way would have profound implications 
for mathematics, cryptography, algorithm research, artificial 
intelligence, game theory, multimedia 
processing, philosophy, economics and many other fields.”
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P vs. NP Example

u Public key encryption uses two large prime numbers p, q
u If k = p*q, then we can send k in the clear need p and q to 

decrypt
u Why is this P vs. NP?

v p*q clearly P algorithm
v Finding p and q given just k is O(2w) where w = size of the number 

(digits or bits)

u If P = NP then public key encryption would be “broken”
u Side note: as computers have gotten faster, key size goes up, 

making problem exponentially harder
v Keys are now >= 2048 bits -> 22048 is a preposterously large number
v Check 1B keys/second = 1.7 x 10600 years to crack
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