Introduction to Computer Science CSCI 109

Readings

St. Amant, Ch. 4

Andrew Goodney Fall 2019

Reminders

- HW \#1 due tomorrow.
- Grading: After HW\#1 is graded, if you feel there has been a grading error, you have two options: \#1 (best option) go to TA office hours to discuss the problem. This will give you a chance to get feedback on your answer while also resolving the dispute. Option \#2: post a private note on Piazza and the graders will look into the issue.
- HW\#2 out later today

Where are we?

Date	Topic		Assigned	Due	Quizzes/Midterm/Final	Slide Deck
26-Aug	Introduction	What is computing, how did computers come to be?				1
2-Sep	Labor day					
9-Sep	Computer architecture	How is a modern computer built? Basic architecture and assembly	HW1			2
16-Sep	Data structures	Why organize data? Basic structures for organizing data			Quiz 1 on material taught in class $8 / 26$ and 9/9	3
23-Sep	Data structures	Trees, Graphs and Traversals	HW2	HW1		4
30-Sep	More Algorithms/Data Structures	Recursion and run-time				5
7-Oct	Complexity and combinatorics	How "long" does it take to run an algorithm. P vs NP			Quiz 2 on material taught in class 9/16 and 9/23	5
14-Oct	Algorithms and programming	Programming, languages and compilers		HW2	Quiz 3 on material taught in class 9/30	7
21-Oct	Operating systems	What is an OS? Why do you need one?	HW3		Quiz 4 on material taught in class 10/7	8
28-Oct	Midterm	Midterm			Midterm on all material taught so far.	
4-Nov	Computer networks	How are networks organized? How is the Internet organized?		HW3		9
11-Nov	Artificial intelligence	What is AI? Search, plannning and a quick introduction to machine learning			Quiz 5 on material taught in class 9/4	10
18-Nov	The limits of computation	What can (and can't) be computed?	HW4		Quiz 6 on material taught in class 11/11	11
25-Nov	Robotics	Robotics: background and modern systems (e.g., self-driving cars)			Quiz 7 on material taught in class 11/18	12
2-Dec	Summary, recap, review	Summary, recap, review for final		HW4	Quiz 8 on material taught in class 11/25	13
13-Dec	Final exam 1	m-1 pm in SGM 123			Final on all material covered in the semester	

Problem Solving

- Architecture puts the computer under the microscope
- Computers are used to solve problems
- Abstraction for problems
* How to represent a problem ?
* How to break down a problem into smaller parts ?
* What does a solution look like ?
- Two key building blocks
* Algorithms
* Abstract data types

Algorithms

- Algorithm: a step by step description of actions to solve a problem
- Typically at an abstract level
- Analogy: clearly written recipe for preparing a meal
"Algorithms are models of procedures at an abstract level we decided is appropriate." [St. Amant, pp. 53]

Abstract Data Types

- Models of collections of information
- Typically at an abstract level
"... describes what can be done with a collection of information, without going down to the level of computer storage." [St. Amant, pp. 53]

Sequences, Trees and Graphs

- Sequence: a list
* Items are called elements
* Item number is called the index
- Tree

- Graph

Sequences, Trees and Graphs

- Sequence: a list
* Items are called elements
* Item number is called the index
- Tree

- Lists
* Searching
- Unsorted list
- Sorted list
* Sorting
- Selection sort
- Quicksort
- The notion of a brute force algorithm
- The divide and conquer strategy

Motivation for Abstract Data Structures (Graphs, Trees)

- The nature of some data, and the way we need to accesses it often requires some structure, or organization to make things efficient (or even possible)
- Data: large set of people and their family relationship used for genetic research
- Problems: two people share a rare genetic trait, how closely are the related? (motivates for a tree)

Motivation for Abstract Data Structures (Graphs, Trees)

- Data set: roads and intersections.
- Problem: how to travel from A to B @5pm on a Friday? How to avoid traffic vs. prefer freeways? (motivates a weighted graph)
- Data set: freight enters country at big port (LA/Long Beach).
- Problem: How to route freight given train lines/connections?
* Route fastest, vs. lowest cost?
- Data set: airport locations
- Problem: how to route and deliver a package to any address in the US with minimum cost? Think UPS, FedEx

Motivation for Abstract Data Structures (Graphs, Trees)

- Data set: network switches and their connectivity (network links)
- Problem: Chose a subset of network links that connect all switches without loops (networks don't like loops). Motivates graphs, and graph -> tree algorithm

Motivation for Abstract Data Structures (Graphs, Trees)

- Data set: potential solutions to a big problem
- Problem: how to find an optimal solution to the problem, without searching every possibility (solution space too big). Motivates graphs and graph search to solve problems.
- Other data/problems that motivate graphs/trees:
* Financial networks and money flows, social networks, rendering HTML code, compilers, 3D graphics and game engines... and more

Trees

- Each node/vertex has exactly one parent node/vertex
- No loops
- Directed (links/edges point in a particular direction)
- Undirected (links/edges don't have a direction)
- Weighted (links/edges have weights)

- Unweighted (links/edges don't have weights)

Which of these are NOT trees?

Graph/Tree Traversal

- Traversing a graph or a tree: "moving" and examining the nodes to enumerate the nodes or look for solutions
- Example: find all living descendants of X in our genetic database.
- For traversing a graph we pick a starting node, then two methods are obvious:
* Depth first
- Go as deep (far away from starting node) as possible before backtracking
* Breadth first
- Examine one layer at a time

Tree Traversal

- Depth first traversal Eric, Emily, Terry, Bob, Drew, Pam, Kim, Jane
- Breadth first traversal

Eric, Emily, Jane, Terry, Bob, Drew, Pam, Kim Eric, Jane, Emily, Bob, Terry, Pam, Drew, Kim

Tree Traversal

- Depth first vs. Breadth first eventually visit all nodes, but do so in a different order
- Used to answer different questions
* Depth first: good for game trees, evaluating down a certain path
* Breadth first: look for shortest path between two nodes (e.g for computer networks)
- Roughly:
* Depth first: find 'a' solution to the problem
* Breadth first: find 'the' solution to the problem

Graphs: Directed and Undirected

Graph to Tree Conversion Algorithms

- Sometimes the question is best answered by a tree, but we have a graph
- Need to convert graph to tree (by deleting edges)
- Usually want to create a "spanning tree"

Spanning Trees

- Spanning tree: Any tree that covers all vertices
* "Cover" = "include" in graph-speak
- Example: graph of social network connections. Want to create a "phone tree" to disseminate information in the event of an emergency
- Example: network of switches with redundant links and multiple paths between switches (there are loops aka cycles in the graph). Need to chose a set of links that connects all switches with no loops.

Minimum Spanning trees

- Spanning tree: Any tree that covers all vertices, not as common as the MST
- Minimum spanning tree (MST): Tree of minimal total edge cost
- If you have a graph with weighted edges, a MST is the tree where the sum of the weights of the edges is minimum
- There is at least one MST, could be more than one
- If you have unweighted edges any spanning tree is a MST
-Why compute the minimum spanning tree?
* Minimize the cost of connections between cities
(logistics/shipping)
* Minimize of cost of wires in a layout (printed circuit, integrated circuit design)

Edge costs, minimum spanning tree

Edge costs, minimum spanning tree

Spanning Trees

Spanning Trees

Computing the MST

- Two greedy algorithms to compute the MST
* Prim's algorithm: Start with any node and greedily grow the tree from there
* Kruskal's algorithm: Order edges in ascending order of cost. Add next edge to the tree without creating a cycle.
- 'Greedy' means solution is refined at each step using the most obvious next step, with the hope that eventual solution is globally optimal

Prim's algorithm

- Initialize the minimum spanning tree with a vertex chosen at random.
- Find all the edges that connect the tree to new vertices (i.e uncovered, or disconnected), find the minimum and add it to the tree
- Keep repeating step 2 until all vertices are added to the MST (adapted from: https://www.programiz.com/dsa)

Prim's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Prim's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Prim's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Prim's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Prim's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Prim's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Prim's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

- Sort all the edges from low weight to high
- Take the edge with the lowest weight, if adding the edge would create a cycle, then reject this edge and select the edge with the next lowest weight
- Keep adding edges until we reach all vertices.
(adapted from: https://www.programiz.com/dsa)

Kruskal's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
1	Jim-Sofie
$\mathbf{1}$	Jim-Tia
1	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
1	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{1}$	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{1}$	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{1}$	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{1}$	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{1}$	Tia-Bob
$\mathbf{1}$	Chris-Bob
$\mathbf{1}$	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm

1	Joe-Jim
1	Jim-Sofie
1	Jim-Tia
1	Tia-Bob
1	Chris-Bob
1	Mike-Bob
2	Chris-Jim
3	Tia-Chris
3	Mike-Tia
4	Joe-Tia
4	Jim-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
1	Jim-Tia
2	Chris-Jim
2	Joe-Tia
3	Tia-Chris
3	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
1	Jim-Tia
2	Chris-Jim
2	Joe-Tia
3	Tia-Chris
3	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
2	Joe-Tia
3	Tia-Chris
3	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
$\mathbf{2}$	Joe-Tia
3	Tia-Chris
3	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
$\mathbf{2}$	Joe-Tia
3	Tia-Chris
3	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
$\mathbf{2}$	Joe-Tia
3	Tia-Chris
$\mathbf{3}$	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
$\mathbf{2}$	Joe-Tia
3	Tia-Chris
$\mathbf{3}$	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
$\mathbf{2}$	Joe-Tia
$\mathbf{3}$	Tia-Chris
$\mathbf{3}$	Mike-Tia
$\mathbf{4}$	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
$\mathbf{2}$	Joe-Tia
$\mathbf{3}$	Tia-Chris
$\mathbf{3}$	Mike-Tia
$\mathbf{4}$	Jim-Bob
$\mathbf{4}$	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

$\mathbf{1}$	Jim-Sofie
$\mathbf{1}$	Jim-Tia
$\mathbf{2}$	Chris-Jim
$\mathbf{2}$	Joe-Tia
$\mathbf{3}$	Tia-Chris
$\mathbf{3}$	Mike-Tia
$\mathbf{4}$	Jim-Bob
$\mathbf{4}$	Joe-Jim
$\mathbf{4}$	Chris-Bob
5	Tia-Bob

Kruskal's algorithm example \#2

1	Jim-Sofie
$\mathbf{1}$	Jim-Tia
2	Chris-Jim
2	Joe-Tia
3	Tia-Chris
$\mathbf{3}$	Mike-Tia
4	Jim-Bob
4	Joe-Jim
4	Chris-Bob
5	Tia-Bob

Shortest path

- For a given source vertex (node) in the graph, it finds the path with lowest cost (i.e. the shortest path) between that vertex and every other vertex.
- Say your source vertex is Mike
- Lowest cost path from Mike to Jim is Mike - Bob - Tia - Jim (cost 3)
- Lowest cost path from Mike to Joe is Mike - Bob - Tia - Jim - Joe (cost 4)
* Very important for networking applications!

Dijkstra's algorithm: Basic idea

- Fan out from the initial node
- In the beginning the distances to the neighbors of the initial node are known. All other nodes are tentatively infinite distance away.
- The algorithm improves the estimates to the other nodes step by step.
- As you fan out, perform the operation illustrated in this example: if the current node A is marked with a distance of 4 , and the edge connecting it with a neighbor B has length 2 , then the distance to B (through A) will be $4+2=6$. If B was previously marked with a distance greater than 6 then change it to 6 . Otherwise, keep the current value.

Shortest path from Mike

