
Introduction to Computer Science
CSCI 109

Andrew Goodney
Fall 2019

Readings
St. Amant, Ch. 4

Lecture 4: Data Structures & Algorithms Sept. 23rd, 2019

“An algorithm (pronounced AL-go-rith-
um) is a procedure or formula for
solving a problem. The word derives
from the name of the mathematician,
Mohammed ibn-Musa al-Khwarizmi,
who was part of the royal court in
Baghdad and who lived from about
780 to 850.”

Reminders

u HW #1 due tomorrow.
u Grading: After HW#1 is graded, if you feel there has been a

grading error, you have two options: #1 (best option) go to TA
office hours to discuss the problem. This will give you a chance to
get feedback on your answer while also resolving the dispute.
Option #2: post a private note on Piazza and the graders will look
into the issue.

u HW#2 out later today

1

Where are we?

2

Problem Solving

u Architecture puts the computer under the microscope
u Computers are used to solve problems
u Abstraction for problems

v How to represent a problem ?
v How to break down a problem into smaller parts ?
v What does a solution look like ?

u Two key building blocks
v Algorithms
v Abstract data types

5

Algorithms

u Algorithm: a step by step description of actions to solve
a problem

u Typically at an abstract level
u Analogy: clearly written recipe for preparing a meal

“Algorithms are models of procedures at an abstract level
we decided is appropriate.” [St. Amant, pp. 53]

6

Abstract Data Types

u Models of collections of information
u Typically at an abstract level

“… describes what can be done with a collection of
information, without going down to the level of computer
storage.” [St. Amant, pp. 53]

7

Sequences, Trees and Graphs

8

u Sequence: a list
v Items are called elements
v Item number is called the index

u Graph

u Tree
Eric

Emily Jane

Terry Bob

Jim

Mike Chris

Bob

Sequences, Trees and Graphs

9

u Sequence: a list
v Items are called elements
v Item number is called the index

u Tree
Eric

Emily Jane

Terry Bob

u Lists
v Searching

u Unsorted list
u Sorted list

v Sorting
u Selection sort
u Quicksort

u The notion of a brute force
algorithm

u The divide and conquer
strategy

Motivation for Abstract Data Structures
(Graphs, Trees)

u The nature of some data, and the way we need to accesses it
often requires some structure, or organization to make things
efficient (or even possible)

u Data: large set of people and their family relationship used
for genetic research

u Problems: two people share a rare genetic trait, how closely
are the related? (motivates for a tree)

10

Motivation for Abstract Data Structures
(Graphs, Trees)

u Data set: roads and intersections.
u Problem: how to travel from A to B @5pm on a Friday? How

to avoid traffic vs. prefer freeways? (motivates a weighted
graph)

u Data set: freight enters country at big port (LA/Long Beach).

u Problem: How to route freight given train lines/connections?
v Route fastest, vs. lowest cost?

u Data set: airport locations
u Problem: how to route and deliver a package to any address

in the US with minimum cost? Think UPS, FedEx
11

Motivation for Abstract Data Structures
(Graphs, Trees)

u Data set: network switches and their connectivity (network
links)

u Problem: Chose a subset of network links that connect all
switches without loops (networks don’t like loops). Motivates
graphs, and graph -> tree algorithm

12

Motivation for Abstract Data Structures
(Graphs, Trees)

u Data set: potential solutions to a big problem
u Problem: how to find an optimal solution to the problem,

without searching every possibility (solution space too big).
Motivates graphs and graph search to solve problems.

u Other data/problems that motivate graphs/trees:
v Financial networks and money flows, social networks, rendering HTML

code, compilers, 3D graphics and game engines… and more

13

Trees

u Each node/vertex has
exactly one parent
node/vertex

u No loops
u Directed (links/edges point

in a particular direction)
u Undirected (links/edges

don’t have a direction)
u Weighted (links/edges have

weights)
u Unweighted (links/edges

don’t have weights)
14

Eric

Emily Jane

Terry Bob

Which of these are NOT trees?

15

1

2

3

5

6

7

4 8

Graph/Tree Traversal

u Traversing a graph or a tree: “moving” and examining the
nodes to enumerate the nodes or look for solutions

u Example: find all living descendants of X in our genetic
database.

u For traversing a graph we pick a starting node, then two
methods are obvious:
v Depth first

u Go as deep (far away from starting node) as possible before backtracking

v Breadth first
u Examine one layer at a time

16

Tree Traversal

u Depth first traversal
Eric, Emily, Terry, Bob, Drew, Pam, Kim, Jane

u Breadth first traversal
Eric, Emily, Jane, Terry, Bob, Drew, Pam, Kim
Eric, Jane, Emily, Bob, Terry, Pam, Drew, Kim

17

Eric

Emily Jane

Terry Bob

Drew Pam

Kim

Tree Traversal

u Depth first vs. Breadth first eventually visit all nodes, but do
so in a different order

u Used to answer different questions
v Depth first: good for game trees, evaluating down a certain path
v Breadth first: look for shortest path between two nodes (e.g for

computer networks)

u Roughly:
v Depth first: find ‘a’ solution to the problem
v Breadth first: find ‘the’ solution to the problem

18

Graphs: Directed and Undirected

19

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Directed

Graph to Tree Conversion Algorithms

u Sometimes the question is best answered by a tree, but we
have a graph

u Need to convert graph to tree (by deleting edges)

u Usually want to create a “spanning tree”

20

Spanning Trees

u Spanning tree: Any tree that covers all vertices
v “Cover” = “include” in graph-speak

u Example: graph of social network connections. Want to
create a “phone tree” to disseminate information in the
event of an emergency

u Example: network of switches with redundant links and
multiple paths between switches (there are loops aka cycles
in the graph). Need to chose a set of links that connects all
switches with no loops.

21

Minimum Spanning trees

uSpanning tree: Any tree that covers all vertices, not
as common as the MST

uMinimum spanning tree (MST): Tree of minimal total
edge cost

u If you have a graph with weighted edges, a MST is
the tree where the sum of the weights of the edges
is minimum

uThere is at least one MST, could be more than one
u If you have unweighted edges any spanning tree is a

MST 22

uWhy compute the minimum spanning tree?
v Minimize the cost of connections between cities

(logistics/shipping)
v Minimize of cost of wires in a layout (printed

circuit, integrated circuit design)

23

Edge costs, minimum spanning tree

24

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

Edge costs, minimum spanning tree

25

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Tia

Jim

Mike

Chris

Bob

Joe

Sofie1

3

1

4
1

1

Spanning Trees

Tia

Jim

Mike

Chris

Bob

Joe

Sofie1

3

1

4
1

1

Spanning Trees

27

Tia

Jim

Mike

Chris

Bob

Joe

Sofie1

3

1

4
1

1

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

3

1

1

Computing the MST

uTwo greedy algorithms to compute the MST
v Prim’s algorithm: Start with any node and greedily

grow the tree from there
v Kruskal’s algorithm: Order edges in ascending order of

cost. Add next edge to the tree without creating a
cycle.

u ‘Greedy’ means solution is refined at each step
using the most obvious next step, with the hope
that eventual solution is globally optimal

28

Prim’s algorithm

u Initialize the minimum spanning tree with a vertex chosen at
random.

u Find all the edges that connect the tree to new vertices (i.e
uncovered, or disconnected), find the minimum and add it to
the tree

u Keep repeating step 2 until all vertices are added to the MST
(adapted from: https://www.programiz.com/dsa)

29

https://www.programiz.com/dsa

Prim’s algorithm

30

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Prim’s algorithm

31

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Prim’s algorithm

32

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Prim’s algorithm

33

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Prim’s algorithm

34

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Prim’s algorithm

35

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Prim’s algorithm

36

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

u Sort all the edges from low weight to high
u Take the edge with the lowest weight, if adding the edge

would create a cycle, then reject this edge and select the
edge with the next lowest weight

u Keep adding edges until we reach all vertices.

(adapted from: https://www.programiz.com/dsa)

37

https://www.programiz.com/dsa

Kruskal’s algorithm

38

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

39

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

40

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

41

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

42

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

43

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

44

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

45

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

46

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

47

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

48

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm

49

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

1 1

2

4

3

1

1

3

4
1

1

1 Joe-Jim
1 Jim-Sofie
1 Jim-Tia
1 Tia-Bob
1 Chris-Bob
1 Mike-Bob
2 Chris-Jim
3 Tia-Chris
3 Mike-Tia
4 Joe-Tia
4 Jim-Bob

Kruskal’s algorithm example #2

50

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

51

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

52

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

53

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

54

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

55

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

56

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

57

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

58

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

59

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Kruskal’s algorithm example #2

60

Tia

Jim

Mike

Chris

Bob

Joe

Sofie

Undirected

4 1

2

4

3

43

2
1

5

1 Jim-Sofie

1 Jim-Tia

2 Chris-Jim

2 Joe-Tia
3 Tia-Chris

3 Mike-Tia

4 Jim-Bob
4 Joe-Jim

4 Chris-Bob

5 Tia-Bob

Shortest path

u For a given source vertex (node)
in the graph, it finds the path
with lowest cost (i.e. the shortest
path) between that vertex and
every other vertex.

u Say your source vertex is Mike
u Lowest cost path from Mike to Jim

is Mike – Bob - Tia – Jim (cost 3)
u Lowest cost path from Mike to Joe

is Mike – Bob – Tia – Jim – Joe
(cost 4)

v Very important for networking
applications!

61

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Dijkstra’s algorithm: Basic idea

u Fan out from the initial node

u In the beginning the distances to the neighbors of the initial node
are known. All other nodes are tentatively infinite distance away.

u The algorithm improves the estimates to the other nodes step by
step.

u As you fan out, perform the operation illustrated in this example:
if the current node A is marked with a distance of 4, and the edge
connecting it with a neighbor B has length 2, then the distance to
B (through A) will be 4 + 2 = 6. If B was previously marked with a
distance greater than 6 then change it to 6. Otherwise, keep the
current value.

62

Shortest path from Mike

63

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Mike Bob Tia Jim Chris Sofie Joe

0 1 3 ∞ ∞ ∞ ∞

Shortest path from Mike

64

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Mike Bob Tia Jim Chris Sofie Joe

0 1 3 ∞ ∞ ∞ ∞

0 1 2 5 2 ∞ ∞

Shortest path from Mike

65

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Mike Bob Tia Jim Chris Sofie Joe

0 1 3 ∞ ∞ ∞ ∞

0 1 2 5 2 ∞ ∞

0 1 2 4 2 ∞ ∞

Shortest path from Mike

66

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Mike Bob Tia Jim Chris Sofie Joe

0 1 3 ∞ ∞ ∞ ∞

0 1 2 5 2 ∞ ∞

0 1 2 4 2 ∞ ∞

0 1 2 3 2 ∞ 6

Shortest path from Mike

67

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Mike Bob Tia Jim Chris Sofie Joe

0 1 3 ∞ ∞ ∞ ∞

0 1 2 5 2 ∞ ∞

0 1 2 4 2 ∞ ∞

0 1 2 3 2 ∞ 6

0 1 2 3 2 4 4

Shortest path from Mike

68

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Mike Bob Tia Jim Chris Sofie Joe

0 1 3 ∞ ∞ ∞ ∞

0 1 2 5 2 ∞ ∞

0 1 2 4 2 ∞ ∞

0 1 2 3 2 ∞ 6

0 1 2 3 2 4 4

0 1 2 3 2 4 4

Shortest path from Mike

69

Tia

Jim

Mike

Chris

Bob

Joe

Sofie
1 1

2

4

3

1

1

3

4
1

1

Mike Bob Tia Jim Chris Sofie Joe

0 1 3 ∞ ∞ ∞ ∞

0 1 2 5 2 ∞ ∞

0 1 2 4 2 ∞ ∞

0 1 2 3 2 ∞ 6

0 1 2 3 2 4 4

0 1 2 3 2 4 4

0 1 2 3 2 4 4

