
Introduction to Computer Science
CSCI 109

Andrew Goodney
Fall 2019

China – Tianhe-2

Readings
St. Amant, Ch. 4

Lecture 3: Data Structures & Algorithms Sept. 16th, 2019

“An algorithm (pronounced AL-go-rith-
um) is a procedure or formula for
solving a problem. The word derives
from the name of the mathematician,
Mohammed ibn-Musa al-Khwarizmi,
who was part of the royal court in
Baghdad and who lived from about
780 to 850.”

Reminders

u First quiz today

u Please take the survey if you haven’t already.
v https://tinyurl.com/y2cot2r5
v Password: CS109Fall2019

1

https://tinyurl.com/y2cot2r5

Where are we?

2

Data Structures and Algorithms

uA problem-solving view of computers and
computing

uOrganizing information: sequences and trees
uOrganizing information: graphs
uAbstract data types: recursion

3

Reading:
St. Amant Ch. 4

u “The architecture level gives us a very detailed view of what
happens on a computer. But trying to understand everything
a computer does at this level would be…(insert analogy
about perspective). If all we can see is fine detail, it can be
hard to grasp what’s happening on a larger scale.”

4

u “Here’s a different perspective: computers solve problems.
Solving problems, in contrast to executing instructions,
means not having to worry about all the details at once.
Instead, we can think in more abstract terms. How should we
represent a problem? Can we break a problem down into
smaller pieces so that it’s easier to solve? What would a
solution procedure look like, in the abstract?

5

u ”Answering these questions is a matter of representation.
We’ve already seen representation, in the encoding of data
and instructions in a form that’s convenient for a computer.
Now we need to think more generally about how to
represent problems and their solutions.” – st. Amant pg. 52

6

u When thinking about solving problems with computers
(somewhat due to the nature of computers), three abstract
data types are essential:
v Sequences
v Trees
v Graphs

u Part of the course is essentially an extended vocabulary
lesson
v So you’re prepared to understand and learn these topics in detail in

other courses

7

Problem Solving

u Architecture puts the computer under the microscope
v Imagine solving *all* problems by thinking about the computer at the

architecture level

u Early computer scientists *had* to do this
v Luckily we don’t.

9

Problem Solving

u Computers are used to solve problems
u Abstraction for problems

v How to represent a problem ?
v How to break down a problem into smaller parts ?
v What does a solution look like ?

u Two key building blocks
v Abstract data types
v Algorithms

10

Algorithms

u Algorithm: a step by step description of actions to solve
a problem

u Typically at an abstract level
u Analogy: clearly written recipe for preparing a meal
u More in the next few lectures

“Algorithms are models of procedures at an abstract level
we decided is appropriate.” [St. Amant, pp. 53]

11

Abstract Data Types

u Models of collections of information
v Chosen to help solve a problem

u Typically at an abstract level
v Don’t deal with implementation details: memory layout, pointers, etc.

“… describes what can be done with a collection of
information, without going down to the level of computer
storage.” [St. Amant, pp. 53]

12

Sequences, Trees and Graphs

13

u Sequence: a list
v Items are called elements
v Item number is called the index

u Graph

u Tree
Eric

Emily Jane

Terry Bob

Jim

Mike Chris

Bob

Motivation for Abstract Data Structures

u The nature of some data, and the way we need to accesses it
often requires some structure, or organization to make things
efficient (or even possible)

u Data: large set of names (maybe attendance data)

u Problems: did Jelena attend on 9/9? How many lectures did
Mario attend? Which students didn’t attend 8/26?

14

Is ‘Jelena’ on this list?

u Byron

u Therese

u Alpha

u Christopher

u Jacquelyn

u Amada

u Araceli

u Deanna

u Mario

u Pamela

u Lin

u Hester
15

u Lenora

u Staci

u Emma

u Elsa

u Derrick

u Kelley

u Kathe

u Mohammad

u Julia

u Renda

u Kylee

u Keren

u Jayna
u Joy
u Sean
u Basilia
u Cassie
u Sharice
u Carina
u Liv
u Clara
u Bess
u Simone
u Michiko
u Elmer

u Jayna
u Jesusa
u Dion
u Orpha
u Denice
u Tad
u Geraldine
u Bradley
u Mariah
u Lyndsey
u Marcia
u Beatrice
u Keri
u Thu

Option #1 No Data Structure

u Store names in the computer with no organization

u Scan all of them every time a question is asked

16

Is ‘Lilly’ on this list?

u Allene
u Berenice
u Bernadine
u Candelaria
u Carli
u Carry
u Chau
u Cynthia
u Clement
u Davina

17

u Exie
u Ezequiel
u Filiberto
u Francisca
u Fred
u Gayle
u Gudrun
u Huey
u Isaiah
u Janey

u Jen
u Joanne
u Joanie
u Laney
u Lenora
u Lilliam
u Lilly
u Lina
u Lorinda
u Lulu

u Michelle
u Madelaine
u Marielle
u Mauro
u Mayola
u Mikaela
u Pamala
u Pinkie
u Princess
u Rocco

u Rosanne
u Sally
u Season
u Sidney
u Tamica
u Tilda
u Val
u Vinita
u Yaeko
u Yoshiko

Option #2 Sorted List

u Store names in sorted order

u This implies structure to the data

u Also, if the names start out un-sorted, how do we get to
sorted state?

18

Sequences aka Lists

u Sequences are our first fundamental data structure
u Sequences hold items

v Items = what ever we need. It’s abstract.

u Sequences have the notion of order
v Items come one after another

u Sequences can be accessed by index, or relative
v Find the 5th item
v Or move to next or previous from current item

u The “how” (implementation) is not important (now)
v Arrays (C, C++), Vectors (C++), ArrayList (Java), Lists (Python)…
v These are all different implementations of this abstract data structure

19

Sequence Tasks

u Most “questions” (problems) that are solved using sequences
are essentially one of two questions:

u Is item A in sequence X?

u Where in sequence Y is item B?

u Both of these are answered by searching the sequence

20

Sequences: Searching

u Sequential search: start at 1, proceed to next
location…

u If names in the list are sorted (say in alphabetical
order), then how to proceed?
v Start in the ‘middle’
v Decide if the name you’re looking for is in the first half or second
v ‘Zoom in’ to the correct half
v Start in the ‘middle’
v Decide if the name you’re looking for is in the first half or second
v ‘Zoom in’ to the correct half
v …

u Which is more efficient (under what conditions)?
21

brute
force

divide-
and-
conquer

Sorting

u If searching a sorted sequence is more efficient (per search),
this implies we need a way to sort a sequence!

u Sorting algorithms are fundamental to CS
v Used A LOT to teach various CS and programming concepts

u Computer Scientists like coming up with better more efficient
ways to sort data
v Even have contests!

u We’ll look at two algorithms with very different designs
v Selection Sort
v Quick Sort

22

Sorting: Selection Sort

23

u Sorting: putting a set of items in order
u Simplest way: selection sort

v March down the list starting at the beginning and find the
smallest number

v Exchange the smallest number with the number at location 1
v March down the list starting at the second location and find

the smallest number (overall second-smallest number)
v Exchange the smallest number with the number at location 2
v …

Sorting: Selection Sort

13 4 3 5 12 6 20 10
3 4 13 5 12 6 20 10

3 4 13 5 12 6 20 10

3 4 5 13 12 6 20 10

3 4 5 6 12 13 20 10

3 4 5 6 10 13 20 12

3 4 5 6 10 12 20 13

3 4 5 6 10 12 13 20

24

9 8 6 5 3 1
1 8 6 5 3 9

1 3 6 5 8 9

1 3 5 6 8 9

1 3 5 6 8 9

1 3 5 6 8 9

3 6 7 9 10 20 1
1 6 7 9 10 20 3

1 3 7 9 10 20 6

1 3 6 9 10 20 7

1 3 6 7 10 20 9

1 3 6 7 9 20 10

1 3 6 7 9 10 20

Sorting: Selection Sort

25

u Sorting: putting a set of items in order
u Simplest way: selection sort

v March down the list starting at the beginning and find the
smallest number

v Exchange the smallest number with the number at location 1
v March down the list starting at the second location and find

the smallest number (overall second-smallest number)
v Exchange the smallest number with the number at location 2
v …

u How long does this take? Can we do it faster?
u Yes, use divide-and-conquer

How long does it take?

u We just asked an interesting question, did you notice?

u ”How long does it take?”

u This question might (should) bother some of you.
v Why?

26

How long does it take?
u WTH are we even asking here?
u We’re working with an “abstract data type”
u What does ”time” even mean?
u We need to abstract time as well!
u Given some data “how long does it take” = how much “work”

do we do
u “Work”

v Operations like moving an item, copying and item, comparing two
items

v Abstract steps required

u We’ll spend a lot more time discussing this over the next few
lectures

27

Sorting: Quicksort

28

u Pick a ‘middle’ element in the sequence (this is called the pivot)

u Put all elements smaller than the pivot on its left

u Put all elements larger than the pivot on the right

u Now you have two smaller sorting problems because you have an unsorted list to the left of the pivot and an
unsorted list to the right of the pivot

u Sort the sequence on the left (use Quicksort!)

u Sort the sequence on the right (use Quicksort!)

Sorting: Quicksort

29

u Pick a ‘middle’ element in the sequence (this is called the pivot)

u Put all elements smaller than the pivot on its left

u Put all elements larger than the pivot on the right

u Now you have two smaller sorting problems because you have an unsorted list to the left of the pivot and an
unsorted list to the right of the pivot

u Sort the sequence on the left (use Quicksort!)
v Pick a ‘middle’ element in the sequence (this is called the pivot)

v Put all elements smaller than the pivot on its left

v Put all elements larger than the pivot on the right

v Now you have two smaller sorting problems because you have an unsorted list to the left of the pivot and an unsorted list to the right of the pivot

v Sort the sequence on the left (use Quicksort!)

v Sort the sequence on the right (use Quicksort!)

u Sort the sequence on the right (use Quicksort!)
v Pick a ‘middle’ element in the sequence (this is called the pivot)

v Put all elements smaller than the pivot on its left

v Put all elements larger than the pivot on the right

v Now you have two smaller sorting problems because you have an unsorted list to the left of the pivot and an unsorted list to the right of the pivot

v Sort the sequence on the left (use Quicksort!)

v Sort the sequence on the right (use Quicksort!)

Quicksort

30

This is an unsorted list (e.g.,
a list of numbers not in
order)

Quicksort

31

Pivot

Choose a pivot and put all elements smaller than the pivot
to the left of the pivot and all elements larger than the pivot to its right

Quicksort

32

Pivot

This is an unsorted list of all
elements smaller than the
pivot

This is an unsorted list of all
elements larger than the
pivot

Quicksort

33

Quicksort

34

Left ‘list’ (1) Right list (3) Left list (2) Right ‘list’ (1)

Quicksort

35

Quicksort

36

Quicksort

37

Sorting: Quicksort

13 4 3 5 12 6 20 10
Pivot = 6

4 3 5 6 13 12 20 10

Quicksort (4 3 5)

Quicksort (13 12 20 10)

38

Sorting: Quicksort

13 4 3 5 12 6 20 10
Pivot = 6

4 3 5 6 13 12 20 10

Quicksort (4 3 5) 6 Quicksort (13 12 20 10)

Pivot = 4 Pivot = 12

3 4 5 6 10 12 13 20

Quicksort(3) 4 Quicksort(5) 6 Quicksort(10) 12 Quicksort(13 20)

3 4 5 6 10 12 13 20

39

Sorting: Quicksort

13 4 3 5 12 6 20 10

Pivot = 12

4 3 5 6 10 12 13 20

Quicksort (4 3 5 6 10) 12 Quicksort (13 20)

Pivot = 4

3 4 5 6 10 12 13 20

Quicksort(3) 4 Quicksort(5 6 10) 12 13 20

3 4 Pivot = 6 12 13 20

3 4 Quicksort(5) 6 Quicksort(10) 12 13 20

3 4 5 6 10 12 13 20
40

Sorting: Quicksort

41

u If list is size 1, return the list
u If list is size 2, and out of order, swap elements and

return the swapped elements, else return the list
u Pick an element in the sequence (called the pivot)
u Put all elements smaller than the pivot on its left
u Put all elements larger than the pivot on the right
u Sort the sequence on the left (use Quicksort)
u Sort the sequence on the right (use Quicksort)

Summary

u Solving a problem with a computer usually involves:
v A structured way to store (organize) data
v An algorithm that accesses and modifies that data

u Algorithms have characteristics, like brute-force or divide-
and-conquer that help us understand how they work

u Thinking about abstract data types and algorithms frees us
from worrying about the implementation details

u Sequences are a fundamental ADT used to organize data in
an ordered list.

42

Homework Hints

u Problem #1
v Work from inside-out, simplifying given the identities

u Problem #5
v Don’t over think things, think of it like giving directions (e.g to the

store)
v Don’t need encodings, just use numbers
v You do need to make loops

u What happens if we write
M0: SET R1 1
M1: LOAD M104 R2
M2: COND_GOTO R1 R2 M1
…

43

