# Introduction to Computer Science

Fall 2019



Dec 2nd, 2019

# Schedule

| Date   | Торіс                              |                                                                            | Assigned | Due | Quizzes/Midterm/Final                                | Slide Deck |
|--------|------------------------------------|----------------------------------------------------------------------------|----------|-----|------------------------------------------------------|------------|
| 26-Aug | Introduction                       | What is computing, how did computers come to be?                           |          |     |                                                      | 1          |
| 2-Sep  | Labor day                          |                                                                            |          |     |                                                      |            |
| 9-Sep  | Computer architecture              | How is a modern computer built? Basic<br>architecture and assembly         | HW1      |     |                                                      | 2          |
| 16-Sep | Data structures                    | Why organize data? Basic structures for organizing data                    |          |     | Quiz 1 on material taught in class 8/26 and 9/9      | 3          |
| 23-Sep | Data structures                    | Trees, Graphs and Traversals                                               | HW2      | HW1 |                                                      | 4          |
| 30-Sep | More Algorithms/Data Structures    | Recursion and run-time                                                     |          |     |                                                      | 5          |
| 7-Oct  | Complexity and combinatorics       | How "long" does it take to run an<br>algorithm. P vs NP                    |          |     | Quiz 2 on material taught in class 9/16 and 9/23     | 5          |
| 14-Oct | Algorithms and programming         | Programming, languages and compilers                                       |          | HW2 | <b>Quiz 3</b> on material taught in class 9/30       | 7          |
| 21-Oct | Operating systems                  | What is an OS? Why do you need one?                                        | нwз      |     | <b>Quiz 4</b> on material taught in class 10/7       | 8          |
| 28-Oct | Midterm                            | Midterm                                                                    |          |     | Midterm on all material taught so far.               |            |
| 4-Nov  | Computer networks                  | How are networks organized? How is the Internet organized?                 |          | HW3 |                                                      | g          |
| 11-Nov | Artificial intelligence            | What is AI? Search, plannning and a quick introduction to machine learning |          |     | <b>Quiz 5</b> on material taught in class 9/4        | 10         |
| 18-Nov | The limits of computation          | What can (and can't) be computed?                                          | HW4      |     | <b>Quiz 6</b> on material taught in class 11/11      | 11         |
| 25-Nov | Robotics                           | Robotics: background and modern systems (e.g., self-driving cars)          |          |     | Quiz 7 on material taught in class 11/18             | 12         |
| 2-Dec  | Summary, recap, review             | Summary, recap, review for final                                           |          | HW4 | Quiz 8 on material taught in class 11/25             | 13         |
| 13-Dec | Final exam 11 am - 1 pm in SGM 123 |                                                                            |          |     | <b>Final</b> on all material covered in the semester |            |

# Check your grades

- By Friday please check BB for quiz scores and homework #1-3 scores
  Quiz scores will move to Blackboard later today
- If there are any errors, please bring them to our attention on Piazza
- HW #4 will be graded this week, any disputes must be lodged promptly
- All scores will be finalized on Wed Dec. 11th, no new disputes will be accepted after this date
- TAs and Professor will hold office hours in the week of Dec. 9th but these cannot be used for disputing scores on homework, midterm or quizzes. They should be used for study help and review questions.

# Final

- Final on Dec. 13th at 11 am in SGM 123
- Final is comprehensive but will have a slightly higher proportion of problems on the material after the midterm
- The final will be multiple choice
- Bring pencils. Scantron will be provided
- ♦ 35 questions

### 7

### Review

What follows is a review of many of the course highlights. It is not an exhaustive list.

# Introduction

- You are expected to understand arithmetic in base 10, base 2 and by extension other bases
- You are expected to understand how to read and interpret a truth table
- Understand encoding, state, abstraction, and the meaning of discrete vs. continuous
- Jacquard loom
- What makes a computer

| AND | 0 | 1 |
|-----|---|---|
| 0   | 0 | 0 |
| 1   | 0 | 1 |

### Architecture

- All constituents of the von Neumann architecture, how they are connected and their functions
- Understand the memory hierarchy
- Read, understand and write simple assembly-like programs

| M100 | SET R1 MI           |
|------|---------------------|
| M101 | SET R2 0            |
| M102 | SET R3 1            |
| M103 | SET R6 0            |
| M104 | ADD R1 R2 R4        |
| M105 | SUB R1 R3 R5        |
| M106 | MOVE R5 R1          |
| M107 | MOVE R4 R2          |
| M108 | COND_GOTO R1 R6 104 |
| M109 | WRITE R2 M2         |
| M110 | END                 |



6

### Data Structures and Algorithms

#### Lists

- \* Sorting and searching
- Trees
  - \* Traversals (BFS and DFS), search
- Graphs
  - Spanning trees (both algorithms), Dijkstra's algorithm
- Recursion
- Complexity and Big O
- Tractable and intractable
- P and NP (unknown tractable vs. intractable)

# Programming

- Why program in a high-level language
- What is a compiler
- Compiler steps, optimization, machine independent/dependent
- Parsing a simple program (i.e. figuring out what it does)

# **Operating Systems**

- Purpose of an OS, what problems do OS solve?
- Roles, design criteria
- What is a policy? How are policies evaluated? Making simple calculations with policies
- Multitasking (process scheduling)
- Resources (CPU, memory, I/O)



- Background, motivation for packets/packet switching
- Packets and packet switching
- Protocols and their properties
- Layers
- Internet structure and components
- Physical links (media)
- Internet design goals

# Artificial Intelligence

- Definitions, what is intelligence
- Main technological innovations behind
  - \* IBM Deep Blue, IBM Watson, Google DeepMind Alpha Go
- Minimax search and the notion of a search tree
- Philosophical issues in AI
- Connections to machine learning

### Abstract Machines and Theory

- Finite state machines: properties, limitations
- Turing machines: properties, evaluation
- The notion of undecidability
- The halting problem

### Robotics

- Definitions
- State
- Spectrum of robot control approaches
- Shakey, Tortoises, Self driving cars



### Quiz #8

#### https://forms.gle/AFsZgDT34z5W8LxH7

