
Introduction to Computer Science

😡 FEATURES 🛛

Andrew Goodney

Fall 2019

Nov 25, 2019

Robotics

Schedule

Date	Торіс		Assigned	Due	Quizzes/Midterm/Final	Slide Deck
26-Aug	Introduction	What is computing, how did computers come to be?				
2-Sep	Labor day					
9-Sep	Computer architecture	How is a modern computer built? Basic architecture and assembly	HW1			
16-Sep	Data structures	Why organize data? Basic structures for organizing data			Quiz 1 on material taught in class 8/26 and 9/9	
23-Sep	Data structures	Trees, Graphs and Traversals	HW2	HW1		
30-Sep	More Algorithms/Data Structures	Recursion and run-time				
7-Oct	Complexity and combinatorics	How "long" does it take to run an algorithm. P vs NP			Quiz 2 on material taught in class 9/16 and 9/23	
14-Oct	Algorithms and programming	Programming, languages and compilers		HW2	Quiz 3 on material taught in class 9/30	
21-Oct	Operating systems	What is an OS? Why do you need one?	НWЗ		Quiz 4 on material taught in class 10/7	
28-Oct	Midterm	Midterm			Midterm on all material taught so far.	
4-Nov	Computer networks	How are networks organized? How is the Internet organized?		HW3		
11-Nov	Artificial intelligence	What is AI? Search, plannning and a quick introduction to machine learning			Quiz 5 on material taught in class 9/4	10
18-Nov	The limits of computation	What can (and can't) be computed?	HW4		Quiz 6 on material taught in class 11/11	11
25-Nov	Robotics	Robotics: background and modern systems (e.g., self-driving cars)			Quiz 7 on material taught in class 11/18	12
2-Dec	Summary, recap, review	Summary, recap, review for final		HW4	Quiz 8 on material taught in class 11/25	13
13-Dec	Final exam 11	am - 1 pm in SGM 123			Final on all material covered in the semester	

Acting on the physical world

What is robotics?

- The study of the 'intelligent connection of perception to action' [Brady]
- Operationally: "An intelligent robot is a machine able to extract information from its environment and use knowledge about its world to move safely and perform tasks in a meaningful and purposeful manner"

What makes a robot?

Sensors, effectors, locomotion/manipulation system, and an on-board computer system

What can be sensed?

- Depends on the sensors on the robot
- The robot exists in its sensor space (all possible values of sensory readings)
- Also called *perceptual space*
- Robot sensors are very different from biological ones
- A roboticist has to try to imagine the world in the robot's sensor space

A sufficient description of the system

Can be:

- Observable: robot always knows its state (not for real robots)
- * Hidden/inaccessible/unobservable: robot never knows its state
- Partially observable: the robot knows a part of its state
- * Discrete (e.g., up, down, blue, red)
- * Continuous (sampled) (e.g., 3.765 mph)

Types of state

- External state: state of the world
 - Sensed using the robot's sensors
 - * E.g.: night, day, at-home, sleeping, sunny
- Internal state: state of the robot
 - * Sensed using internal sensors
 - Stored/remembered
 - * E.g.: velocity, mood
- The robot's state is a combination of its external and internal state

State and intelligence

- State space: all possible states the system can be in
- A challenge: sensors do not dictate state!
 * Examples ?
- How intelligent a robot appears is strongly dependent on how much it can sense about its environment and about itself

Internal models

- Internal state can be used to remember information about the world (e.g., remember paths to the goal, remember maps, remember friends vs. enemies, etc.)
- This is called a representation or an internal model
- Representations/models have a lot to do with how complicated the control program on the robot needs to be

Actuators

- A robot acts through its actuators (e.g. motors), which typically drive effectors (e.g., wheels)
- Robotic actuators are very different from biological ones, both are used for:
 - * locomotion (moving around, going places)
 - manipulation (handling objects)
- This divides robotics into two areas
 - * mobile robotics
 - manipulator robotics

Actions and behavior

- Behavior is what an external observer sees a robot doing.
- Robots are programmed to display desired behavior.
- Behavior is a result of a sequence of robot actions.
- Observing behavior may not tell us much about the internal control of a robot. Control can be a black box.

Autonomy

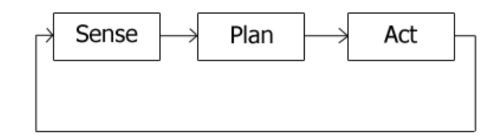
- Autonomy is the ability to make one's own decisions and act on them.
- For robots, autonomy means the ability to sense and act on a given situation appropriately.
- Autonomy can be:
 - * complete (e.g., autonomous drones)
 - * partial (e.g., tele-operated robots)

Control

- Robot control refers to the way in which the sensing and action of a robot are coordinated.
- The many different ways in which robots can be controlled all fall along a well-defined spectrum of control.
 - * Reactive Control: Don't think, (re)act.
 - * Behavior-Based Control: Think the way you act.
 - * Deliberative Control: Think hard, act later.
 - * Hybrid Control: Think & act independently, in parallel.

Reactive Control

- Very little programming or internal state
- Robot reacts to inputs
- Bump sensor triggers -> back up



Behavior Based Control

- Programed with library of behaviors
 - ✤ Basic set to start off
 - "[behavior based] robots are programmed with many independent behaviors that are coupled together to produce coordinated action."
- Don't build world models
- Learn and refine how to apply given behaviors to achieve goal
 - Some can modify/learn new behaviors to add to library

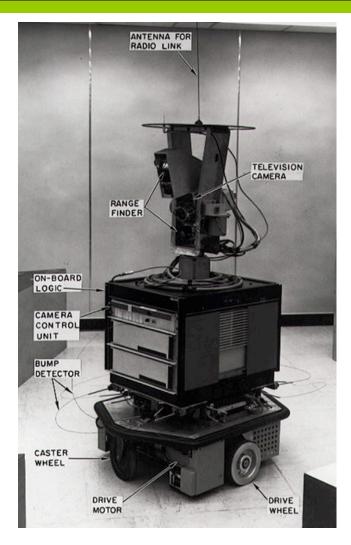
Deliberative Control

- Control System is heavy (lots of programming/algorithms)
- Builds detailed world models
 - * Where am I? What am I supposed to do? What is in the way?
- The robot operates in a top-down fashion, heavy on planning.
- The robot senses the world, plans the next action, acts; at each step the robot explicitly plans the next move.

Control tradeoffs

- Thinking is slow
- Reaction must be fast
- Thinking enables looking ahead (planning) to avoid bad solutions
- Thinking too long can be dangerous (e.g., falling off a cliff, being run over)
- To think, the robot needs (a lot of) accurate information => world models.

Hybrid Control


- Sophisticated robots are often a hybrid of control methods
- Deliberative
 - ✤ Self-driving car plans route
- Reactive
 - Self-driving car avoids unexpected pedestrian

A historical note: reactive beginnings

https://www.youtube.com/watch?v=lLULRlmXkKo

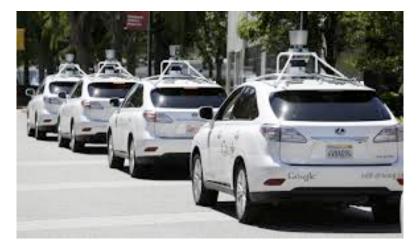
A historical note: Shakey and planning

- First general-purpose mobile robot to be able to reason about its own actions
- Could <u>analyze</u> each human command and break it down into basic chunks autonomously
 – a **planning** process
- https://www.youtube.com/watc h?v=qXdn6ynwpil

Where we are today

- Boston Dynamics leading robot firm
 - * Specializes in "humanoid" and similar
- https://www.youtube.com/watch?v=fRj34o4hN4I
- https://www.youtube.com/watch?v=fUyU3lKzoio
- https://www.youtube.com/watch?v=aFuA50H9uek
- https://www.youtube.com/watch?v=LikxFZZO2sk
- https://www.youtube.com/watch?v=_sBBaNYex3E
- https://www.youtube.com/watch?v=OnWolLQSZic

Robotics today


Robotics today

How is the software/control on these organized?

Self-driving car

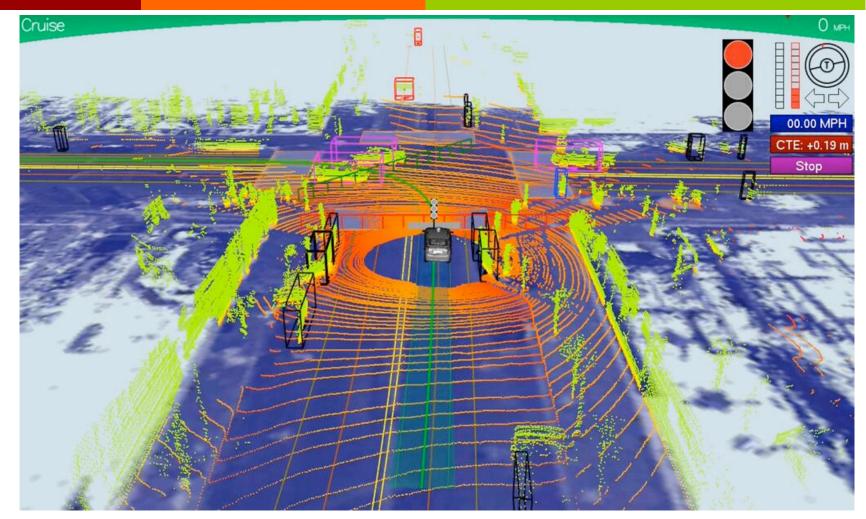
- Industrial robots
- Mars rovers
- Underwater vehicle
- Humanoids near LA
 - * DARPA robotics challenge
 - https://en.wikipedia.org/wiki/DARPA_Robotics_Challenge

Self driving cars

How many players?

- ◆ 33 according to CB Insights, Aug 2016
- Could be as many as 100 worldwide

www.cbinsights.com


Sensing on a self-driving car

- GPS unit, Inertial navigation system, Laser rangefinders, Radar, Cameras
- Position and orientation from GPS + inertial navigation system (localization)
- Laser, radar and cameras used to build a threedimensional image of environment (mapping)
- Interplay of localization and mapping

Control

- Control is hybrid (mix of deliberative and reactive)
- Car maintains an internal map of their world
- Uses the map to find an optimal path to destination that avoids obstacles (e.g., pedestrians and other vehicles) from a set of possible paths.
- Once the best path is determined, it is broken down into commands, which are fed to the car's actuators. These control the car's steering, braking and throttle

A typical piece of a map

Modern approaches tradeoff

- How much computation on the car vs. cloud
- How much to rely on what is being sensed vs. what is already in the map
- How often to update the map
- How much to rely on human driver
- How much to rely on sensors embedded in the road
- How to signal intentions to human drivers
- How much to automate the environment (e.g., traffic lights)

Issues with Self Driving Cars

http://moralmachine.mit.edu/

- Survey about "lesser of two evils"
- Uber accident in AZ
 - NTSB report came out this week (Nov. 2019)
 - "Insufficient culture of safety..."
- Who is responsible?
 - Algorithm designer?
 - ML researcher?
 - Programmer?

Playing Around Learning with Robots

- Lots of kits!
- Software
 - Simulate the robot
 - Construct a virtual world
 - Experiment with sensors and control systems
- CSCI 445L
 - ✤ Only pre-req is 103!

More Fun

https://minghsiehece.usc.edu/race-on/

* Racing self-driving model cars

Next week: final review + quiz

Date	Торіс		Assigned	Due	Quizzes/Midterm/Final	Slide Deck
26-Aug	Introduction	What is computing, how did computers come to be?				
2-Sep	Labor day					
9-Sep	Computer architecture	How is a modern computer built? Basic architecture and assembly	HW1			
16-Sep	Data structures	Why organize data? Basic structures for organizing data			Quiz 1 on material taught in class 8/26 and 9/9	
23-Sep	Data structures	Trees, Graphs and Traversals	HW2	HW1		
30-Sep	More Algorithms/Data Structures	Recursion and run-time				
7-Oct	Complexity and combinatorics	How "long" does it take to run an algorithm. P vs NP			Quiz 2 on material taught in class 9/16 and 9/23	
14-Oct	Algorithms and programming	Programming, languages and compilers		HW2	Quiz 3 on material taught in class 9/30	
21-Oct	Operating systems	What is an OS? Why do you need one?	HW3		Quiz 4 on material taught in class 10/7	
28-Oct	Midterm	Midterm			Midterm on all material taught so far.	
4-Nov	Computer networks	How are networks organized? How is the Internet organized?		HW3		
11-Nov	Artificial intelligence	What is AI? Search, plannning and a quick introduction to machine learning			Quiz 5 on material taught in class 9/4	1
18-Nov	The limits of computation	What can (and can't) be computed?	HW4		Quiz 6 on material taught in class 11/11	1
25-Nov	Robotics	Robotics: background and modern systems (e.g., self-driving cars)			Quiz 7 on material taught in class 11/18	1
2-Dec	Summary, recap, review	Summary, recap, review for final		HW4	Quiz 8 on material taught in class 11/25	1
13-Dec	Final exam 11 am - 1 pm in SGM 123				Final on all material covered in the semester	