CSCl 104
Hash Tables Intro

Mark Redekopp
David Kempe
Reviewed for Fall 2024

Motivation

Suppose a company has a unique 3-digit ID for each of
its 1000 employees.

 We want a data structure that, when given an
employee ID, efficiently brings up that employee’s
record.

How should we implement this?
* An array gives O(1) access time!

Alright, how do we obtain this runtime when the keys
are no longer so nicely ordered or non-integers??

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

P USCViterbi
Maps/Dictionaries

Arrays Maps/Dictionaries
 Anarray maps integers ¢ Dictionaries map keys to values
to values — Given key, k, mapl[k] returns the associated
value

— Given i, array|[i] returns the
value in O(1) — Key can be anything provided...

* |t has a '<' operator defined for it (C++ map)
or some other comparator functor (other
languages require something similar)

J

2 | C++ maps
l | allow any type
0 1 2 ;‘3 4 5 ") to be the key
3.] 2. ﬂ 23T mam
2|7 180 <)
3. I 2#oull Pair<string,double

45
Arrays associate an integer with

some arbitrary type as the value

(i.e. the key is always an integer)
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

“Jill" 3.45

3.45

. ()5 Viterbi
Dictionary Implementation

e Adictionary/map can be implemented with a balanced BST
— Insert, Find, Remove = O)

e Can we do better?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

— Hash tables (unordered maps) offer the promise of O) access time
key value
"Jorda | Stude
n" nt
ject
"Frank | Stude "Percy | Stude
" nt " nt
object object
"Anne" [Stude "Greg" | Stude "Tom Stude
nt nt my" nt
object object object

_USCViterbi®
Hash Tables - Insert

insert("Jill",3.
7)

School of Engineering

* (Can we use non-integer keys to index an array?

* Yes. Let us convert (i.e. "hash") the non-integer "J1ll

key to an integer

Conversion /

* Toinsert a key, we hash it and place the key Hash function

(and value) at that index in the array

— For now, make the unrealistic assumption that
each unique key hashes to a unique integer

3 4 5

2

;
||2 1
nH- m

NN O [T

* The conversion function is known as a hash

unction, h(k 5
f , h(k) A map implemented &s a hash

* A hash table implements a set/map ADT table
(key=name, value = GPA)

-

— insert(key) / insert(key,value)

— remove(key)
— lookup/find(key) => value Hash table parameter definitions:
* Question to address: What should we do if two keys n = # of keys entered (=4 above)
("Jill" and "Erin") hash to the same location (aka a m = tableSize (=6 above)
COLLISION)? a = %= Loading factor =

(4/6 above)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

B ()5 Vierbi >
Hash Tables - Find

find("Jill")]

* To find a key, we simply hash it again to find i
the index where it was inserted and access it
in the array Conversion / 0(1)
Hash function
* How might we hash a string to an integer? 2 4
— Use ASCII codes for each character and add, J
. - B8 4 2 3 4 5
multiply, or shift/mix them n i
| ol p H 'm 0(1)
— We then can use simple a modulo m 2.] 5 3
operation to convert the sum to a value 3. S5 8 —
between 0 to m-1 where m is the table size 7 6(1)

— Note: All data in a computer is already bits (15 e could sum the ASCII values.
and 0s). Any object can be viewed as a long

binary number and hashed 'h' =104 'e' =101 'l' = 108
‘1 108 ‘o’ 111

h("hello") = 532 % m

Is this a good way to hash a string?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi©
Hash Tables - Remove

erase("Jill") —
Jill

School of Engineering

* To remove a key, we simply hash the key and

mark the location as "free" again
— Could use a bool in the struct for each array Conversion / (1)
entry (more later) to indicate it is free Hash function
* The hash function, h(k), should ! n
— Be fast/easy to compute J
* O(|k|)—where |k]| is the length of the key 8 4 2 3 3 5
* Butin terms of n [# of keys in the set/map] this ; n . - |m 0(1)
runtime is constant since | k| << n [e.g. O(1)] = i %
— Be consistent and output the same result any 0(1)
time it is given the same input
— Distribute keys well Hash table parameter definitions:
* We'd like every unique key to map to a different
index, but that turns out to be almost n = # of keys entered
impossible. m = tableSize
* We'll settle for a "good" hash function where e o e
the probability of a key mapping to any location T m &

X is 1/m (i.e. uniform)
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Possible Hash Functions

* Define n = # of keys stored, m = table size and suppose
k is non-negative integer key

e Evaluate the following possible hash functions
e h(k)=07?

* h(k) =rand() mod m?

* h(k)=kmodm?

 Rules of thumb

— The hash function should examine the entire search key (i.e. all
bits/characters), not just a few digits or a portion of the key

— When modulo hashing is used, the base should be prime

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hashing Efficiency

* |f computing the hash function,
h(k), is O(1) and the array access

is 0(1)’ erase("Jill") —
Jill
* Then the runtime of the '
operations is O(1) I_fa‘;’;l":::m:] 6(1)
: 2 +
 What might prevent us from /
achieving this O(1)? 8 123 45 o)
— Collisions 2. 2. s
" 5 8
6(1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbim
Ordered vs. Unordered

Unordered Map/Set

unordered_map/unordered_set
(implemented as hash table)

Ordered Map/Set

— map/set _
(implemented as balanced BST)

Each uses a hash table for O(1) average
runtime to insert, find, and remove

— Log(n) runtime for insert/find/remove —

— If we print each key via an in-order
traversal of the tree, in what order will —
the keys be printed?

New to C++11 and requires compilation
with the -std=c++11 optionin g++

— Iteration will print the keys in an undefined
order (unordered)

key value find("Jill") —
"Jorda Stutde — Provides hash functions Jill
n n .
L biect for basic types:
. . Conversion /
/ int, string, etc. but for Hash function
"Frank | Stude "Percy | Stude any other .type you s
" nt " nt must provide your]
ject object own hash function 01 2 3 4 5
‘ (like the operator< A
"Anne" | Stude "Greg" | Stude "Tom Stude for BSTs)
nt nt my" nt 37 «<———

© 2022 by Mark Redggjp%(.;#his content is protectegt%%%ay not be shared, upIoade&%"%%tributed.

- USCViterbi®
Table Size and Collisions

e Suppose we want to store USC student info
using their 10-digit USC ID as the key
— The set of all POSSIBLE keys, S, has size |S| = 10

— But the number of keys we'd actually store, n, is
likely much less (i.e. n << |S|)

* So how large should the table size (m) be?

< <

e But anything smaller than the size of all possible
keys admits the chance of COLLISION
— A collision is when two keys map to the same
location [i.e. h(k1) == h(k2)]
— The probability of this should be low
— How we handle collisions is the major remaining
question to answer
* You will see that table size (m) should usually be
a prime number

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

insert("Erin",3.

2)

"Erin

Conversion /
Hash function

COLLISION!
h("Jill") = h("Erin")

Resolving Collisions

e Collisions occur when two keys, k1 and k2, are not equal, but
h(k1) = h(k2).
* Collisions are inevitable if the number of entries, n, is greater

than table size, m (by pigeonhole principle) and are likely even if
n < m (by the birthday paradox...more in our probability unit)

e Methods

— Closed Addressing (e.g. buckets or chaining): Keys MUST live in the

location they hash to (thus requiring multiple locations at each hash table
index)

* Methods: 1.) Buckets, 2.) Chaining

— Open Addressing (aka probing): Keys MAY NOT live in the location they
hash to (only requiring a single 1D array as the hash table)

* Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-hashing

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, IS(Viterbi -«

School of Engineering

Closed Addressing Methods

* Make each entry in the table a Bucket0 | Tim
fixed-size ARRAY (bucket) or LINKED 1
LIST (chain) of items/entries so all keys 2 | i} Erin
that hash to a location can reside at 3
that index 4
— Close Addressing => A key will reside
in the location it hashes to (it's just m-1 Bo

that there may be many keys (and

values) stored at that location
Array of Linked

e Buckets Lists key, value
— How big should you make each array? 0 P Tim | 3.8
— Too much wasted space 1
e Chaining 2 | Jill | 3.7 | Erin| 3.2
— Each entry is a linked list (or vector or 3
even maybe a set) 4
m-1 9 Bo | 2.7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Open Addressing and Linear Probing

 With open addressing, we keep the hash table a 1D
array (only one location per index) but when
collisions occur we allow keys to reside in a location
other than h(k) Tom key, value
— Open Addressing => A key may NOT reside in the
® Jill)

location it hashes to requiring extra searchingin a
process called probing Tom

* Forinsertion: always start by checking location h(k)
— Ifitis open, write the key (and value) there

A WO N =2 O

— Else "probe" for an empty location

* Linear Probing (other techniques in a minute) m-2

— Let i be number of failed checks to find a blank m-1
location (for insertion) or the key we are looking (for
find/remove)

— h(k,i) = (h(k)+i) mod m
— Example: If h(k) occupied (i.e. collision) then check
h(k)+1, h(k)+2, h(k)+3, ...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi @

Probing Impact on Find
insert("Ana") key
* |If h(k) is occupied with another key, then probe 0 |
* Insert: probe until we find a blank location ; ® 1:]0':‘ 3
* Find/Remove: probe until we... 3 Ana
— Find the key we are looking for ..OR.. 4
_ ..OR.. 5
m-1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Probing Impact on Find

insert("Ana") key
* |If h(k) is occupied with another key, then probe 0 | S
* Insert: probe until we find a blank location ; ® _IZJO':I 3
* Find/Remove: probe until we... 3 Ana
— Find the key we are looking for ..OR.. 4
— We reach a free location ..OR.. 5
— We have looked in all possible locations (i.e. wrapped
back to h(k) or alternatively we've performed m probes) m-1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (D

School of Engineering

Removal

erase("Tom") key, valid, removed

Jill 1,0
Tom 1,0 3
Ana 1,0

* Many implementations exist but we will show one
simple way for illustration

e Each location stores two bools

— Valid: a stored key exists in this location (or else is
free)

A N WN = O

— Removed: a key was erased at this location (so it is
free for insertion, but probing must continue for
find/remove) m-1

* Progression: find("Ana™) key, valid, removed

— Initially: V=0,R=0 (Free/Never used),

— Oninsert: V=1,R=0, Jill 1,0
Z
Ana 1,0

— On erasure: V=0,R=1 (can return to V=1,R=0 on
insert)

* For performance, we can periodically
rebuild/rehash the hash table after some number
of erasures to effectively return locations to
free/never used m-1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A NN WD - O

i, IS(Viterbi

School of Engineering

Linear Probing & Primary Clustering

*e Suppose a hash table (m=10) with integer keys and h(k) = k%m
e |nsert: 11,21, 2,31,3

— Notice, that the collisions of 11, 21, and 31 cause collisions for 2 and 3 which then may
cause collisions for other nearby hash locations

key, value key, value
11 y, valu 21 y, valu 9 key, value

0 0 0
1 11, val 1 11, val) 1 11, val
2 2 21, val 2 21, val 3
3 3 3 2, val
4 4 4
8 8 8

© 2022 by Mark Redekop9 This H may not be shared, uploade<90r dis 9

USC Viterbi €

School of Engine

Quadratic Probing

Ana Linear Probing
* |f certain data patterns lead to many :’ ® o "
collisions, linear probing leads to) To'm 3 h(k)+1
clusters of occupied areas in the table 3 Ana h(k)+2
called primary clustering 4
* Quadratic probing tends to spread >

out data across the table by taking
larger and larger steps until it finds an

. Ana Quadratic Probing
empty location

* Quadratic Probing 1 Jill h(k)
— (Again, let i be number of failed probes) 2 Tom h(k)+1*
— h(k,i) = (h(k)+i*) mod m 3
: . 4
— If h(k) ;)ccupleoi, then check h(k)+17, 5 i h(k+2?
h(k)+24, h(k)+37, ...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi €

School of Engine

Linear vs. Quadratic Probing

Ana key, value
: 0
* If certain data patterns lead to many 1 ® W
collisions, linear probing leads to 2 | Tom 3
clusters of occupied areas in the table z Ana
called primary clustering 5
 How would quadratic probing help
. . . m-1
fight primary clustering?
Ana key, value
— Quadratic probing tends to spread out 0
data across the table by taking larger and 1 ® Jill
larger steps until it finds an empty 2 Tom
location 3
4
5 Ana
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m'1

Quadratic Probing Practice

e Use the hash function h(k)=k%9 to find the contents of a hash table (m=9)
after inserting keys 36, 27, 18, 9, 0 using quadratic probing

* |f your loading factor rises above 0.5, bad things can happen!

* Use the hash function h(k)=k%7 to find the contents of a hash table
(m=10) after inserting keys 14, 8, 21, 2, 7 using quadratic probing

0 1 2 3 4 5 6

e (Quadratic probing only works well for prime table sizes, and keeping the
load factor < 0.5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (2

School of Engineering

Double Hashing

* Note: In linear and quadratic probing, if 0 Su
two keys hash to the same place (h, (k1) 1 ® Ji
== h,(k2)) we will probe the same 2 h(k)+
sequence Ana — 3 1*h,(k)
* Could we probe a different sequence 4 Tom
even if two keys have collided? 5 h,(k)*+
— Let's use ANOTHER hash function, h,(k) 6 2°h, (k)
to choose the step size of our probing 7 Ana
sequence
. 3
e Double Hashlng (probing
— (Again, let i be number of failed probes) stepsize)
— Pick a second hash function h,(k) in Sequence:
addition to the primary hash function, — Start at h1(k)
hl(k) — If needed, probe h1(k) + h2(k)
— h(k,i) =[h, (k) +i*h,(k)] mod m — If needed, probe h1(k) + 2*h2(k)

— If needed, probe h1(k) + 3*h2(k)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Double Hashing

* Assume
— m=13,
— h1(k) =k % 13
— h2(k)=5-(k % 5)
 What sequence would | probe if k = 31
— h1(31)=__,h2(31) =

— Seq:

— Notice we in the table. Why? A
table size!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Double Hashing

e Assume

m=13,
hl(k) =k % 13
hz(k) =5—-(k%5)

 What sequence would | probe if k = 31

h (31) =5

h,(31) = 5-(31 % 5) = 4 (which is the step size)

5+0%4=5%13=5

5+1*4=9%13=9

5+2%4=13%13=0

5+3%*4=17%13=4

And thenonto 8, 12, 3, 7, 11, 2,6, 10, 1

Notice we visited each index in the table. Why? A prime table size!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

0

Rehashing

For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations

General guideline for probing: keep a <
1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10
1 9 38 18 -

—_ 0/ Z —_ (o)
© 2022 by Mark Redekopp. Ths(cg‘u)ent is J&te tgd d may not be shared, uploaded, or distributed. h(k) - k A.) 1 1

0

Rehashing

For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations
General guideline for probing: keep 0 < 0.5
1 2 3 4 5 6 o 1 2 3 4 5 6 7 8 9 10
1 9 38 18 - 1 38 18 9

—_ 0/ Z —_ (o)
© 2022 by Mark Redekopp. Ths(cg‘u)ent is J&te tgd d may not be shared, uploaded, or distributed. h(k) - k A.) 1 1

USCViterbi'@
Probing Technique Summary

Tom key, value
* If h(k) is occupied with another key, then probe 0
* Letibe number of failed probes ; ®:'"3
. . om
* Linear Probing 3 Ana
— h(k,i) = (h(k)+i) mod m 4
* Quadratic Probing 5
— h(k,i) = (h(k)+i*) mod m
— If h(k) occupied, then check h(k)+1?, h(k)+2?, h(k)+3?, ... m-1

* Double Hashing

Tom key, value

— Pick a second hash function h (k) in addition to the 0

primary hash function, h (k) 1 ® Jill

—_ 1 = 13k J S

h(k,i) = [h (k) +i*h,(k)] mod m 2 Tom
3
4

5 Ana
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m'1

Hash Function Goals

* A "perfect hash function" should map each of the n
keys to a unique location in the table

— Recall that we will size our table to be larger than the
expected number of keys...i.e.n<m

— Perfect hash functions are not practically attainable
 A'"good" hash function

— |s easy and fast to compute

— Scatters data uniformly throughout the hash table
* P(h(k)=x)=1/m (i.e. pseudorandom)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hashing Efficiency

* Loading factor, a, defined as:
— o =n/m(Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1
— Good rule of thumb: resize and rehash after a > 0.5

* For closed addressing (chaining), a, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?

— Need to keep a constant (usuallya<1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, IS(Viterbi

Hashing Efficiency

* Loading factor, a, defined as:
— o =n/m(Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1
— Good rule of thumb: resize and rehash after a > 0.5

* For closed addressing (chaining), a, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?
* Average length of chain willbe a=n/m

— Need to keep O constant (usuallya<1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hash Tables are Awesome!

Hash tables provide a very lucrative potential runtime.
However, they are probabilistic.

 There was a similar problem with Splay Trees: they
had a good average runtime, but a poor worst-case
runtime.

As of this moment, we do not have the necessary

mathematical framework to analyze either of these

structures.

* We're going to start remedying that... now.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

