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Motivation

Suppose a company has a unique 3-digit ID for each of
its 1000 employees.

 We want a data structure that, when given an
employee ID, efficiently brings up that employee’s
record.

How should we implement this?
* An array gives O(1) access time!

Alright, how do we obtain this runtime when the keys
are no longer so nicely ordered or non-integers??
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P USCViterbi
Maps/Dictionaries

Arrays Maps/Dictionaries
 Anarray maps integers ¢ Dictionaries map keys to values
to values — Given key, k, mapl[k] returns the associated
value

— Given i, array|[i] returns the
value in O(1) — Key can be anything provided...

* |t has a '<' operator defined for it (C++ map)
or some other comparator functor (other
languages require something similar)

J

2 | C++ maps
l | allow any type
0 1 2 ;‘3 4 5 " ) to be the key
3. ] 2. ﬂ 23T mam
2|7 180 <)
3. I 2#oull Pair<string,double

45
Arrays associate an integer with

some arbitrary type as the value

(i.e. the key is always an integer)
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. ()5 Viterbi
Dictionary Implementation

e Adictionary/map can be implemented with a balanced BST
— Insert, Find, Remove = O )

e Can we do better?
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— Hash tables (unordered maps) offer the promise of O ) access time
key value
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_USCViterbi®
Hash Tables - Insert

insert("Jill",3.
7)

School of Engineering

* (Can we use non-integer keys to index an array?

* Yes. Let us convert (i.e. "hash") the non-integer "J1ll

key to an integer

Conversion /

* Toinsert a key, we hash it and place the key Hash function

(and value) at that index in the array

— For now, make the unrealistic assumption that
each unique key hashes to a unique integer

3 4 5

2

;
||2 1
nH- m

NN O [T

* The conversion function is known as a hash

unction, h(k 5
f , h(k) A map implemented &s a hash

* A hash table implements a set/map ADT table
(key=name, value = GPA)

-

— insert(key) / insert(key,value)

— remove(key)
— lookup/find(key) => value Hash table parameter definitions:
* Question to address: What should we do if two keys n = # of keys entered (=4 above)
("Jill" and "Erin") hash to the same location (aka a m = tableSize (=6 above)
COLLISION)? a = %= Loading factor =

(4/6 above)
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B ()5 Vierbi >
Hash Tables - Find

find("Jill") ]

* To find a key, we simply hash it again to find i
the index where it was inserted and access it
in the array Conversion / 0(1)
Hash function
* How might we hash a string to an integer? 2 4
— Use ASCII codes for each character and add, J
. - B8 4 2 3 4 5
multiply, or shift/mix them n i
| ol p H 'm 0(1)
— We then can use simple a modulo m 2. ] 5 3
operation to convert the sum to a value 3. S5 8 —
between 0 to m-1 where m is the table size 7 6(1)

— Note: All data in a computer is already bits (15 e could sum the ASCII values.
and 0s). Any object can be viewed as a long

binary number and hashed 'h' =104 'e' =101 'l' = 108
‘1 108 ‘o’ 111

h("hello") = 532 % m

Is this a good way to hash a string?
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Hash Tables - Remove

erase("Jill") —
Jill

School of Engineering

* To remove a key, we simply hash the key and

mark the location as "free" again
— Could use a bool in the struct for each array Conversion / (1)
entry (more later) to indicate it is free Hash function
* The hash function, h(k), should ! n
— Be fast/easy to compute J
* O(|k|)—where |k]| is the length of the key 8 4 2 3 3 5
* Butin terms of n [# of keys in the set/map] this ; n . - |m 0(1)
runtime is constant since | k| << n [e.g. O(1)] = i %
— Be consistent and output the same result any 0(1)
time it is given the same input
— Distribute keys well Hash table parameter definitions:
* We'd like every unique key to map to a different
index, but that turns out to be almost n = # of keys entered
impossible. m = tableSize
* We'll settle for a "good" hash function where e o e
the probability of a key mapping to any location T m &

X is 1/m (i.e. uniform)
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



Possible Hash Functions

* Define n = # of keys stored, m = table size and suppose
k is non-negative integer key

e Evaluate the following possible hash functions
e h(k)=07?

* h(k) =rand() mod m?

* h(k)=kmodm?

 Rules of thumb

— The hash function should examine the entire search key (i.e. all
bits/characters), not just a few digits or a portion of the key

— When modulo hashing is used, the base should be prime
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Hashing Efficiency

* |f computing the hash function,
h(k), is O(1) and the array access

is 0(1)’ erase("Jill") —
Jill
* Then the runtime of the '
operations is O(1) I_fa‘;’;l":::m:] 6(1)
: 2 +
 What might prevent us from /
achieving this O(1)? 8 123 45 o)
— Collisions 2. 2. s
" 5 8
6(1)
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- USCViterbim
Ordered vs. Unordered

Unordered Map/Set

unordered_map/unordered_set
(implemented as hash table)

Ordered Map/Set

— map/set _
(implemented as balanced BST)

Each uses a hash table for O(1) average
runtime to insert, find, and remove

— Log(n) runtime for insert/find/remove —

— If we print each key via an in-order
traversal of the tree, in what order will —
the keys be printed?

New to C++11 and requires compilation
with the -std=c++11 optionin g++

— Iteration will print the keys in an undefined
order (unordered)

key value find("Jill") —
"Jorda Stutde — Provides hash functions Jill
n n .
L biect for basic types:
. . Conversion /
/ int, string, etc. but for Hash function
"Frank | Stude "Percy | Stude any other .type you s
" nt " nt must provide your ]
ject object own hash function 01 2 3 4 5
‘ (like the operator< A
"Anne" | Stude "Greg" | Stude "Tom Stude for BSTs)
nt nt my" nt 37 «<———
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- USCViterbi®
Table Size and Collisions

e Suppose we want to store USC student info
using their 10-digit USC ID as the key
— The set of all POSSIBLE keys, S, has size |S| = 10

— But the number of keys we'd actually store, n, is
likely much less (i.e. n << |S|)

* So how large should the table size (m) be?

< <

e But anything smaller than the size of all possible
keys admits the chance of COLLISION
— A collision is when two keys map to the same
location [i.e. h(k1) == h(k2) ]
— The probability of this should be low
— How we handle collisions is the major remaining
question to answer
* You will see that table size (m) should usually be
a prime number
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School of Engineering

insert("Erin",3.

2)

"Erin

Conversion /
Hash function

COLLISION!
h("Jill") = h("Erin")



Resolving Collisions

e Collisions occur when two keys, k1 and k2, are not equal, but
h(k1) = h(k2).
* Collisions are inevitable if the number of entries, n, is greater

than table size, m (by pigeonhole principle) and are likely even if
n < m (by the birthday paradox...more in our probability unit)

e Methods

— Closed Addressing (e.g. buckets or chaining): Keys MUST live in the

location they hash to (thus requiring multiple locations at each hash table
index)

* Methods: 1.) Buckets, 2.) Chaining

— Open Addressing (aka probing): Keys MAY NOT live in the location they
hash to (only requiring a single 1D array as the hash table)

* Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-hashing
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School of Engineering

Closed Addressing Methods

* Make each entry in the table a Bucket0 | Tim
fixed-size ARRAY (bucket) or LINKED 1
LIST (chain) of items/entries so all keys 2 | i} Erin
that hash to a location can reside at 3
that index 4
— Close Addressing => A key will reside
in the location it hashes to (it's just m-1 Bo

that there may be many keys (and

values) stored at that location
Array of Linked

e Buckets Lists key, value
— How big should you make each array? 0 P Tim | 3.8
— Too much wasted space 1
e Chaining 2 | Jill | 3.7 | Erin| 3.2
— Each entry is a linked list (or vector or 3
even maybe a set) 4
m-1 9 Bo | 2.7
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USC Viterbi

School of Engineering

Open Addressing and Linear Probing

 With open addressing, we keep the hash table a 1D
array (only one location per index) but when
collisions occur we allow keys to reside in a location
other than h(k) Tom key, value
— Open Addressing => A key may NOT reside in the
® Jill )

location it hashes to requiring extra searchingin a
process called probing Tom

* Forinsertion: always start by checking location h(k)
— Ifitis open, write the key (and value) there

A WO N =2 O

— Else "probe" for an empty location

* Linear Probing (other techniques in a minute) m-2

— Let i be number of failed checks to find a blank m-1
location (for insertion) or the key we are looking (for
find/remove)

— h(k,i) = (h(k)+i) mod m
— Example: If h(k) occupied (i.e. collision) then check
h(k)+1, h(k)+2, h(k)+3, ...
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USCViterbi @

Probing Impact on Find
insert("Ana") key
* |If h(k) is occupied with another key, then probe 0 |
* Insert: probe until we find a blank location ; ® 1:]0':‘ 3
* Find/Remove: probe until we... 3 Ana
— Find the key we are looking for ..OR.. 4
_ ..OR.. 5
m-1
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USC Viterbi

School of Engineering

Probing Impact on Find

insert("Ana") key
* |If h(k) is occupied with another key, then probe 0 | S
* Insert: probe until we find a blank location ; ® _IZJO':I 3
* Find/Remove: probe until we... 3 Ana
— Find the key we are looking for ..OR.. 4
— We reach a free location ..OR.. 5
— We have looked in all possible locations (i.e. wrapped
back to h(k) or alternatively we've performed m probes) m-1
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USC Viterbi (D

School of Engineering

Removal

erase("Tom") key, valid, removed

Jill 1,0
Tom 1,0 3
Ana 1,0

* Many implementations exist but we will show one
simple way for illustration

e Each location stores two bools

— Valid: a stored key exists in this location (or else is
free)

A N WN = O

— Removed: a key was erased at this location (so it is
free for insertion, but probing must continue for
find/remove) m-1

* Progression: find("Ana™) key, valid, removed

— Initially: V=0,R=0 (Free/Never used),

— Oninsert: V=1,R=0, Jill 1,0
Z
Ana 1,0

— On erasure: V=0,R=1 (can return to V=1,R=0 on
insert)

* For performance, we can periodically
rebuild/rehash the hash table after some number
of erasures to effectively return locations to
free/never used m-1
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School of Engineering

Linear Probing & Primary Clustering

*e Suppose a hash table (m=10) with integer keys and h(k) = k%m
e |nsert: 11,21, 2,31,3

— Notice, that the collisions of 11, 21, and 31 cause collisions for 2 and 3 which then may
cause collisions for other nearby hash locations

key, value key, value
11 y, valu 21 y, valu 9 key, value

0 0 0
1 11, val 1 11, val ) 1 11, val
2 2 21, val 2 21, val 3
3 3 3 2, val
4 4 4
8 8 8
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School of Engine

Quadratic Probing

Ana Linear Probing
* |f certain data patterns lead to many :’ ® o "
collisions, linear probing leads to ) To'm 3 h(k)+1
clusters of occupied areas in the table 3 Ana h(k)+2
called primary clustering 4
* Quadratic probing tends to spread >

out data across the table by taking
larger and larger steps until it finds an

. Ana Quadratic Probing
empty location

* Quadratic Probing 1 Jill h(k)
— (Again, let i be number of failed probes) 2 Tom h(k)+1*
— h(k,i) = (h(k)+i*) mod m 3
: . 4
— If h(k) ;)ccupleoi, then check h(k)+17, 5 i h(k+2?
h(k)+24, h(k)+37, ...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



USC Viterbi €

School of Engine

Linear vs. Quadratic Probing

Ana key, value
: 0
* If certain data patterns lead to many 1 ® W
collisions, linear probing leads to 2 | Tom 3
clusters of occupied areas in the table z Ana
called primary clustering 5
 How would quadratic probing help
. . . m-1
fight primary clustering?
Ana key, value
— Quadratic probing tends to spread out 0
data across the table by taking larger and 1 ® Jill
larger steps until it finds an empty 2 Tom
location 3
4
5 Ana
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Quadratic Probing Practice

e Use the hash function h(k)=k%9 to find the contents of a hash table (m=9)
after inserting keys 36, 27, 18, 9, 0 using quadratic probing

* |f your loading factor rises above 0.5, bad things can happen!

* Use the hash function h(k)=k%7 to find the contents of a hash table
(m=10) after inserting keys 14, 8, 21, 2, 7 using quadratic probing

0 1 2 3 4 5 6

e (Quadratic probing only works well for prime table sizes, and keeping the
load factor < 0.5
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School of Engineering

Double Hashing

* Note: In linear and quadratic probing, if 0 Su
two keys hash to the same place (h, (k1) 1 ® Ji
== h,(k2)) we will probe the same 2 h(k)+
sequence Ana — 3 1*h,(k)
* Could we probe a different sequence 4 Tom
even if two keys have collided? 5 h,(k)*+
— Let's use ANOTHER hash function, h,(k) 6 2°h, (k)
to choose the step size of our probing 7 Ana
sequence
. 3
e Double Hashlng (probing
— (Again, let i be number of failed probes) stepsize)
— Pick a second hash function h,(k) in Sequence:
addition to the primary hash function, — Start at h1(k)
hl(k) — If needed, probe h1(k) + h2(k)
— h(k,i) =[h, (k) +i*h,(k) ] mod m — If needed, probe h1(k) + 2*h2(k)

— If needed, probe h1(k) + 3*h2(k)
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Double Hashing

* Assume
— m=13,
— h1(k) =k % 13
— h2(k)=5-(k % 5)
 What sequence would | probe if k = 31
— h1(31)=__,h2(31) =

— Seq:

— Notice we in the table. Why? A
table size!
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Double Hashing

e Assume

m=13,
hl(k) =k % 13
hz(k) =5—-(k%5)

 What sequence would | probe if k = 31

h (31) =5

h,(31) = 5-(31 % 5) = 4 (which is the step size)

5+0%4=5%13=5

5+1*4=9%13=9

5+2%4=13%13=0

5+3%*4=17%13=4

And thenonto 8, 12, 3, 7, 11, 2,6, 10, 1

Notice we visited each index in the table. Why? A prime table size!
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Rehashing

For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations

General guideline for probing: keep a <
1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10
1 9 38 18 -

—_ 0/ Z —_ (o)
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0

Rehashing

For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations
General guideline for probing: keep 0 < 0.5
1 2 3 4 5 6 o 1 2 3 4 5 6 7 8 9 10
1 9 38 18 - 1 38 18 9

—_ 0/ Z —_ (o)
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Probing Technique Summary

Tom key, value
* If h(k) is occupied with another key, then probe 0
* Letibe number of failed probes ; ®:'"3
. . om
* Linear Probing 3 Ana
— h(k,i) = (h(k)+i) mod m 4
* Quadratic Probing 5
— h(k,i) = (h(k)+i*) mod m
— If h(k) occupied, then check h(k)+1?, h(k)+2?, h(k)+3?, ... m-1

* Double Hashing

Tom key, value

— Pick a second hash function h (k) in addition to the 0

primary hash function, h (k) 1 ® Jill

—_ 1 = 13k J S

h(k,i) = [ h (k) +i*h,(k) ] mod m 2 Tom
3
4

5 Ana
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m'1




Hash Function Goals

* A "perfect hash function" should map each of the n
keys to a unique location in the table

— Recall that we will size our table to be larger than the
expected number of keys...i.e.n<m

— Perfect hash functions are not practically attainable
 A'"good" hash function

— |s easy and fast to compute

— Scatters data uniformly throughout the hash table
* P(h(k)=x)=1/m (i.e. pseudorandom)
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Hashing Efficiency

* Loading factor, a, defined as:
— o =n/m(Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1
— Good rule of thumb: resize and rehash after a > 0.5

* For closed addressing (chaining), a, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?

— Need to keep a constant (usuallya<1)
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Hashing Efficiency

* Loading factor, a, defined as:
— o =n/m(Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1
— Good rule of thumb: resize and rehash after a > 0.5

* For closed addressing (chaining), a, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?
* Average length of chain willbe a=n/m

— Need to keep O constant (usuallya<1)
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Hash Tables are Awesome!

Hash tables provide a very lucrative potential runtime.
However, they are probabilistic.

 There was a similar problem with Splay Trees: they
had a good average runtime, but a poor worst-case
runtime.

As of this moment, we do not have the necessary

mathematical framework to analyze either of these

structures.

* We're going to start remedying that... now.
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