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Processor Families

Instruction Set Architecture (ISA)
Instructions supported by a processor (and their byte-level encoding).
● Examples: x86-64, IA32, ARMv8.

Processor Family
Different processors implementing the same ISA.
● Examples: Intel i5 and i7 (x86-64).

The ISA is the shared interface / level of abstraction for:
● Compiler writers (translate C to assembly of an ISA).
● Processor designers (design logic to execute ISA assembly instructions).

Very clever optimizations are adopted by processor designers:
● Pipeline
● Out-of-order execution
● Branch prediction

Recently responsible of security attacks (Meltdown and Spectre).



Main Idea: Parallelism

Take sequential ISA instructions and run them in parallel.
● The result must be the same as sequential execution.

Parallelism at many levels
● At sub-instruction level: pipeline.
● At instruction level: superscalar execution (e.g., two pipelines).
● At thread level: run multiple threads on separate cores.
● At data level: single-instruction multiple-data (SIMD).

Problems
● Data dependencies: the next instruction needs (at some point) 

the result of the previous one. Cannot run them in parallel!

Clever strategies to deal with data dependencies:
● Out-of-order execution
● Static and dynamic scheduling
● Loop unrolling and renaming



Instruction Sets: RISC and CISC

CISC Processors
● Large number of instructions
● Instructions with long execution time (e.g., memory to memory)
● Complex, variable-size instruction encodings (e.g., 1-15 bytes for x86-64)
● Complex addressing formats, e.g.,  movq %rds,2(%rax,%rdx,8)
● ALU operations applicable to memory and registers: addq %rcx,(%rax)
● Stack intensive: use stack for return addresses and arguments (e.g., IA32)

RISC Processors
● Many fewer instructions (less than 100)
● Instructions only for quick, primitive operations
● Fixed-length instruction encoding (typically, 4 bytes)
● Simple addressing formats, e.g., just base and displacement: 2(%rax)
● ALU operations applicable only to registers: addq %rcx,%rax
● Register intensive: use registers for return addresses and arguments.

Today: x86-64 CISC instructions translated by CPU to RISC-like instructions.



Example: Translating to RISC-like assembly

// CISC instruction

movq 0x40(%rdi, %rsi, 4), %rax

// RISC equivalent

mov   %rsi, %rbx   // use %rbx as a temp

shl      2, %rbx   // %rsi * 4

add   %rdi, %rbx   // %rdi + (%rsi*4)

add  $0x40, %rbx   // 0x40 + %rdi + (%rsi*4)

mov (%rbx), %rax   // %rax = *%rbx

General Principles
● Replace complex addressing with sequence of arithmetic operations
● Replace memory-to-register ALU operations with register-to-register 

operations and load/store.



RISC: Classroom Instructions

● Load from memory into register:
○ ld 0x40(%rdi), %rax 

● Store register into memory:
○ st %rax, 0x40(%rdi)

● Arithmetic and logic instructions on registers:
○ add %rdi, %rax

○ sub %rdi, %rax

○ xor %rdi, %rax

○ …

● Moves between registers
○ mov %rdi, %rax

● Jumps
○ je 0x123

○ jg 0x123



Example: Translation

// example #1

mov (%rdi), %rax                  ld 0x0(%rdi), %rax

mov 0x40(%rdi), %rax              ld 0x40(%rdi), %rax

mov 0x40(%rdi,%rsi), %rax         mov %rsi, %rbx

                                  add %rdi, %rbx

                                  ld  0x40(%rbx), %rax

// example #2

mov %rax, (%rdi)                  st %rax, 0x0(%rdi)

mov %rax, 0x40(%rdi)              st %rax, 0x40(%rdi)

mov %rax, 0x40(%rdi,%rsi)         mov %rsi, %rbx

                                  add %rdi, %rbx

                                  st  %rax, 0x40(%rbx)

// example #3

add %rax, (%rsp)                  ld   0(%rsp), %rbx

                                  add  %rax, %rbx

                                  st   %rbx, 0(%rsp)



Sequential Processor

On each clock cycle, perform all the steps to run an 
instruction (so, clock cycle will be large!).

Fetch. Read instruction from memory and extract 
icode, registers rA/rB, constant valC.

Decode. Read up to 2 operands from register file, 
obtaining valA and valB (for ALU operations).

Execute. ALU operation on registers, effective 
address computation (for ld and st). Produces an 
output value and a condition code.

Memory. Read data from memory to valM (for ld), or 
write data to memory (for st). Uses the address 
computed during Execute.

Write Back. Save Ex/Mem output to registers.



Sequential Processor: Add

add does not need to access the data cache, no memory access.



Sequential Processor: Load

ld uses the ALU operation to compute the affective address.



Sequential Processor: Store

st uses the ALU operation to compute the affective address, no write-back.



Sequential Processor: Jump

je uses condition code and ALU to increment PC,
no memory access, no write-back.



Pipeline: Motivation

The sequential processor executes one instruction at a time.

While one unit (Fetch, Decode, Execute, Memory, Write-Back) is computing, 
the others are waiting.



Pipeline: Idea

Add intermediate buffers, process multiple instructions at the same time.
● Increases throughput (instructions processed / second)
● Slightly increases latency (time from start to end of an instruction)

Can you compute these values?



Pipeline: Operation

During each clock cycle, the 
combinatorial logic of a stage 
computes the next intermediate 
result of an instruction.



Pipeline: Non-Uniform Stage Delays

The clock cycle must be greater or equal to the maximum stage delay.

In the example: max(70, 170, 120) = 170 ps, so:
● Delay is 170 ⨯ 3 = 510 ps
● Throughput is 1/.17 GIPS



Pipeline: Diminishing Returns of Deep Lines

n  clock (ps)  tput (GIPS)

1   320        3.125

2   170        5.882

3   120        8.333

4    95       10.526

5    80       12.500

6    70       14.286

        clock = 300/n + 20

        tput  = 1/clock

        delay = n*clock



Pipelined Processor

Note that there can be a pending write to the register file during 
decode/execute of following instructions.



Pipeline: Hazards

Data Dependencies
The results computed by an instruction 
are used by the following one.

Control Dependencies
One instruction determines the location of 
the next one (e.g., jumps).

Sequential dependencies can create 
pipeline hazards.
● Careless pipelining can produce 

different program behavior!

 mov $10, %edx

 mov $3, %eax

 add %edx, %eax



Pipeline: Avoiding Hazards

Stalling
Insert no-op and wait for results

mov $10, %edx

mov $3, %eax

nop

nop

nop

add %edx, %eax

When add is decoding, moves 
have completed write-back.



Pipeline: Avoiding Hazards

Forwarding
Pass new values to previous stages

mov $10, %edx

mov $3, %eax

add %edx, %eax

In cycle 4, both mov operations have 
their output value ready: 
if forwarding logic is added to the 
processor, add can read those 
values during its decode stage.

This is effectively by-passing reads 
from registers.



Example from class

Stalling                                                              Forwarding



Structural Hazard: Load for next instruction

ld 8(%rdx), %rax

add %rax, %rcx

While ld is saving %rdx into a register (phase M), add is already using its input 
to compute a result in phase E.

● Forwarding is not enough! We need the output of D-Cache, not the input...
● Use stalling and forwarding together.

○ add is stalled by 1 phase
○ ld passes back the new value of %rdx during phase WB



Control Hazard

When a branch is mispredicted, the pipeline (and its effects) must be flushed.



Code Reordering

Instead of stalling after the “load for next instruction,” we can move up the 
counter increment (since it doesn’t affect other instruction until the jump to L1).

Similarly, branch delay slots: move always-executed instructions after the jump.

void increment(int *a, int n, int x) {

    for (int i = 0; i < n; i++) {

  a[i] += x;

    }

}

increment:

mov $0, %ecx  // i

.L1:

cmp %esi, %ecx

jge .L2

ld    0(%rdi), %eax

      // nop added here

add %edx, %eax

st %eax, 0(%rdi)

add $4, %rdi

add $1, %ecx

j .L1

.L2:

ret

increment:

mov $0, %ecx  // i

.L1:

cmp %esi, %ecx

jge .L2

ld    0(%rdi), %eax

      add $1, %ecx

add %edx, %eax

st %eax, 0(%rdi)

add $4, %rdi

j .L1

.L2:

ret



Superscalar Execution

With a pipeline, the throughput is at most 1 / (clock cycle). Can we do better?
● Idea: use instruction-level parallelism.
● Multiple pipelines, each running different instructions in parallel.
● Problems:

○ Data dependencies, or RAW (read-after-write) hazards.
○ Control hazards (jumps).

Approaches
● Static scheduling: compiler packs instructions to be executed in parallel.
● Dynamic scheduling: hardware assigns instructions to parallel queues.



2-way Very Large Instruction Word Machine

● No forwarding between instructions of an “issue packet”
● Full forwarding to instructions behind in the pipeline
● Stall 1 cycle at “load for next instruction”



2-way VLIW Machine: Scheduling Example

void incr5(int *a, int n) {

    for (; n != 0; n--, a++)

  *a += 5;

}

incr5:

.L1:

ld    0(%rdi), %r9

      // nop required here

add $5, %r9

st %r9, 0(%rdi)

add $4, %rdi

add $-1, %esi

jne $0, %esi, .L1

=== INTEGER SLOT ===

add $-1, %esi

add $5, %r9

add $4, %rdi

jne $0, %esi, .L1

===  LD/ST SLOT  ===

ld 0(%rdi), %r9

st %r9, 0(%rdi)

Unoptimized Schedule (no gain wrt single pipeline)

=== INTEGER SLOT ===

add $-1, %esi

add $4, %rdi

add $5, %r9

jne $0, %esi, .L1

===  LD/ST SLOT  ===

ld 0(%rdi), %r9

st %r9, -4(%rdi)

Optimized Schedule (move up increase of si/di)

From 6/6 = 1 instructions per cycle to 6/4 = 1.5



Loop Unrolling

Sometimes we don’t have enough instruction for parallel pipelines.

Idea: copy body k times and iterate only n/k times (assume n multiple of k)
● Different copies of body can run in parallel.

void incr5(int *a, int n) {

    for (; n != 0; n-= 4, a+=4) {

  *a += 5;

  *(a+1) += 5;

  *(a+2) += 5;

  *(a+3) += 5;

    }

}

incr5:

.L1:

0 ld    0(%rdi), %r9

0 add $5, %r9

0 st %r9, 0(%rdi)

1 ld    4(%rdi), %r9

1 add $5, %r9

1 st %r9, 4(%rdi)

2 ld    8(%rdi), %r9

2 add $5, %r9

2 st %r9, 8(%rdi)

3 ld    12(%rdi), %r9

3 add $5, %r9

3 st %r9, 12(%rdi)

add $16, %rdi

add $-4, %esi

jne $0, %esi, .L1

old-incr5:

.L1:

0 ld    0(%rdi), %r9

0 add $5, %r9

0 st %r9, 0(%rdi)

add $4, %rdi

add $-1, %esi

jne $0, %esi, .L1

Still can’t run in parallel: all 
copies use the register %r9
⇒ Read-After-Write (RAW)
⇒ Register renaming



Loop Unrolling and Register Renaming

incr5:

.L1:

0 ld    0(%rdi), %r9

0 add $5, %r9

0 st %r9, 0(%rdi)

1 ld    4(%rdi), %r10

1 add $5, %r10

1 st %r10, 4(%rdi)

2 ld    8(%rdi), %r11

2 add $5, %r11

2 st %r11, 8(%rdi)

3 ld    12(%rdi), %r12

3 add $5, %r12

3 st %r12, 12(%rdi)

add $16, %rdi

add $-4, %esi

jne $0, %esi, .L1

IPC = 15/8

Notice: We exploit independence of loop bodies.

=== INTEGER SLOT ===

add $-4, %esi

add $5, %r9

add $5, %r10

add $5, %r11

add $5, %r12

add $16, %rdi

jne $0, %esi, .L1

===  LD/ST SLOT  ===

ld 0(%rdi), %r9

ld 4(%rdi), %r10

ld 8(%rdi), %r11

ld 12(%rdi), %r12

st %r9, 0(%rdi)

st %r10, 4(%rdi)

st %r11, 8(%rdi)

st %r12, -4(%rdi)

Optimized Schedule


