
CS356: Discussion #13
Linking and Processor Organization

Marco Paolieri (paolieri@usc.edu)
Illustrations from CS:APP3e textbook

Schedule: Exams and Assignments

● Week 1: Binary Representation HW0 .
● Week 2: Integer Operations
● Week 3: Floating-Point Operations Data Lab 1 .
● Week 4: Assembly (Arithmetic Instruction)
● Week 5: Assembly (Debugging with GDB) Data Lab 2 .
● Week 6: Assembly (Function Calls)
● Week 7: Bomb Lab .(Oct. 1), Exam I (Oct. 4), Security Vulnerabilities
● Week 8: Memory Organization
● Week 9: Caching Attack Lab .
● Week 10: Virtual Memory
● Week 11: Dynamic Memory Allocation and Linking (Next Discussion)
● Week 12: Cache Lab .(Nov. 5), Processor Organization, Exam II (Nov. 8)
● Week 13: Processor Organization
● Week 14: Code Optimization and Thanksgiving
● Week 15: Cache Coherency Allocation Lab and Review
● Week 16: Study Days and Final (Dec. 6)

The Allocation Lab

Suggested Roadmap
● Do you have a working implementation? (Start with book implementation.)
● Can you get 40/40 points for throughput? (Try explicit free lists.)
● Can you get at least 40/50 points for utilization?

To get good utilization, look at the traces!

Example
● Allocate 16, 112, 16, 112, 16, … (in this order, contiguously)
● Free the "112" blocks
● Allocate as many "128" blocks

You cannot merge the freed blocks: will end up using 2x space for the heap!
● Any better strategy for placing blocks 16, 112, 16, 112, 16 within free

blocks?

Assigned Points

Breakdown
● 25 points for correctness (partial credit for each correct trace execution)
● 35 points for performance

○ memory utilization = peak memory usage / heap size (at most 1)
○ throughput = operations / second
○ performance index (w = 0.6)

Linking

Storage Class Specifiers
● extern ⇒ to declare a global variable/function defined in another unit
● static ⇒ to define a global variable/function with internal linkage

Function prototypes are extern by default; local variables can be static (bad)

gcc -c main.c swap.c

gcc -o prog main.o swap.o

./prog

With extern specifier
● Cannot initialize the variable (another unit will)
● Expected during linking as a global variable in another unit

With Initialization (Strong Symbol)
● Initialized to the given value
● Exported during linking

○ Linking error if another unit initializes a variable with the same name
○ No error if the other unit defines a weak symbol (no initialization)

Without Initialization (Weak Symbol)
● Initialized to zero if no strong symbol is present
● Exported during linking in “common mode”

○ Shared if another unit defines a variable with the same name

No checks on global variable types: data types may not match (bad!)
○ Also no checks on function prototypes of external functions...
○ Checks on types/prototypes if linking optimization -ftlo is enabled
○ Common strategy: each unit includes its own prototypes/externs

Global Variables (Avoid If Possible)

External Symbols: When types don’t match...

$ gcc -Wall -Wextra -std=c99 main.c swap.c -o prog

$./prog

z = 11223344

x = 11227788

y = 55663344

z = 11220000

/* main.c */

#include <stdio.h>

int z = 0x11223344;

void swap(int *x, int *y);

int main() {

 int x = 0x11223344;

 int y = 0x55667788;

 printf("z = %x\n", z);

 swap(&x, &y);

 printf("x = %x\n", x);

 printf("y = %x\n", y);

 printf("z = %x\n", z);

}

/* swap.c */

short z;

void swap(short *x, short *y) {

 z = 0;

 short tmp = *x;

 *x = *y;

 *y = tmp;

}

External Symbols: With -flto

$ gcc -Wall -Wextra -std=c99 -flto main.c swap.c -o prog

main.c:4:6: warning: type of ‘swap’ does not match original declaration

[..]

swap.c:1:7: warning: type of ‘z’ does not match original declaration

[..]

main.c:3:5: note: type ‘int’ should match type ‘short int’

/* main.c */

#include <stdio.h>

int z = 0x11223344;

void swap(int *x, int *y);

int main() {

 int x = 0x11223344;

 int y = 0x55667788;

 printf("z = %x\n", z);

 swap(&x, &y);

 printf("x = %x\n", x);

 printf("y = %x\n", y);

 printf("z = %x\n", z);

}

/* swap.c */

short z;

void swap(short *x, short *y) {

 z = 0;

 short tmp = *x;

 *x = *y;

 *y = tmp;

}

External Symbols: Using Headers

$ gcc -Wall -Wextra -std=c99 \

 main.c swap.c -o prog

$./prog

z = 11223344

x = 55667788

y = 11223344

z = 0

Strategy: Each unit includes its own
prototypes/declarations.
● Non-matching types now result

in compile errors within a unit
● Header guards are used to

avoid double (or recursive)
inclusion of headers

● Adding int z = 42 to swap.c
results in a linking error

/* main.c */

#include "main.h"

int z = 0x11223344;

int main() {

 int x = 0x11223344;

 int y = 0x55667788;

 printf("z = %x\n", z);

 swap(&x, &y);

 printf("x = %x\n", x);

 printf("y = %x\n", y);

 printf("z = %x\n", z);

}

/* swap.c */

#include "swap.h"

void swap(int *x, int *y) {

 z = 0;

 int tmp = *x;

 *x = *y;

 *y = tmp;

}

/* main.h */

#ifndef MAIN_H

#define MAIN_H

#include <stdio.h>

#include "swap.h"

extern int z;

#endif /* MAIN_H */

/* swap.h */

#ifndef SWAP_H

#define SWAP_H

#include "main.h"

void swap(int *x, int *y);

#endif /* SWAP_H */

Linking

● Phase 1: Symbol Resolution
○ Global Symbols: Non-static, global variables and functions
○ External Global Symbols: Used but not defined in a unit
○ Local Symbols: Static variables and functions (used only in this unit)

■ Local variables are not local symbols! (Not involved in linking)
■ Errors for duplicate definition of local symbols,

duplicate global symbols with initializations (strong symbols)

● Phase 2: Relocation

Symbol Resolution: Global, External, Local

Symbol Resolution: Strong and Weak

Object Files

Three kinds of object files:
● Relocatable: code/data (e.g., .o produced by gcc -c)
● Executable: binary ready for execution (e.g., ./prog produced by gcc -o)
● Shared: ready to be used as dynamic library (.so on Linux)

In Linux, executable files have the ELF format (Executable & Linked Format)

ELF Format

.text binary code

.rodata constants like strings

.data initialized global/static vars

.bss uninitialized global/static
variables (no space in .o)
.symtab symbol table (functions and
global variables)
.rel.text relocation info
.debug, .line: symbol table for locals
and other definitions (included with -g)
.strtab Table of all the strings used
by other headers

Relocation

Static Libraries

● Binary code from library functions
added to executable at linking time

● Only needed functions are included
● No dependencies at runtime
● Large executable
● Each program loads the same library

code into memory
● Need to run the linker again to use a

new library version (e.g., with bug fixes)

Shared Libraries

● Use an indirection: lookup address
of code/data at runtime

● OS loader fills Global Offset Table
with runtime location of code

● Many processes can share the
same code (as read-only areas)

● If system libraries are updated, a
new version is used

● Compile with -shared

Example

Processor Families

Instruction Set Architecture (ISA)
Instructions supported by a processor (and their byte-level encoding).
● Examples: x86-64, IA32, ARMv8.

Processor Family
Different processors implementing the same ISA.
● Examples: Intel i5 and i7 (x86-64).

The ISA is the shared interface / level of abstraction for:
● Compiler writers (translate C to assembly of an ISA).
● Processor designers (design logic to execute ISA assembly instructions).

Very clever optimizations are adopted by processor designers:
● Pipeline
● Out-of-order execution
● Branch prediction

Recently responsible of security attacks (Meltdown and Spectre).

Main Idea: Parallelism

Take sequential ISA instructions and run them in parallel.
● The result must be the same as sequential execution.

Parallelism at many levels
● At sub-instruction level: pipeline.
● At instruction level: superscalar execution (e.g., two pipelines).
● At thread level: run multiple threads on separate cores.
● At data level: single-instruction multiple-data (SIMD).

Problems
● Data dependencies: the next instruction needs (at some point)

the result of the previous one. Cannot run them in parallel!

Clever strategies to deal with data dependencies:
● Out-of-order execution
● Static and dynamic scheduling
● Loop unrolling and renaming

Instruction Sets: RISC and CISC

CISC Processors
● Large number of instructions
● Instructions with long execution time (e.g., memory to memory)
● Complex, variable-size instruction encodings (e.g., 1-15 bytes for x86-64)
● Complex addressing formats, e.g., movq %rds,2(%rax,%rdx,8)
● ALU operations applicable to memory and registers: addq %rcx,(%rax)
● Stack intensive: use stack for return addresses and arguments (e.g., IA32)

RISC Processors
● Many fewer instructions (less than 100)
● Instructions only for quick, primitive operations
● Fixed-length instruction encoding (typically, 4 bytes)
● Simple addressing formats, e.g., just base and displacement: 2(%rax)
● ALU operations applicable only to registers: addq %rcx,%rax
● Register intensive: use registers for return addresses and arguments.

Today: x86-64 CISC instructions translated by CPU to RISC-like instructions.

Example: Translating to RISC-like assembly

// CISC instruction

movq 0x40(%rdi, %rsi, 4), %rax

// RISC equivalent

mov %rsi, %rbx // use %rbx as a temp

shl 2, %rbx // %rsi * 4

add %rdi, %rbx // %rdi + (%rsi*4)

add $0x40, %rbx // 0x40 + %rdi + (%rsi*4)

mov (%rbx), %rax // %rax = *%rbx

General Principles
● Replace complex addressing with sequence of arithmetic operations
● Replace memory-to-register ALU operations with register-to-register

operations and load/store.

RISC: Classroom Instructions

● Load from memory into register:
○ ld 0x40(%rdi), %rax

● Store register into memory:
○ st %rax, 0x40(%rdi)

● Arithmetic and logic instructions on registers:
○ add %rdi, %rax

○ sub %rdi, %rax

○ xor %rdi, %rax

○ …

● Moves between registers
○ mov %rdi, %rax

● Jumps
○ je 0x123

○ jg 0x123

Example: Translation

// example #1

mov (%rdi), %rax ld 0x0(%rdi), %rax

mov 0x40(%rdi), %rax ld 0x40(%rdi), %rax

mov 0x40(%rdi,%rsi), %rax mov %rsi, %rbx

 add %rdi, %rbx

 ld 0x40(%rbx), %rax

// example #2

mov %rax, (%rdi) st %rax, 0x0(%rdi)

mov %rax, 0x40(%rdi) st %rax, 0x40(%rdi)

mov %rax, 0x40(%rdi,%rsi) mov %rsi, %rbx

 add %rdi, %rbx

 st %rax, 0x40(%rbx)

// example #3

add %rax, (%rsp) ld 0(%rsp), %rbx

 add %rax, %rbx

 st %rbx, 0(%rsp)

Sequential Processor

On each clock cycle, perform all the steps to run an
instruction (so, clock cycle will be large!).

Fetch. Read instruction from memory and extract
icode, registers rA/rB, constant valC.

Decode. Read up to 2 operands from register file,
obtaining valA and valB (for ALU operations).

Execute. ALU operation on registers, effective
address computation (for ld and st). Produces an
output value and a condition code.

Memory. Read data from memory to valM (for ld), or
write data to memory (for st). Uses the address
computed during Execute.

Write Back. Save Ex/Mem output to registers.

