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The Memory Hierarchy

So far... 
● We modeled the memory system as an abstract array of bytes.
● The CPU could access any location in constant time.

In practice, the memory system is a hierarchy of storage devices with 
different capacities, costs, and access times.
● Small, fast cache memories close to the CPU: 

staging area for data/instructions read from main memory.
● Main memory can be used as staging area for large, slow local disks.
● Local disks are often used as staging area for data from network devices.

“Well-written programs tend to access storage at any level more frequently 
than storage at the next lower level.”



The Memory Hierarchy



Latency Numbers (2018)

http://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html



Storage Technologies

Static RAM
● Used for cache memories (inside/outside CPU)
● Faster, more expensive: 6 transistors/bit
● Resistant to noise, persistent (bistable cells)
● About 10 MB on a desktop computer

Dynamic RAM
● Used for main memory and frame buffer of GPUs
● Very sensitive to noise, even light (array of capacitors)
● Must be periodically refreshed (recharge capacitors)
● 1000⨯ cheaper, 10⨯ slower 
● About 16 GB on a desktop computer

DRAM Organization
● Bidimensional array of supercells (i, j) each storing w bits
● Memory controller sends RAS / CAS (on same pins), reads/writes values



System Bus: Memory and I/O Access

● Once: northbridge (RAM / PCIe) and southbridge (PCI / IDE / SATA / USB).
● Since Sandy Bridge: northbridge functions integrated into CPU die.



Locality

Temporal Locality
“A memory location referenced once is likely to be referenced again multiple 
times in the near future.”

Spatial Locality
“Nearby memory locations are likely to be referenced in the near future.”

Locality is exploited at all levels:
● Hardware level: CPU cache memories for main memory access.
● OS level: use main memory as cache for virtual memory or disk blocks.
● Application level: 

○ Web browsers caching page elements.
○ Web servers caching frequently accessed pages/images in memory.



Example of Data Locality

#include <stdio.h>

int sum(int *array, int size) {

    int sum = 0;

    for (int i = 0; i < size; i++) {

sum += array[i];

    }

    return sum;

}

int main() {

    int array[5] = {1, 2, 3, 10, 20};

    printf("%d\n", sum(array, 5));

    return 0;

}

The function sum(int *array, int size) 
has good locality:
● Variable sum is referenced once in every 

loop cycle: good temporal locality.
● The elements of array are read 

sequentially: good spatial locality.

Stride-k reference pattern: visiting every k-th 
element of an array.
● The smaller the stride, the better the 

spatial locality.



Sum by row or by column?

#include <stdio.h>

#define N 3

int sum_by_row(int matrix[N][N]) {

    int sum = 0;

    for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

    sum += matrix[i][j];

}

    }

    return sum;

}

int sum_by_col(int matrix[N][N]) {

    int sum = 0;

    for (int j = 0; j < N; j++) {

for (int i = 0; i < N; i++) {

    sum += matrix[i][j];

}

    }

    return sum;

}

Function sum_by_row(int matrix[N][N]) 
has better space locality.

● Multidimensional arrays are stored in 
row-major format in C.

● sum_by_row results in stride-1 accesses
● sum_by_col results in stride-N accesses

Loops also have great temporal and spatial 
locality with respect to instruction fetches.



Caching

A cache is a small, fast staging area for objects from a larger, slower device.

Cache Hit. When an object in found in the cache of a level.
Cache Miss. When an object is fetched from the next level.
● In turn, another cache miss can be caused in the next level.
● Once data is fetched, an eviction policy decides whether to store the data 

in the cache and, if the cache is full, which block to evict (random, LRU). 
● Data is transferred between levels in blocks containing many objects:

○ If another object in the block is required, it will be already in the cache.



Types of Cache Misses

Compulsory Miss (or Cold Miss)
When the cache is initially empty (or “cold”).

Conflict Miss
When there are restrictive placement policies inside the cache, and two 
referenced data map to the same cache block.

Capacity Miss
When the cache is not large enough for the “working set” of a program phase.

Who takes care of cache misses?
● Compiler manages the register file.
● CPU L1, L2, L3 caches are managed by hardware logic.
● For virtual memory, DRAM is managed by the OS and by the address 

translation hardware of the CPU.



Cache Organization

Memory: addresses of m bits 
⇒ M = 2m memory locations 

Cache:
● S = 2s cache sets
● Each set has K lines
● Each line has: data block 

of B = 2b bytes, valid bit, 
t = m − (s+b) tag bits

How to check if the word at an 
address is in the cache?



Direct-Mapped Caches (K = 1)



Conflict Misses in Direct-Mapped Caches

Multiple memory blocks can map to the same set/line!
● They are identified by different tags.
● They generate conflict misses.
● Eviction policy is trivial: must remove the only line in the set.



Why caches index with middle bits

With high-order bit indexing, contiguous memory blocks would map to the 
same cache set.



K-way Set Associative Caches (1 < K < C/B)

More than one line per set.
● Line-matching is more difficult: must check the tag of multiple lines.
● Requires a policy for cache eviction (when all lines in set are full).

○ Random, FIFO, least-recently used (LRU), least-frequently used (LFU).



Fully Associative Caches (K = C/B)

A single set contains all the cache lines.
● Line-matching is very difficult: must check the tags of all lines.
● Appropriate for small caches (e.g, TLBs in virtual memory buffers).



Memory Writes and Caching

Write hit (writing to a word in the cache). Two options:
● Write-through: immediately update the word in the next cache level.
● Write-back: wait until the word is evicted from this cache level.

○ Can significantly reduce traffic on the bus.
○ Additional complexity (needs a “dirty bit”).
○ More common at lower levels (e.g., virtual memory).
○ Also used for Intel L1.

Write miss (the word is not in the cache). Two options:
● Write-allocate: load the word from next cache level, then write.
● No-write-allocate: bypass the cache and write directly into the next level.

Write-through caches are typically no-write-allocate.
Write-back caches are typically write-allocate.



Performance Tuning of Caches

● Large caches decrease the miss ratio, but increase the hit time.
● Large blocks decrease the miss ratio with spatial locality, but having fewer 

lines per set can hurt programs where temporal locality dominates.
● Large blocks can also increase the miss penalty.
● Large associativity K decreases the chance of conflict misses, but it is 

more expensive to implement and hard to make fast.
○ More tag bits per line.
○ Additional LRU state bits per line.
○ Additional control logic.
○ … can increase both hit time and miss penalty.

Average Access Time = (Hit Time) + (Miss Ratio) ⨯ (Miss Penalty) 



Exercise: Cache Size and Address

Problem
A processor has a 32-bit memory address space. The memory is broken into 
blocks of 32 bytes each. The cache is capable of storing 16 kB.
● How many blocks can the cache store?
● Break the address into tag, set, byte offset for direct-mapping cache.
● Break the address into tag, set, byte offset for a 4-way set-associative 

cache.

Solution
● 16 kB / 32 bytes per block = 512 blocks.
● Direct-mapping: 18-bit tag (rest), 9-bit set address, 5-bit block offset.
● 4-way set-associative: each set has 4 lines, so there are 512 / 4 = 128 sets.

○ 20-bit tag (rest)
○ 7-bit set address
○ 5-bit block offset



Exercise: Cache Size and Address

Problem
A processor has a 36-bit memory address space. The memory is broken into 
blocks of 64 bytes each. The cache is capable of storing 1 MB.
● How many blocks can the cache store?
● Break the address into tag, set, byte offset for direct-mapping cache.
● Break the address into tag, set, byte offset for a 8-way set-associative 

cache.

Solution
● 1 MB / 64 bytes per block = 2**(20-6) = 16k blocks.
● Direct-mapping: 16-bit tag (rest), 14-bit set address, 6-bit block offset.
● 8-way set-associative: each set has 8 lines, so there are 16k / 8 = 2k sets

○ 19-bit tag (rest)
○ 11-bit set address
○ 6-bit block offset



Exercise: Direct-Mapping Performance

You are asked to optimize a cache capable of 
storing 8 bytes total for the given references. 
There are three direct-mapped cache designs 
possible by varying the block size:
● C1 has one-byte blocks,
● C2 has two-byte blocks, and 
● C3 has four-byte blocks. 

In terms of miss rate, which cache design is 
best?

If the miss stall time is 25 cycles, and C1 has 
an access time of 2 cycles, C2 takes 3 cycles, 
and C3 takes 5 cycles, which is the best cache 
design? (Every access, hit or miss, requires an 
access to the cache.)

Trace (LSB)

  1 0000 0001

134 1000 0110

212 1101 0100

  1 0000 0001

135 1000 0111

213 1101 0101

162 1010 0010

161 1010 0001

  2 0000 0010

 44 0010 1100

 41 0010 1001

221 1101 1101



Solution: Direct-Mapping Performance

Address breakdown
● C1 has no block offset, 3-bit set address
● C2 has 1-bit block offset, 2-bit set address
● C3 has 2-bit block offset, 1-bit set address

How to run a trace: extract set address (3, 2, 1 
bits) from LSB; on miss, load (1, 2, 4) bytes.

Running C3:
● Get 1: miss. Put bytes 0-3 in bucket 0.
● Get 134: miss. Put 132-135 in bucket 1.
● Get 212: miss. Put 212-215 in bucket 1.
● Get 1: hit.
● Get 135: miss. Put 132-135 in bucket 1.
● Get 213: miss. Put 212-215 in bucket 1.
● Get 162: miss. Put 160-163 in bucket 0.
● Get 161: hit.

Trace

MEM     LSB     C1 C2  C3

  1  0000 0001  1m 0m  0m

134  1000 0110  6m 3m  1m

212  1101 0100  4m 2m  1m

  1  0000 0001  1h 0h  0h

135  1000 0111  7m 3h  1m

213  1101 0101  5m 2h  1m

162  1010 0010  2m 1m  0m

161  1010 0001  1m 0m  0h

  2  0000 0010  2m 1m  0m

 44  0010 1100  4m 2m  1m

 41  0010 1001  1m 0m  0m

221  1101 1101  5m 2m  1m

m_rate: 11/12 9/12 10/12



Solution: Performance

In terms of miss rate, C2 is best.

If the miss stall time is 25 cycles, and C1 has an access time of 2 cycles, C2 
takes 3 cycles, and C3 takes 5 cycles, which is the best cache design? (Every 
access, hit or miss, requires an access to the cache.)

● For C1, access time = 2 + 11/12 ⨯ 25 = 24.92 cycles
● For C2, access time = 3 +   9/12 ⨯ 25 = 21.75 cycles
● For C3, access time = 5 + 10/12 ⨯ 25 = 25.83 cycles

Average Access Time = (Hit Time) + (Miss Rate) ⨯ (Miss Penalty) 


